
Grading with TorXakis

by

Movahed Abdolahi

A thesis submitted to the

Department of Computer Science

in conformity with the requirements for

the degree of Master of Science

Bishop’s University

Canada

August 2023

Copyright © Movahed Abdolahi, 2023

1

Abstract:
Software development models and processes have become incredibly
complex and sensitive since many governments and companies are
implementing software to perform critical matters including such highly
dangerous activities as surgeries. Evidently, with increasing sensitivity
delivering robust and bug free software is getting more important than ever.

This thesis discusses the use of model-based testing to grade and
validate various functionalities of a network application which in this case is
a Bulletin Board System (BBS). In model-based testing test cases are
automatically generated algorithmically to verify the correctness of the
implementation of a system according to the model that describes the
expected behavior of that system. We are intending to use TorXakis (a
model-based testing tool) to grade 30 submissions to a final project in a
graduate course at Bishop’s University. We create a model according to the
assignment handout and then we apply this model to the student submissions
by using a MBT tool. The submissions will also be validated manually using
telnet protocol [9] manually.. Comparing model-based testing results with
human tested results we can see a high degree of similarity while automated
grading is much more resource efficient.

2

Acknowledgments:

I am thankful to the Computer Science department of Bishop's University for
granting me the opportunity to develop and pursue a Master's degree.

I wish to express my gratitude to Dr. Stefan D. Bruda, my supervisor,
for his invaluable guidance and unwavering professional support during the
entirety of this thesis. Without his assistance, this achievement would not
have been possible.

Last but not least, I want to extend my heartfelt appreciation to my wife
for her love and all the support that she provided, especially during the final
phase of this thesis. Her constant encouragement and motivation were
integral to my success in this endeavor.

3

Contents:

1 Introduction 5

1.1 Previous work 7

2 Theory of model based testing 8

2.1 Model-Based Testing (MBT) 8

2.2 Benefits of MBT 9

2.3 Types and challenges of MBT 10

2.4 Theory of MBT 11

2.5 Bulletin Board System (BBS) 16

3 Preliminaries 18

3.1 System under test (SUT) 19

3.2 Specifications (The Model) 23

3.2 Conformance 28

4 Grading 30

4.1 Execution of tests 30

4.2 Challenges 35

4.3 Synchronization 36

5 Discussion and conclusion 38

7 Bibliography 42

4

Chapter 1:

Introduction
Validation is one of the most important parts of software development. As
clients' needs are getting more complex, the need for testing and being able to
validate the components of a software is beginning to become even more
obvious than before. It ensures that the software is working well and meets
the requirements of the end user. Nowadays there are many methods to test a
software product, even during the development stage.

Systematic software testing is one of the most important and widely
used techniques to check the validity of a software. Testing however is often
a manual and laborious process without effective automation, which makes it
error-prone, time consuming, and very costly.

Two most important reasons that makes software testing so important is
that it lowers the cost (in both time and money) spent on the development
stages. In addition, software products released without proper testing can
sometimes cause serious issues such as data leakage and even irrecoverable
damage. On the other hand, by testing software thoroughly before releasing
not only we can implement software in a shorter time and with less cost, but
we can also ensure that the product has the expected quality and performance.
In the end this all leads to a higher customer satisfaction rate which is the
ultimate goal of the software life cycle.

Software testing used to be overlooked by companies and businesses
but nowadays the importance of testing is no longer a mystery to anyone.
Businesses are allocating a huge portion of their development budget to make
sure the software is tested and performed as intended. Additionally, many
companies are using methods such as the Software Production Line (SPL in
short) [10], where it is even more important to make sure the best testing
strategy is being used. This is getting substantial attention, for indeed it is a
lot harder to test a Software production line. While software development and
construction techniques enable the creation of more intricate systems, there is
a real concern that testing methods may not be able to match the pace of
software construction. This could potentially impede the advancement of
future iterations of software systems.

5

One of the most effective software testing methods is model-based
testing (MBT in short). MBT is an approach in which a model of the system
under test is created and used to generate test cases and verify the output. The
model represents the desired behavior and structure of the system
(specification), and can be used to automate the testing process. It is often
more precise than other methods and mainly used for testing more complex
systems where manual testing is almost impossible and definitely not
efficient.

From an industrial perspective, MBT is a promising technique to
improve the quality and effectiveness of testing and to reduce its cost. From
an academic perspective MBT is a compound of formal methods and
verification techniques.

In this thesis we study the application of MBT to the more mundane
task of grading assignments submitted by students. We first construct a model
based on the specification given to students, and then we apply the model
against all 30 submissions to grade the submissions based on their functional
requirements. In this particular instance, model based testing (or testing in
general) is a realistic marking technique, as the main task of the project was
to create a program that observes a provided specification. Additionally MBT
is capable of offering not just a binary yes/no responses, but also
counterexamples, which can then be used to provide feedback on the
respective submission. The specification asked for the implementation of a
bulletin board system (BBS for short), including specific performance and
concurrency requirements as well as facilities for data synchronization. We
anticipate being capable of formulating a comprehensive model for all the
functional prerequisites. Nevertheless, due to the inherent characteristics of
MBT, examining performance or non-functional prerequisites through this
approach remains unfeasible. As an additional facet of this thesis, we have
explored the necessity of manually assessing non-functional requirements
(concurrency requirements, robustness, system load, etc.) versus the
possibility of deducing the accuracy of these non-functional requirements
from the result of testing functional prerequisites. Interestingly, it seems that
such an inference is possible. It should be noted however that one particular
non-functional requirement namely, concurrency requirements can only be
tested to the extent that they affect the functional behaviour.

In all, we wonder whether it is worth replacing manual grading with
MBT. On one hand, MBT offers significant advantages over conventional

6

methods. It is notably faster and much more reliable as it does not require
constant supervision during the testing phase. Unlike conventional methods
which are prone to oversight, MBT can effectively prevent human errors
during testing thus making the process fairer. On the other hand, we expect
MBT to be a very tough grader.

We organize our thesis as follows. We first introduce MBT in general
followed by an overview of the theory of testing and how process algebra
made it possible. Next, we outline the specification given to the students for
the project (a simplified BBS). Afterward we present the MBT tool that we
used (called TorXakis) as well as the model developed from the given
specification. Finally we discuss the process and outcome of applying our
model to 30 BBS implementations by Bishop’s University students as their
project. We are therefore using MBT to validate their functionality as much
as possible and provide a final grade for each submission, and then compare
the grades thus achieved to conventional, human supervised methods.

1.1 Previous work

Over time, model-based testing (MBT) has been useful for specifying
and validating diverse systems and protocols. Work in this area adopts
distinct methodologies with regards to their application of MBT within their
particular domain of focus. For instance, some MBT publications might
emphasize specific aspects of MBT in the context of network protocols,
while others may concentrate on applying MBT techniques to software
systems. The variations in these approaches reflect the adaptable nature of
MBT as it addresses the distinctive demands of each domain.

In other words, MBT can be applied (and has been applied) widely for
the verification of computing systems. Recent examples include Tretmans
and Van de Laar who applied MBT to validate the Dropbox protocol [2], Li,
Pierce and Zdancewic who applied MBT on network applications [11], and
Garous, et. al. who used MBT to validate Web applications [12].

To the best of our knowledge however MBT has not been used to
assess academic projects.

7

Chapter 2:

Theory of model based testing

We now briefly review some notions related to the thesis. As mentioned
earlier, model based testing is one of the most reliable methods for software
testing. In this chapter we are exploring the theory of model-based testing and
the underlying formal methods including process algebra and labeled
transition systems.

2.1 Model-based testing (MBT)

Model-based testing is a form of black-box testing where a system

under test (SUT for short) is tested against an abstract model of its required

behavior [2]. Using a semi-formal language model indicates what the SUT

should do and it is the basis for the algorithmic generation of test cases and

for the evaluation of the test results. The model itself prescribes the I/O of the

SUT. It exactly indicates which input the SUT should accept and what should

be the expected response to the input received. The main advantage of MBT

is that it allows test automation that goes well beyond the mere automatic

execution of manually crafted test cases. It allows the algorithmic generation

of large amounts of test cases, including their expected results, completely

automatically and correctly from the model of required behavior. The theory

allows for the development of sound and complete models.

From an industrial standpoint, MBT shows great potential in efficiently
and affordably identifying a higher number of bugs. Currently test
automation primarily focuses on executing tests automatically, while the
issue of test generation remains unaddressed. Model-based testing seeks to
address this by automatically creating comprehensive, sound and complete
test suites based on a model, thereby implementing the automated test
execution process [3].

From an academic standpoint, MBT is an approach rooted in formal
methods that serves as a valuable companion to formal verification and
model checking techniques. The ultimate objective of formal verification and

8

model checking is to establish that a system satisfies predefined properties by
proving that a model representing the system indeed fulfills these properties
[3]. Therefore, the quality of any verification outcome hinges on the
soundness and validity of the underlying model upon which it is built. In
contrast, model-based testing takes a different approach by commencing with
a (previously verified) model, and its objective is to establish that the
real-world implementation of the system behaves in accordance with this
model. While in theory the MBT is sound and complete, due to the inherent
limitations of actually running the tests MBT can never be complete: testing
can only show the presence of errors, not their absence. These limitations
include model accuracy, model maintenance, domain expertise, test oracle
and automation challenges, which we will elaborate on in the following
sections. Practically speaking, it is important to consider these limitations
while applying MBT and to complement it with other testing techniques to
ensure comprehensive and reliable testing.

2.2 Benefits of MBT

The primary advantage of MBT is its ability to generate test cases, which has
been a significant challenge in automation processes. This approach enables
the generation of a larger, more extensive, and diverse set of test cases with
reduced effort. Furthermore, these test cases are inherently valid as they are
constructed based on robust algorithms.

Developing models for MBT offers several advantages, including
gaining a deeper understanding of system behavior and requirements and
early detection of specification and design errors. Additionally, creating
models for MBT leads to an easier implementation for other model-based
approaches like model-based analysis, model checking, and simulation. It
also forms a natural connection to model-based system development that is
becoming an important driving force in the software industry.

9

2.3 Types and challenges of MBT

There are different kinds of testing, and thus model-based testing, depending
on the kind of models being used, the quality aspects being tested, the level
of formality involved, the degree of accessibility and observability of the
system being tested, and the kind of system being tested [2].

In this thesis we consider MBT as specification-based, formal,
black-box, functionality testing of reactive systems. It is testing because the
process involves checking specification properties of the BBS. Functionality
testing in particular checks whether the system reacts how it should react to
the given stimuli. It is being called black-box testing since it compares the
externally observable behavior of the system seen as a black box against the
previously constructed formal specification (the model). The test is also
active since the tester controls the system under test (BBS) by sending stimuli
to trigger the SUT and actively observes the responses. The SUT is reactive,
meaning that the system will react to external events (stimuli, input, etc) with
output events (response, actions, and so on). In such systems the types of
outputs are directly connected to types of inputs and also the state that the
system is in when receiving the input. Finally, a formal and well-defined
theory exists that serves as the basis for model, SUT, and the correctness of
SUT in relation to the model. This theory allows for formal reasoning about
the completeness and accuracy of generated test suites.

Software has become ubiquitous in our society, with an expanding
range of systems relying on it. Whether it's automobiles, airplanes,
pacemakers, or refrigerators, software is now responsible for controlling,
linking, and overseeing nearly every aspect of these systems. Its presence is
vital in ensuring the effective performance and operation of these diverse
devices and appliances. Generally, this type of software comprises a vast
amount of code, often reaching millions of lines. It involves intricate control
flow, complex data structures, and employs distribution and parallelism. The
software interfaces are diverse and challenging, catering to a range of
functionalities. It oversees various multidisciplinary processes, each with
their own complexities. Moreover, these systems are in a constant state of
evolution and are integrated into larger systems and systems-of-systems. The
components used in these systems can come from a variety of sources, such
as third-parties, open-source libraries, or newly developed components.

10

MBT faces various challenges due to these trends. First, the increasing
size of systems makes it impractical to create fully comprehensive models,
requiring MBT to handle partial and under-specified models as well as
abstractions. In addition, dealing with partial knowledge and uncertainty
becomes unavoidable in such scenarios.Secondly, the combination of
complicated state-behavior and intricate input and output-data structures must
be supported in modeling which is challenging due to the ever increasing
complexity. Thirdly, distribution and parallelism imply that MBT must deal
with concurrency in models, which introduces additional uncertainty and
non-determinism [2]. Furthermore, as complex systems are constructed from
subsystems and components, and systems are increasingly integrated into
systems-of-systems, model-based testing (MBT) needs to facilitate
compositionality. This means enabling the construction of intricate models by
combining simpler models together. The ability to compose and integrate
these models effectively becomes crucial in addressing the challenges posed
by complex and interconnected systems. Finally, the complexity of systems
in model-based testing leads to an overwhelming number of potential test
cases. Consequently, the key challenge lies in test selection, which involves
identifying the tests that can capture the most critical failures within the given
constraints of time and budget. Balancing these factors is essential for
ensuring efficient and effective model-based testing.

Overall, in order to be applicable for testing modern software systems,
model-based testing (MBT) must incorporate several crucial elements. These
include supporting partial models, under-specification, abstraction,
uncertainty, state and data handling, concurrency, non-determinism,
compositionality, and test selection. Despite the existence of numerous
academic and commercial MBT tools, the availability of comprehensive tools
covering all these aspects is relatively limited.

2.4 The Theory of MBT

A theory for MBT must naturally define first the models that are considered.
The modeling formalism determines the kind of properties that can be
specified, and consequently the kind of properties for which test cases can be
generated. Secondly, it must be precisely defined what it means for an SUT to
conform to a model. Conformance can be expressed using an implementation
relation, also called conformance relation [4]. Despite the black box nature of

11

the SUT, it is possible to hypothesize that it can be effectively represented by
a model instance within a particular domain of implementation models. This
hypothesis is commonly referred to as the testability hypothesis, or test
assumption [5]. The testability hypothesis provides a framework for
analyzing SUTs by treating them as formal models. It allows for the
establishment of a formal relationship between the domain of specification
models and the domain of implementation models, known as the
implementation relation. The concept of soundness, which ensures that all
correct SUTs pass, and exhaustiveness, which verifies that all incorrect SUTs
fail, is defined based on this implementation relation.

Model-Based Testing and process algebra are closely related in the
context of testing concurrent and distributed systems. Process algebra
provides a formal language and mathematical framework for modeling and
analyzing concurrent systems. It allows for the precise specification of
system behavior, communication patterns, synchronization, and other aspects
of concurrent processes. Process algebra formalisms, such as CSP
(Communicating sequential processes) [18], CCS (Calculus of
communicating systems) [19], and the π-calculus [20] enable the
representation and manipulation of processes using algebraic expressions and
operators. CSP is an example, suitable for modeling and analyzing concurrent
systems. It provides a formal language for describing the behavior of
processes and their communication through channels. The CSP model allows
us to specify the desired behavior of the system and analyze properties such
as safety, liveness, and deadlock-freedom. For example, we can define safety
properties to ensure that a buffer is not accessed when it is empty or full.
Liveness properties can also be defined to ensure that items are eventually
produced and consumed.

Figure 1 indicates a practical example of a CSP model. In this model,
produce, consume, and buffer are events representing the actions of
producing an "item", "consuming" an item, and accessing the shared "buffer",
respectively. The || operator denotes parallel composition, indicating that the
processes P, C, and B run concurrently, synchronizing over their common
actions.

12

P = (produce -> buffer -> P)
C = (buffer -> consume -> C)
B = (buffer -> B)

System = P || C || B

Figure 1.CSP model definition

The use of CSP in this practical example demonstrates how process
algebra provides a formal and systematic approach to modeling (and
eventually reasoning about) concurrent systems.

In another more complex example, let us consider a scenario where we
have a distributed system with multiple components: Server, Clients and
Load Balancer. The Clients send requests to the Server, which processes
them and sends responses back. Load Balancer distributes incoming requests
among multiple instances of the Server. Let us model the behavior of this
system in CSP. As indicated in Figure 2, we start by defining processes that
represent the behavior of each component. Each process can send and receive
messages.

Figure 2. Defining processes in CSP

In this example, the process Client(id) represents the behavior of a Client
component identified by id. It sends a sendRequest message and then receives
a receiveResponse message. The process Server(id) represents the behavior of
a Server component identified by id. It receives a receiveRequest message
and then sends back a sendResponse message. The process LoadBalancer
represents the behavior of the load balancer component. It receives a

13

Process Client(id):
sendRequest -> receiveResponse -> stop

Process Server(id):
receiveRequest -> sendResponse -> stop

Process LoadBalancer:
receiveRequest -> forwardRequest -> stop

receiveRequest message, forwards it to one of the Server instances using a
forwardRequest message, and then stops.

Afterwards as shown in Figure 3, we define the communication
channels through which messages are passed between the processes. Then we
compose the processes and specify the communication channels to represent
the overall behavior of the system.

Channel sendRequest, receiveRequest, sendResponse, receiveResponse, forwardResponse

System = LoadBalancer || (Server || Client(1) || Client(2) || Client(3))

System [sendRequest, receiveRequest, sendResponse, receiveResponse, forwardResponse]

Figure 3. Defining communication channels and behavior in CSP

In this example, we define five communication channels: sendRequest,
receiveRequest, sendResponse, receiveResponse, and forwardRequest. These
channels facilitate the communication and synchronization between the
components. The composed process System represents the behavior of the
entire distributed system. It is created by composing the LoadBalancer,
Server, and multiple Client processes using the parallel composition operator
||. The square brackets [sendRequest, receiveRequest, sendResponse,
receiveResponse, forwardRequest] specify the communication channels used
by the processes. With the processes and communication defined, we can
analyze the behavior of the system. This may involve checking for desired
properties, exploring different scenarios, or generating test cases based on the
model.

One of the specification formalisms studied in the realm of formal
conformance testing is that of labeled transition systems. A labeled transition
system is a structure consisting of states with transitions, labeled with actions,
between them. The formalism of labeled transition systems can be used for
modeling the behavior of processes, and it serves as a semantic model for
various formal specification languages including CSP. Testing theory and
algorithms for the generation of tests from labeled transition system
specifications have been developed during the last few decades [7,8]. All
these methods, as most of the theory on labeled transition systems, are based
on synchronous, symmetric communication between different processes:
communication between two processes occurs if both processes offer to

14

interact on a particular action, and if the interaction takes place it occurs
synchronously in both participating processes, without a notion of distinction
between input and output actions. For testing theories a particular case where
such communication occurs is the modeling of the interaction between a
tester and an implementation under test during test execution [4].

A labeled transition system (LTS) [3] is a 4-tuple (S, L, T, s0) where, S
is a countable, non-empty set of states, L is a countable set of labels, T⊆ S ×
(L∪ {τ}) × S is the transition relation and s0∈ S is the initial state [4].

To illustrate the concepts of (LTS) we represent the behavior of a
simple vending machine. The LTS captures the different states of the vending
machine and the transitions between those states in response to various events
or actions. Let us imagine a simple vending machine with the set of states S =
{Idle, Selecting, Dispensing, Refilling, OutOfStock}, the set of actions or
events L = {InsertCoin, SelectProduct, DispenseProduct, RefillMachine,
ProductOutOfStock}, and the set of possible transitions T = {(Idle,
InsertCoin, Selecting), (Selecting, SelectProduct, Selecting), (Selecting,
DispenseProduct, Dispensing), (Dispensing, DispenseProduct, Idle), (Idle,
RefillMachine, Refilling), (Refilling, RefillMachine, Idle), (Selecting,
ProductOutOfStock, OutOfStock)}. The initial stage for this vending
machine is Idle.

We can illustrate an LTS using a graph with nodes representing states
and edges representing transitions. For example the graph representing the
vending machine LTS described above is shown in Figure 4.

Figure 4. LTS illustration of a simple vending machine

15

Starting from the initial state Idle, the vending machine can transition
to the Selecting state when a user inserts a coin performing InsertCoin. From
the Selecting state, the user can either change their product selection while
staying in the same state executing SelectProduct or confirm their selection,
leading to the dispensing of the product by executing DispenseProduct and
thus transitioning to the Dispensing state. If the vending machine runs out of
stock for a particular product while a user is in the selecting state, it
transitions to the OutOfStock state with action ProductOutOfStock. The
OutOfStock state indicates that the vending machine is currently out of stock
for that specific product. The vending machine can also transition to the
Refilling state if someone refills it with products by offering RefillMachine.
Once the refilling is complete, the vending machine transitions back to the
Idle state with the same (synchronized) event RefillMachine.

A similar approach can be used for capturing behavior of a Bulletin
Board System to be able to validate the conformance level of the system
using a model which we will explore more in following chapters.

On the practical side TorXakis is an advanced software solution that
incorporates a similar approach wherein system specifications can be
precisely described using a process algebra thus obtaining a model. This
model can be used to algorithmically generate test cases and apply them
against the SUT.

TorXakis is one of the MBT tools, we have chosen it for no particular
reason. There are other MBT tools available such as Modbat [14] which is an
open-source tool, and TOSCA [15] which is a commercial tool. Another
popular form of verification model checking, which uses logical rather than
algebraic specifications. Model checking is popular in the industry, with the
most popular tools including SPIN [16] and NuSMV [17].

2.5 Bulletin Board Systems (BBS)

A Bulletin Board System (BBS) is a very old computer-based platform that
facilitates communication, file access, and discussion among users. Typically
hosted on a server, a BBS allows users to connect through dial-up
connections or internet protocols like telnet. Users interact with the BBS
using terminal software, which provides a text-based interface. It rose in

16

popularity during the 1980s and 1990s but declined with the emergence of the
internet. BBS offered features like message boards, file libraries, user
profiles, and online games, serving as virtual gathering spots for individuals
sharing common interests. While their prevalence has diminished, specialized
versions of BBSs still persist today.

The best known early BBS is a Chicago-based community started in
1978 during a legendary blizzard by Ward Christensen and Randy Suess.
Their innovation was to create a custom interface that would detect an
incoming call on the modem and "cold-boot" the caller directly into the
special host program, where they could then read articles and leave a message
[6].

The BBS we are intending to grade is a simplified version of a real
BBS. It was given as a final project in a network programming course at
Bishop’s University in the 2021-2022 academic year. In addition to basic
interaction with clients, the specification also requires the ability to run
multiple instances of the server which synchronize with each other using the
two-phase commit protocol. The specification is given in the following
chapter.

In this thesis we are trying to grade 30 submissions based on their
ability on basic client-server communication, which includes performing
READ, WRITE, REPLACE and other available commands on the BBS and
also basic peer synchronization. We will then continue by testing replication
to evaluate the implementation of the two-phase commit protocol. We will
discuss the grading process in Chapters 3 and 4.

17

Chapter 3:

Preliminaries
When performing a formal, specification based testing there are various
concepts and objects that we need to pay attention to which we explore in this
section. These concepts and objects result in a framework for formal testing
with respect to a formal specification of its functional behavior which we can
observe at a high level of abstraction in Figure 5 [3].

Figure 5. The formal, specification based testing process

The very first step in testing is having a system to perform tests on
which as we explained earlier is tha system under test or SUT. As SUT can be
a real world object like a piece of hardware, a software with all the modules,
an embedded system consisting of software embedded in some physical
device, or a process control system consisting of sensors and actuators. Since
model based testing is a black box testing, we are treating SUT as a black box

18

exhibiting behaviors and interacting with its environment, but without any
knowledge about its internal processes and structure. This means that the
tester will only interact with the system interface and the aim of this test is to
validate the behavior of the SUT.

The correctness of an SUT is expressed as conformance to a
specification. Basically a specification is what the SUT should do and what it
should not do, and in this thesis we call it a model of a system’s expected
behavior. In formal testing the specification is expressed in a formal language
with formal syntax and semantics, such as a process algebra. By means of
testing we want to check if the I/O behavior of the SUT conforms to this
specification.

To check if the SUT conforms to the specification we need a formal
definition of conformance. This definition should relate the SUT with the
specification. In this thesis we are generating test case models for different
scenarios and then we validate the conformance of the SUT with all the
created models

The behavior of the SUT will be investigated by performing
experiments on it, or testing. Each experiment in general consists of sending
commands as stimuli to the SUT and validating the responses. The
specification of such an experiment, including both command and expected
responses, is called a test case. The process of applying a test to a SUT is
called test execution. Test execution can either be successful which means
that the observed response corresponds to the expected response or can be
unsuccessful which means the observed response does not match the
expected response. The successful execution of a test is referred to as a pass
and unsuccessful execution of a test is a fail.

Finally, the final score is given to the model by comparing model
generated results and correct answers. Then we can see the possibility of
automation using model-based testing for our system under test. The
subsequent sections will examine the comprehensive process of testing,
covering the initial stages all the way through to its conclusion.

3.1 System Under Test (SUT)

The very first step in testing is having a system to perform tests on
which as we explained before is deemed the system under test or SUT. Since
model based testing is a black box testing technique, we are treating SUT as a

19

black box exhibiting behaviors and interacting with its environment, but
without any knowledge about its internal processes and structure. It means
the tester will only interact with the system interface and the aim of this test
is to validate the behavior of the SUT.

In this contribution the SUT is a simple execution of a Bulletin Board
Server (BBS) which features client-server communication, database storage,
and replication. All the executions have been implemented by Master’s
students at Bishop’s University. There are a total number of 30 submissions
available. In the upcoming discussion, we will outline the fundamental rules
that must be adhered to for all implementations.

The testing process can pose significant challenges due to the presence
of buggy implementations in the SUT, which have not been rectified or
verified prior to testing. These are coursework submissions, not polished,
commercial products, and they should be graded using a more nuanced
approach that simply pass/fail. This presents a challenge for our model, as in
principle complete adherence to the rules is required to validate an
implementation using the model, yet each student may employ their own
approach to implement the system and thus introduces different kinds of
deviations from the given specification (some minor, some not so minor).
The thesis supervisor of this student has observed in the past numerous times
that students tend to not appreciate the need to observe the given application
protocol in a network application, and often feel the urge to introduce their
own idiosyncratic deviations.

3.1.1 Implementation

Implementations should represent a simple BBS. The server accepts
one-line messages from multiple clients, stores them in a local file, and
serves them back on request. The name of the file is given by a command line
parameter and is hereby referred to as the bbfile. Messages are identified
upon storage by an unique number established by the server, and by the
“sender” of the message.

20

3.1.2 Application Protocol

While there may not be strict enforcement regarding the implementation
approach or method to be used, there are nonetheless strict protocols that
must be adhered to which will be outlined in this section. This is referred to
as the application protocol of the client-server application.

Every command and response consists of a single line of text. The
server should handle any combination of the characters ’\n’ and ’\r’ as line
terminator and should send back responses terminated by a single ’\n’.
Implementations should be able to be tested using telnet as a client or indeed
any other client capable of sending and receiving plain text. Each server
response should contain a status which will be used for validation.

1. Greeting: At the beginning of the interaction the server sends the Greeting
message to the client that just connected. If the connection is established
successfully then a status "0.0" should be sent, followed by a one-line
“greeting” that is, some (possibly empty) message intended for human
consumption. There is no particular format for the greeting text, but it is
strongly suggested for this text to summarize the commands available to
clients.

2. The command “USER name” should establish the user name of all the
subsequent messages being posted by the respective client. The argument
name is a string not containing the character /. Future messages posted by
the respective client will be identified as posted by name. Normally, a
client will send this command at the beginning of the session, but the
server should handle the case in which this command is sent more than
once during the interaction with a particular client, as well as the case
when a client does not send a "USER" command at all (case in which the
poster will be “nobody”). The server response if the command executes
successfully should be “1.0 Hello name text” where text is some (possibly
empty) message intended for human consumption. Whenever the user
name contains unacceptable characters (including but not necessarily
limited to ’/’) or is otherwise incorrect the response of the server must be
“1.2 ERROR USER text” where text is once more intended for human
consumption and explains the issue encountered in processing the request.

3. The command “READ message-number” asks for the message number
message-number. In the event that this message exists on the

21

bulletin-board, the server will send in response one line of the form “2.0
MESSAGE message-number poster/message” where message represents
the requested message, prefixed by its poster (as identified by the USER
command in effect at the time of posting). If a message with
message-number does not exist, then the server must send back the
response “2.1 UNKNOWN message-number text”, where text is a
message for human consumption. If the server encountered an internal
error while serving the request (e.g., the unavailability of the bulletin
board file), then the response should look like “2.2 ERROR READ text”,
where again, text is an explanatory message with no particular structure.

4. The command “WRITE message” sends a message to the server for
storage. The server will store the message into the bulletin board file as a
line of the form “message-number/poster/message”, where
message-number is a unique number assigned by the server, and poster is
the poster of the message as specified by a previous "USER" command
issued by the respective client (nobody if no USER command has been
issued by that client). Upon successful storage, the server returns the
message “3.0 WROTE message-number”. When an error occurs during
the storage process, the server responds should instead look like “3.2
ERROR WRITE text”. The receipt of such a response must guarantee that
no message has been written to the bulletin board file.

5. The command “REPLACE message-number/message” asks the server to
erase the message number message-number and replace it with message
(which will be assigned the same message number as the original). The
poster is also changed to the current poster as identified by a previous
"USER" command (nobody if no such command has been issued). The
server response is identical to the response to a "WRITE" request.
Additionally, when message number message-number does not exist in the
bulletin board file (case in which no message is added to the file) then the
response should be “3.1 UNKNOWN message-number”.

6. The command “QUIT text” signals the end of interaction. Upon receipt of
this message the server sends back the line “4.0 BYE some-text” and
closes the socket. The same response (including the socket close) is given
by the server to a client that just shuts down its connection. The server
should always close the socket in a civilized manner by shutting down the
socket before closing it.

22

3.1.3 Other implementation requirements

The server must be robust, in the sense that no message shall be lost when the
server is terminated, except possibly a message that is currently being written
to disk. The bulletin board file (where messages will be saved) should be
considered too large to be kept completely in memory. The server must also
be efficient, in the sense that it must not rewrite the whole bulletin board file
upon the receipt of each and every message. It should use the file system as
little as possible (within the robustness requirements above).

3.1.4 The Bulletin Board File

The bulletin board file must be created to store messages from "WRITE"
requests. It specified in the configuration file or on the command line must be
created if nonexistent and must be re-used as is otherwise (rather than being
overwritten). Message numbers are assigned by the server. No two messages
can have the same number in any bulletin board file. In particular, if the
server is started on an existing file it should inspect the file on startup and
make sure that any new message written to the file has an associated number
that does not conflict with existing message numbers.

3.2 Specification (The model)

The model is written in the TorXakis modeling language. TaXakis uses its
own process-algebraic language Txs (pronounced t`ex`es) to express models.
The language is strongly inspired by the process-algebraic language Lotos,
and incorporates ideas from Extended Lotos and mCRL2, combined with
plain state-transition systems. The semantics is based on STS, which in turn
has an LTS semantics. Having its roots in process algebra, the language is
compositional. It has several operators to combine transition systems:
sequencing, choice, parallel composition with and without communication,
interrupt, disable, and abstraction. Communication between processes can be
multi-way, and actions can be built using multiple labels.

A (collection of) model file(s) contains all the definitions necessary for
expressing the model: channels, data types, functions, constants, and process
definitions, which are all combined in a model definition. In addition, the

23

model file contains some testing specific aspects: connections as well as
encodings/decodings. A connection definition defines how TorXakis is
connected to the SUT by specifying the binding of abstract model channels to
concrete sockets. Encodings/decodings specify the mapping of abstract
messages (ADTs) to strings and vice versa [2].

In this section, we will provide a description of our model and cover all
of its functions in detail. Overall, our model consists of six sections,
TYPEDEF, FUNCDEF, MODELDEF, CHANDEF and CNECTDEF.

TYPEDEF defines data types. Our model includes two different data
types. First, the Server_response data type basically categorizes the server
responses. The second type is Message_list which is a list to save the
messages that we send to the server. It acts as a local (and incomplete) copy
of the bulletin board file and is used to check the messages as we read them
back.

TYPEDEF Server_Response ::=
No_response

| Write {wstatus :: String; write_number :: String}
| Read {rstatus :: String; read_text :: String}
| Error {estatus :: String; error_text :: String}
| User {ustatus :: String; username :: String}
| Greet {gstatus :: String; greeting_text :: String}
| Quit {qstatus :: String; bye_text :: String}

ENDDEF

TYPEDEF Message_list ::=
No_message

| Messages {mstatus :: String; message_num :: String; poster :: String;
message :: String; rest :: Message_list}
ENDDEF

Figure 6. Defined data typed in Txs

FUNCDEF defines functions in TorXakis. Our model contains an
overall of 14 functions. Using these functions we are able to define
specifications and confirm the validity of the SUT. To define a function in
TorXakis modeling language we proceed as shown in Figure 7.

24

FUNCDEF name (arg :: type) :: return_type ::=

Body of function

ENDDEF

Figure 7. How to define functions in Txs

The following are the functions used in our model.
FUNCDEF Valid_greeting: This function is used for validating

greeting messages. This function looks for "0.0" as greeting status plus

"greeting" as the start of the greeting message.

FUNDEF Valid_user: This function is used for validating the response

we receive back from the server after sending a "USER username" command.

FUNCDEF Valid_read: This is similar to the previous functions, but for

validating the response to the READ message-number command.

FUNCDEF Substring: This function is used to retrieve a particular

section from a longer string.

FUNCDEF Message_exist: This function is used to verify the presence

of a specific message in memory, enabling the retrieval of the message or the

substitution with a new message.

FUNCDEF Before_slash and "FUNCDEF After_slash": These

functions are used to extract text from various server responses, specifically

around the forward slash ("/") character.

FUNCDEF Find_message: This function is used to look for a particular

message within a list of messages and retrieve the match (if any).

FUNCDEF Add_message: This function is used for adding a new

message into the message list.

FUNCDEF Edit_message: This function is primarily used for testing

the REPLACE command, and involves substituting a new message with an

existing message already stored in the message list.

FUNCDEF Last_message: This function is used for generating the read

commands like “READ message-number”. It will combine the string

“READ” with the message number of the last message.

25

FUNCDEF Select_replace: This function is similar to the previous

function and generates a REPLACE command as an input by combining the

string “REPLACE”, a message number, the forward slash character “/”, and

the new replacement message.

FUNCDEF Valid_quit: This function is used for validating the response

that is received back from the server for the “QUIT text” command.

MODELDEF defines a model, with its input and output channels for
external communication, and the definition of its behavior. Figure 8
illustrates a model with one input and one output channel, together with its
behavior definition expressed as a process (to be explained below).

MODELDEF Model ::=

CHAN IN Command
CHAN OUT Response
BEHAVIOUR write_first[Command, Response](No_messages, “USER mo”,

“WRITE first”)

ENDDEF

Figure 8. Defined model’s in/out and behavior in Txs

CHANDEF defines all the channels that are used on the highest level
in the TorXakis code, i.e., in model definitions (MODELDEF) and in
connection definitions (CNECTDEF). For each channel the types of
messages communicated via that channel are defined. At the CHANDEF
level, channels do not have an I/O direction yet; instead, the I/O behavior is
specified at the level of MODELDEF and CNECTDEF. In Figure 9
CHANDEF defines two channels: Command, and Response, with messages
of types String.

CHANDEF Chans ::=
Command :: String

; Response :: String
ENDDEF

Figure 9. Defined channels in Txs

26

CNECTDEF defines connections with the outside world, and the
mapping from abstract TorXakis channels to the concrete outside-world
connections. Currently only socket connections (of type String) are
supported. A socket has a hostname, such as “localhost”, and a port number.
Figure 10 specifies the socket connection (on localhost and port number
9550), called Sut where TorXakis is the client side. There is one outgoing and
one incoming channel Command and Response, respectively. "ENCODE"
refers to the process of transforming data or a message from its internal
representation within a component into a format suitable for communication
over a channel. It involves converting the data or message into a serialized or
encoded form that can be sent through the communication channel.

Similarly, "DECODE" refers to the process of transforming received
data or a message from its encoded form, back into the internal representation
within a component. It involves extracting the relevant information from the
received data and converting it back to its original format or representation.
The "ENCODE" and "DECODE" actions allow us to specify these
transformations explicitly outside the model definition. Alternatively, the
conversion from string representation to internal data can be done within the
model definition. This is our approach and therefore in our case the encoding
and decoding procedures just pass a string along unmodified.

CNECTDEF Sut ::=
CLIENTSOCK

CHAN OUT Command HOST “localhost” PORT 9550
ENCODE Command ? c -> ! c

CHAN IN Response HOST “localhost” PORT 9550
DECODE Response ! p <- ? p

ENDDEF

Figure 10. Defined connections in Txs

27

PROCDEF is where we define our processes that model the behavior
of the SUT. Our model consists of 6 process definitions, each for testing an
aspect of the BBS. Figure 11 indicates all process definitions that have been
implemented in our model to validate various functionalities.

PROCDEF write_first [Com::String; Res::String](l::Message_list; u::String; f::String)::=
Res ? r [[Valid_greeting(r)]]
>-> Com ! u
>-> Res ? r [[Valid_user(r)]] >-> Com ! f
>-> Res ? r [[Valid_write(r)]] >->read_first[Com,Res](Add_message(r, u, f, l), u)

ENDDEF

PROCDEF read_first [Com::String; Res::String](l::Message_list; u::String)::=
Com! Last_message (1)
>-> Res ? r [[Valid_read(r)]] >-> write_second [Com,Res] (l,u,"WRITE second")

ENDDEF

PROCDEF write_second [Com::String; Res::String](l::Message_list; u::String; s::String)::=
Com ! s
>-> Res ? r [[Valid_write(r)]] >->read_second [Com,Res] (Add_message(r,u,s,l),u)

ENDDEF

PROCDEF read_second [Com::String; Res::String] (l::Message_list; u::String)::=
Com ! Last_message(l)
>-> Res ? r [[Valid_read(r)]]>-> replace[Com,Res](l,u,"replaced message")

ENDDEF

PROCDEF replace [Com::String; Res::String](1::Message_list; u::String; h::String) ::=
Com ! Select_replace(l, h)
>-> Res ? r [[Valid_write(r)]]>-> quit [Com,Res] (l, u, "QUIT bye")

ENDDEF
PROCDEF quit [Com::String; Res::String](l::Message_list; u::String; q::String) ::=

Com ! q
>-> Res ? r [[Valid_quit(r)]]>-> EXIT

ENDDEF

Figure 11. Defined processes in Txs

3.3 Conformance

In model-based testing (MBT) conformance refers to the degree to which the
implementation of a system under test (SUT) adheres to its specified model
or requirements. Conformance testing is conducted to verify that the SUT
behaves correctly and conforms to the expected behavior defined by the

28

model. The process of conformance testing typically involves comparing the
actual behavior of the SUT with the expected behavior derived from the
model. This comparison can be done by executing test cases derived from the
model on the SUT and observing its responses. The observed behavior is then
compared against the expected behavior specified by the model or
requirements.

The degree of conformance is determined by the level of agreement
between the observed behavior of the SUT and the expected behavior defined
by the model. If the observed behavior closely matches the expected
behavior, the SUT is considered to have a high degree of conformance. On
the other hand, if significant discrepancies or failures are observed, the SUT
has a lower degree of conformance, indicating issues or non-compliance.

Conformance testing is obviously an important part of the overall MBT
process, as it provides confidence that the implemented system adheres to its
specified model or requirements. It helps identify areas where the SUT may
require improvements, adjustments, or further testing to achieve the desired
level of conformance.

In this thesis we are testing basic client-server communication as well
as the creation, synchronization, and usage of the bulletin board file, which
basically covers all the commands (USER, WRITE, READ, REPLACE, and
QUIT). The level of conformance can be described as how our BBS are
behaving compared to the expected behavior which is described in the
previous section.

29

Chapter 4:

Grading
Once we have a system under test (SUT) and a model (which is the
combination of all the definitions that we have mentioned in Section 3.2), we
can use TorXakis for test execution. Note that TorXakis is based on ioco
testing [13], which defines an algorithmic approach to verification. The
model (specification) is described using a process algebraic language as
described earlier, and then the process of test generation and application is
fully automated by the tool. At the end of the process TorXakis provides an
overall verdict for all the tests derived from the model and applied to the
SUT, which can either be pass or fail.

4.1 Execution of tests

As discussed in Section 3.2, a TorXakis model is a collection of different
kinds of definitions. TYPEDEF defines various types of data. FUNCTDEF
defines functions. MODELDEF defines the models inputs and outputs for
external communication, as well as the desired behavior. Finally, CHANDEF
defines the channels with their typed messages. TorXakis assumes that an
SUT communicates by receiving and sending typed messages. A message
received by the SUT is an input and thus in our case an action initiated by the
user [2]. A message sent by SUT is an SUT output, and it is observed and
validated by the tester (TorXakis).

At this point we start the main testing process. We apply model-based
testing using TorXakis to test the BBS implementations. We are testing basic
client-server communication as well as the creation, synchronization, and
usage of the bulletin board file, which basically covers the commands USER,
WRITE, READ, REPLACE, and QUIT.

For our SUT there is one input channel and one output channel,
command and response, respectively, where both channels have the type
String as shown in Figure 9 (Section 3.2). We have benefited from a virtual
Linux server to perform the testing process. For each BBS we first start the

30

BBS on the localhost and port number 9550 with the command "./bbserv -b
bbfile1 -f -T 5 -p 9550" as shown in Figure 12.

<mabdolahi@linux: 1-Passed/aarigela-anil > ./bbserv -b bbfilel -f -T 3 -p 9550
process ID of current process : 438413
bulletin server up and listening on port 9550
Synchronization server up and listening on port 10000

Figure 12. How to launching BBS on localhost:9550

Then we start TorXakis and launch our model through TorXakis.
Afterwards, we start the tester inside TorXakis command line with the
command "tester Model Sut'' which initiates the process and starts running
our model as shown in Figure 13. Then by sending the "test 20" command
we initiate the testing process for 20 steps which is an empirical value
achieved by experimenting, and in our experience 20 steps is enough to pass
all the tests completely. On line 1, TorXakis receives an output from the SUT
on channel Response, which indicates the greeting message with the correct
status "0.0". Afterwards, TorXakis generates inputs to the SUT such as on
line 2 indicating that on channel Command an input command USER with the
username value of "mo" has occurred. The input has been sent to the SUT by
TorXakis according to the model. This action is followed, on line 3, by an
output from the SUT on channel Response, which is the proper response for
the USER command with the correct status "1.0". Then TorXakis checks that
this is indeed the expected response. The process will continue on line 4 by
sending the "WRITE first" command on channel Command to the SUT. For
this specific BBS submission the write command is followed by the "3.0
WROTE 43" output on channel Response, which means that the write process
has successfully completed and the message "first'' should exist in the
bulletin board file at this point.

Then on line 6 TorXakis will send the command "READ 43" on
channel Command to test the functionality of the BBS. Then the SUT sends
back the response "2.0 43 mo/first" on channel Response, which means the
READ command has been successfully completed since the status "2.0" is a
validation for completion of this command. Our model also validates the
message using the message number and will make sure that the specific
message with its message number exists in the model's message list. The

31

next two sets of commands and responses are similar to the previous WRITE
and READ commands. Afterwards, as shown on line 12, TorXakis will send
the "REPLACE 44/replaced message" command on channel Command to the
SUT, and then as shown on line 13 the response "3.0 WROTE 44" is received
on channel Response, which is indicating the correct behavior of the SUT in
this situation. Next, as indicated on line 14, TorXakis will send a READ
command to verify the previous REPLACE command which in this case is
followed by the proper response from the SUT. Finally on line 16 TorXakis
sends the command "QUIT bye" through the Command channel, signaling
the termination of the client-server communication. The specific Bulletin
Board System (BBS) being tested successfully responds to this command
appropriately.

Figure 13. Torxakis test run (PASS)

As shown in Figure 13 the tested BBS has passed the testing successfully
without any error or minor failure. Here is now an example of a submission
that fails the test. Similarly to the previous example, the testing process
begins by receiving the greeting message on the Response channel. This

32

message with the status number “0.0” is a valid response in this particular
case as well. TorXakis then starts the next part of the testing process by
sending the “USER mo” command on input channel Command, and received
the response from the SUT on output channel Response, again as specified.
Afterward, TorXakis attempts to write a message to the bulletin board file by
sending the command "WRITE first" through the Command input channel.
However, in this case, the System Under Test (SUT) does not send back the
proper response which should be of form "3.0 WROTE message_niumber".
This behavior leads to the respective submission failing the test as shown in
Figure 14.

Figure 14. TorXakis test run (FAIL)

Similar testing has been performed on 28 other BBS implementations.
Figures 12 and 13 indicate the grades achieved using MBT against grades
assigned using a human supervised method for all the 30 submissions. The
human supervised testing is what was used to mark the submission in the first
place and consists of connecting to the server using telnet, issuing appropriate
commands, and observing the output.

33

In our assessment we used the following grading criteria:

A simple side by side comparison between Figure 12 and Figure 13
shows that TorXakis grading was slightly harsher than the human supervised
method since it is more precise and will not overlook any minor issues. A
more detailed exploration of the achieved results will be offered in Chapter 5.

Figure 12. Grades achieved using MBT

34

Successful establishment of the
client-server connection

Achieves 1 mark

Receive of greeting and completion of
USER command

Achieves 1 mark

Completion and validation of WRITE
command

Achieves 1 mark

Completion of READ command and
verification of the BBfile

Achieves 1 mark

Completion of REPLACE command Achieves 1 mark

Proper ending of the connection Achieves 1 mark

Any minor issue Deducts 0.5 marks

Figure 13. Grades achieved using human supervised method (telnet)

4.2 Challenges

During the testing processes, we encountered numerous challenges. Despite
having instructions to follow, we faced minor issues that could potentially
disrupt the verification of TorXakis and the model's output. These issues,
referred to as minor errors, do not necessarily alter the outcome or purpose of
the SUT, but they do require careful observation.

The first challenge arises during the modeling step. Although TorXakis
is one of the best and complete tools for MBT, the language still suffers from
lack of proper documentation and user manual. It needs a certain level of
experience and expertise to be able to build a robust and reliable model.
Without having a complete model, the results cannot be trusted or as we
mentioned earlier the level of conformance would not be sufficient.

Secondly, one of the most common minor errors we encountered was
related to alphabetic errors. These errors likely arose due to a lack of
concentration and observation during the implementation phase. In some
cases, a successfully completed process would return an incorrect status. We
had to continuously assess whether such typos should affect the grade, and
adjust our model accordingly.

On a related note, some SUTs occasionally failed to send the
appropriate status at the beginning of the response. However, the response

35

itself was actually complete and valid. In most cases, this issue cannot be
disregarded as it would be a major concern. However, if this problem only
occurred in the initial greeting message, we considered it a minor issue and
utilized the model to proceed with the rest of the testing, which most of these
submissions pass. This kind of bugs and errors are expected in student
projects, so we made sure to thoroughly test most submissions after
addressing these minor issues in the model.

4.3 Synchronization
Testing synchronization involves creating multiple instances of SUT to
simulate a distributed environment. This process allows us to test the system's
behavior and interactions in multiple instances. In this thesis this test was
most of the time a failure since most submissions were buggy and could not
synchronize properly over multiple instances, which is the main point of this
test. In this section we are briefly explaining the idea behind the
synchronization test and our limited success on the matter.

Set up multiple instances: We start by creating three instances of the

bulletin board system on localhost. Each instance will run on a different
localhost port. For example, we could have three instances running on ports
8000, 8001, and 8002. These instances are supposed to synchronize with
each other on each WRITE or REPLACE command using a two-phase
commit protocol such that their bulletin board files are identical at all times.
READ requests on the other hand are processed locally by the respective
instance.

Connect to each instance: Once the instances are running, our model
connects to two instances simulating different clients. Each client can
establish a connection with a specific instance by specifying the
corresponding localhost port. For example, one client might connect to port
8000 and another to port 8001. Note that in this case our TorXakis model
uses four channels (two for each connection).

Perform actions: With the clients connected, we can now simulate

various actions on the SUT. These actions can include writing messages,
reading messages or any other operations supported by the system. For
example, one client can write a message to one instance by sending the
WRITE command. The SUT should ensure that the command is replicated
and synchronized across all instances.

36

Validate consistency: After performing actions on the SUT, we can

verify the consistency of the replicated data. This involves checking if the
written messages are visible and accessible from all instances. To validate
consistency, we can connect to different instances as clients and attempt to
read the messages written by other clients on different instances. If the
system is correctly synchronized, we should be able to read the same
messages from any instance.

Testing synchronization helps uncover potential issues in a distributed
system, such as data inconsistency and synchronization problems. By
simulating multiple instances, you can assess the system's resilience, fault
tolerance, and overall performance.

Testing the submissions with TorXakis was disappointing, as only three
submissions passed. We will comment in the next chapter on this failure.

37

Chapter 5:

Discussion and conclusion
In the previous chapter we demonstrated that grading using MBT and
TorXakis as a test platform would be possible and could even be preferred to
conventional human supervised grading methods as long as the system under
test is implemented based on strict criteria which allows the machine to be
able to verify and grade the output. Now we are going to indicate and
compare results achieved with TorXakis and MBT with results achieved
using human supervised methods.

Ideally, to be able to grade the SUT using MBT and TorXakis we need
to have machine readable parts included in responses that we receive from
the SUT. Machine readable sections provide a structured format that ensures
consistency and accuracy in the responses. By having a well-defined syntax
or format, we can ensure that the responses are interpreted correctly by
TorXakis. In this project the machine readable part is the status number that
the SUT is supposed to send back at the start of every response. If this part is
missing we can still process the response but human supervision is needed to
be able to make a solid verdict.

On the other hand, by comparing results achieved by both methods we
confirmed that they are similar to a certain degree. Figure 14. We can see
submissions that passed the testing with a perfect grade on the human
supervision method but either failed on MBT or passed with a grade usually
lower than what they have achieved in the human supervised method. This
makes complete sense since TorXakis is a machine and it basically will not
overlook minor issues but human supervised methods can be affected to a
certain degree.

38

Figure 14. Comparison between TorXakis and Telnet

Figure 14, also indicates that despite the individual grade differences
between two testing methods, most of the submissions received the same
final PASS or FAIL results using both MBT and conventional methods.

Figure 15. Comparing average of grades achieved

In Figure 15, we can see that TorXakis has a harsher approach compared to
Telnet and actual grades while the other two are almost identical. Considering
the similarity of pass and fail results, we can confidently say that despite how

39

harsher TorXakis is, it is still a solid option when it comes to time and
money efficiency. While being harsher, this kind of grading is still fair and so
certainly feasible.

This being said, we also note that the project considered here also
included certain “non-functional” requirements. These kinds of requirements
cannot be tested using model-based testing. One such a requirement was that
concurrency management to the bulletin board file follow the readers-writers
paradigm. A debugging mechanism involving read and write delays was
required and then used in grading; these kinds of delays cannot be tested in
TorXakis. Another example of non-functional requirement is the absence of
busy waiting loops, which was marked by observing the system load during
testing and raising a flag once the load exceeds a given threshold. Such a
verification can be (and has been) easily done in an automated fashion with a
simple shell script, but is certainly outside the realm of model-based testing.

An unexpected failure in TorXakis grading was testing
synchronization. Most submissions failed with flying colors while being
tested with TorXakis, yet some did receive substantial partial marks during
human grading. Students were asked to expose the synchronization protocol
when using a suitable debug switch and so the human instructor was able to
observe the protocol in action during testing. Partial marks were given for
attempts at communicating with various degrees of success despite the
process eventually failing. It is conceivable that a suitable TorXakis model
can act as a peer in the replicated system and thus observe the same
application protocol, but the way the project considered here was formulated
effectively prevents such an approach. Indeed, the design of the application
protocol for synchronization was the task of the students, and so was different
from submission to submission, thus preventing any kind of automated
testing other than the one based on the end result. Whether a grade based
solely on said end result is fair is obviously open to interpretation.

Finally, it is worth noting that the source code of submissions was
inspected cursorily. This was done mostly to establish code ownership but at
times was used to clarify strange behavior and possibly give partial marks for
otherwise non-functional aspects of a submission. This is obviously well
above the TorXakis’ pay grade.

This all being said, as a side effect of this study we note that it is
apparently unnecessary to test non-functional requirements separately.
Indeed, we note in Figure 15 that the grade average of telnet testing (which

40

only tests functional aspects) is virtually the same as the actual grade (which
includes all the non-functional criteria mentioned above). It would thus
appear that the quality of the code and the correct execution of the code are
strongly correlated. Obviously though this needs more investigation.

41

Bibliography

[1] Dewey, Patrick R. "The Essential Guide to Bulletin Board Systems" The University of
Michigan, Meckler, 1987

[2] Tretmans. Jan & Van de Laar. Piërre. "Model-Based Testing with TorXakis: The
Mysteries of Dropbox Revisited." In: 30th CECIIS, October 2-4, 2019, Varaždin, Croatia

[3] Tretmans. Jan. “Model Based Testing with Labeled Transition Systems.” In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds) Formal Methods and Testing. Lecture Notes in
Computer Science, vol 4949, 2008, Springer, Berlin, Heidelberg.

[4] Tretmans. Jan. “Conformance Testing with Labeled Transition Systems:
Implementation Relations and Test Generation.” In: Computer Networks and ISDN
Systems, Volume 29, Issue 1, Pages 49-79, 1996

[5] Gaudel. Marie-Claude. “Problems and Methods for Testing Infinite State Machines:
Extended Abstract” , In: Electronic Notes in Theoretical Computer Science, Volume 95,
Pages 53-62, 2004

[6] Driscoll. K. “Social media's dial-up roots” In: IEEE Spectrum 53 (11), 54-60, 2016

[7] Tretmans. Jan. “A Formal Approach to Conformance Testing” PhD thesis, University
of Twente, Enschede, The Netherlands, 1992

[8] Wezeman.C. D. “The CO-OP method for compositional derivation of conformance
testers” In: E. Brinksma, G. Scollo, and C. A. Vissers, editors, Protocol Specification,
Testing, and Verification IX, pages 145–158, 1990, North-Holland.

[9] R. Khare “TELNET: the mother of all (application) protocols.” IEEE Internet
Computing, Volume: 2, Issue: 3, 1998

[10] Lina Khalid. “Software Architecture for Business.” Springer Cham Nature
Switzerland AG, 2019 (pages 95-106)

[11] Yishuai Li, Benjamin Pierce and Steve Arthur Zdancewic. “Model-based testing of
networked applications.” In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2021). Association for Computing
Machinery, New York, NY, USA, 529–539.

42

[12] Vahid Garous, Alper Buğra Keleş, Yunus Balaman, Zeynep Özdemir Güler, Andrea
Arcuri “Model-based testing in practice: An experience report from the web applications
domain” Journal of Systems and Software, Volume 180, 2021

[13] Weiglhofer, M., Aichernig, B.K. “Unifying Input Output Conformance.” In: Butterfield,
A. (ed) Unifying Theories of Programming. UTP 2008. Lecture Notes in Computer
Science, vol 5713, 2010, Springer, Berlin, Heidelberg.

[14] Artho, C.V, Armin, B, Masami H, Eric P, Martina, S, Yoshinori, T & Mitsuharu, Y.
“Modbat: A Model-Based API Tester for Event-Driven Systems.” In: Bertacco, V., Legay,
A. (eds) Hardware and Software: Verification and Testing. HVC 2013. Lecture Notes in
Computer Science, vol 8244, 2013, Springer

[15] Brogi, A., Soldani, J., Wang, P. “TOSCA in a Nutshell: Promises and Perspectives.”
In: Lecture Notes in Computer Science, vol 8745, 2014, Springer, Berlin, Heidelberg

[16] Holzmann, J. G. “The Spin Model Checker: Primer and Reference Manual.”
Addison-Wesley, 2004

[17] A. Cimatti, E. Clarke, F. Giunchiglia, M. Roveri. “NuSMV: a new Symbolic Model
Verifier” In The International Journal on Software Tools for Technology Transfer (STTT)
2, 410–425, 2000

[18] S. D. Brookes, C. A. R. Hoare, A. W. Roscoe. “A Theory of Communicating
Sequential Processes.” J. ACM 31, 3 (July 1984), 560–599

[19] Milner, R. “A Calculus of Communicating Systems.” Lecture Notes in Computer
Science, vol 92, 1980, Springer, Berlin, Heidelberg

[20] Joachim Parrow, “An Introduction to the π-Calculus” Handbook of Process Algebra,
Elsevier Science, 2001, Pages 479-543

43

