
TWO PROBLEMS BELIEVED TO EXHIBIT SUPERUNITARY

BEHAVIOUR TURN OUT TO FALL WITHIN THE CHURCH-TURING

THESIS

by

ABDOLLAH DADIZADEH

A thesis submitted to the

Department of Computer Science

in conformity with the requirements for

the degree of Master of Science

Bishop’s University

Sherbrooke, Quebec, Canada

January 2019

Copyright © Abdollah Dadizadeh, 2019

Abstract

The Turing machine has been throughout decades one of the widely accepted universal

models of computation. Relatively recently however challenges of the universality of this

model have been raised. Several problems that are at least apparently not solvable by

Turing machines have been introduced. These problems belongs to different paradigms

than the classical theory of computation. They are most often, but not always, associ-

ated to real time. We consider two such problems that apparently contradict the theory of

universal computation model. The first problem is real time and was used to establish a

strong hierarchy on the number of processors for real-time problems, thus contradicting

the universality of the “uniprocessor” Turing machine. The second problem is not real

time, but features constraints on the intermediate steps of the computation; it feature a

sharp cut-off on the number of processors necessary to solve it, thus once mode contra-

dicting the universality of the Turing machine. We find that instances of both these prob-

lems can be converted to CTL formulae such that the instance is solvable iff the respective

CTL formula is satisfiable. Given that satisfiability for CTL is decidable, we thus show,

in a however roundabout way, that these two problems do not violate the universality

of the Turing machine. We believe that this technique can be applied to other problems

contradicting the universality of the Turing machine, perhaps even all of them.

i

Acknowledgments

I would like to thank my supervisor Prof. Stefan D.Bruda, for encouragement, patient

guidance and the brilliant ideas and advice he has provided throughout my time as a

student. This work would have never been possible without his efforts and wisdom. I

was lucky to have a supervisor who cared for the work we did and answered all the

questions I had selflessly. I would also like to thank all the staff at Bishop’s University,

who were always there for me.

I also want to express my gratitude to my family for their continued support and

encouragement, and especially to my sister whom was always there, supporting me emo-

tionally throughout my studies.

Also I would like to thank my friends in the Department of Computer Science as well

as the undergraduate Computer Science community, whose accepting and helping atti-

tude made my life easier in difficult times.

ii

Contents

1 Introduction 1

2 Preliminaries 4

2.1 Timedω-Languages . 4

2.2 Temporal Logic . 6

3 Previous Work 10

3.1 Pursuit and Evasion on a Ring . 10

3.1.1 An Intuitive Problem Statement . 14

3.2 A Constrained Sorting Problem . 17

4 A CTL Formulation of Pursuit and Evasion on a Ring 19

4.1 High Level Description . 19

4.2 Trapping the Bird . 21

4.3 Equivalence between Pursuit and Evasion Instances and the Derived CTL

Formulae . 24

5 A CTL Formulation of Constrained Sorting 27

5.1 Equivalence between Constrained Sorting Instances and the Derived CTL

Formulae . 28

iii

6 Conclusions 30

Bibliography 33

iv

Chapter 1

Introduction

The Turing machine was introduced by Alan Turing in 1936. Back then the idea looked

simple but it was revolutionary: the machine has a tape which can store data and is mod-

ified through a simple mechanism. Since then the Turing machine has had a huge impact

on computing research and indirectly practice and has been the foundation of many re-

sults. In particular, the machine has been the basis of the concept of computability [19]

that is, the science of what can and cannot be computed. Indeed, the Church-Turing thesis

[17, 21, 22] states that one particular Turing machine called the universal Turing Machine

is capable of solving exactly all the problems that can be computed at all through mechan-

ical computation. In particular, no other model of computation or actual computer can be

more powerful than the Truing machine.

The Church-Turing thesis is not and cannot be a formal result, since one cannot antic-

ipate future developments in the theory and practice of computing. It has however stood

the test of time: While some more powerful models of computation have been developed

over time, all of these models contain features that cannot be realistically implemented in

practice, such as infinite precision real numbers [18]. On the other hand, all the models of

computation that are considered realistic are equivalent with the Turing machine. On the

1

CHAPTER 1. INTRODUCTION 2

practical side, all the computing devices developed to date have been found to be equiv-

alent to the Turing machine. Sure some, such as quantum computers have the potential

of solving some problems substantially faster than classical computing, but yet this does

not make any difference in what can and cannot be computed. Note in passing that the

Church-Turing thesis does not say anything about how fast or how slow a problem is

solved. Computability is only concerned with whether a solution can be found in finite

time; how long that time is is the realm of computational complexity.

Relatively recently some effort has been made to study computation beyond the Tur-

ing limit. We already mentioned the infinite precision real numbers [18], to which we can

add the field of hyper-computation [10]; these models are strictly more powerful than the

Turing machine, but contain features that are not realistically implementable in practical

computation devices. Another direction, which is itself a subset of the so-called uncon-

ventional computation area [1, 2, 14] studies environmental setups that impose additional

constraints on the computation being carried out, with the goal of finding computations

that can be carried out within the given environmental constraints using some compu-

tational devices but not by classical devices or models including the universal Turing

machine. The most common such a set of constraints is a real-time environment, in which

the input arrives while the computation is carried out rather than being available in its

entirety at the beginning of the computation, and the correctness of the output is defined

not only in terms of the actual output being correct in respect to the given input, but also

in terms of the time at which the output is produced. Note in passing that most of the

time a real-time environment features real-time deadlines, though deadlines are not the

only feature that makes a computation real time.

We focus in this thesis on a particular kind of unconventional computation which ap-

parently goes beyond the power of the Turing machine. There are several papers, that

CHAPTER 1. INTRODUCTION 3

describe computational tasks that apparently cannot be solved by a conventional compu-

tational device or Turing machine [5, 7, 10, 16] but can be readily solved within the given

constraints when a parallel machine is used.

We take a fresh look at a couple of problems which exhibit such a “superunitary be-

haviour”. The first problem is the pursuit and evasion on a ring [7], which was used to

show that real-time problems apparently form a strong infinite hierarchy with respect

to the numbers of processors necessary to solve them. The second problem is a con-

strained sorting problem [14]. The reason for our latter choice is that the problem is not

real time, but instead imposes some restrictions on the machine state during the compu-

tation. In turn these restrictions apparently illustrate once again superunitary behaviour,

in the sense that the problem was deemed solvable when a certain number of processors

is made available, but cannot be solved with fewer processors.

In this thesis we show that there is nothing special about these two problems, meaning

that they both fall into the classical computability theory after all. We establish this result

using a fresh, logical perspective. Specifically, for each of the two problems we establish

an equivalent formulation in CTL [13], a particular kind of temporal logic. That is, we

show that for each instance of the problem at hand there exists a CTL formula such that

the instance is solvable if and only if the equivalent CTL formula is satisfiable. Given that

satisfiability for CTL is decidable [12, 20], it follows that the respective problem is after all

solvable in the classical computability sense of the Church-Turing thesis.

The remainder of this thesis is organized as follows: We summarize the necessary

preliminaries (Chapter 2) and then we review some of the existing work on superunitary

behaviour (Chapter 3). Specifically, we summarize the two problems that will be our main

focus namely, pursuit and evasion on a ring and constrained sorting. The main body of

the thesis is contained in Chapters 4 and 5 where we develop equivalent formulations for

the two problems mentioned above, respectively. We conclude in Chapter 6.

Chapter 2

Preliminaries

With an alphabet, finite set of symbols, Σ, the set of all the finite sequences of symbols

(strings, words) is denoted by Σ∗. The length of a word σ is denoted by |σ |. Let |N| = ω

and note that ω 6∈ N [9]. The set Σω contains exactly all the words σ over Σ such that

|σ | = ω. For A ⊆ Σ, |σ |A denotes the length of σ after all the symbols that are not in A

have been erased. We often write |σ |a instead of |σ |{a} for singleton sets.

2.1 Timedω-Languages

If we have two finite or infinite wordsσ = σ1,σ2, . . . andσ ′ = σ ′1,σ ′2, . . . it can be said that

σ ′ is a subsequence of σ (σ ′ ⊆ σ) iff (a) for each σ ′i there exists a σ j such that σ ′i = σ j, and

(b) for any positive integers i, j, k, l such that σ ′i = σ j and σ ′k = σl , it holds that i > k iff

j > l.

The following summary is based on previous work [6] which is in itself an extension

of earlier work [3]. The sequence τ ∈ Nω, τ = τ1τ2 . . ., is a time sequence if it is an infinite

sequence of positive values, such that τi ≤ τi+1 for all i > 0 (monotonicity). In addition,

a finite of infinite subsequence of a time sequence, is also time sequence. A well-behaved

time sequence is a time sequence τ = τ1τ2 . . . such that for every t ∈ N, there exists some

finite i ≥ 1 such that τi ≥ t (progress). It follows that a time sequence may be infinite or

4

CHAPTER 2. PRELIMINARIES 5

finite, but a well-behaved time sequence, it is always infinite.

A timedω-word over an alphabet Σ is a pair (σ , τ), where τ is a time sequence, and,

(σ , τ) ∈ Σk × Nk, k ∈ N ∪ {ω}. Given a symbol σi from σ , i > 0 the associated value τi of

the time sequence τ shows the time at whichσi becomes available. A timedω-word (σ , τ)

is well behaved whenever τ is a well-behaved time sequence. A well-behaved timed ω-

language over some alphabet Σ is a set of well-behaved timedω-words over Σ.

Let (σ ′, τ ′) and (σ ′′, τ ′′) be two timed words over the alphabet Σ. Then we say that

(σ , τ) = (σ ′, τ ′)(σ ′′, τ ′′) is a concatenation of (σ ′, τ ′) and (σ ′′, τ ′′) whenever:

1. τ is a timed sequence meaning that τi ≤ τi+1 for any i > 0; both (σ ′1, τ ′1)(σ
′
2, τ ′2) . . .

and (σ ′′1 , τ ′′1)(σ
′′
2 , τ ′′2) . . . are subsequences of (σ1, τ1)(σ2, τ2) . . .; for any i > 0, there

exists j > 0 and d ∈ {′,′′ }, such that (σi, τi) = (σd
j , τd

j).

2. For any d ∈ {′,′′ } and any positive integers i and j, i < j, such that τd
k = τd

l for

any i ≤ k < l ≤ j there exists m such that, for any 0 ≤ ι ≤ j − i, (σm+ι, τm+ι) =

(σd
m+ι, τ

d
m+ι).

3. For any positive integers i and j such that τ ′i = τ ′′j there exist integers k and l , k < l,

such that (σk, τk) = (σ ′i , τ
′
i) and (σι, τι) = (σ ′j, τ

′
j).

Given n timed ω-words ω1,ω2, . . . ,ωn, n > 1, the notation ω = ∏
n
i=1ωi is a shorthand

for ω = ω1,ω2, . . . ,ωn (that is, ω is the concatenation of all the words ωi, i > 0). L =

∏
n
i=1 Li is the timedω-language obtained by concatenating the n timedω−languages L1,

L2, . . . , Ln.

Finally, the following “projection” operations will be used: Given some timedω-word

ω = (σ , τ), let detime(ω) = σ and time(ω) = τ .

CHAPTER 2. PRELIMINARIES 6

2.2 Temporal Logic

A temporal logic [13] is a particular kind of modal logic for specifying system properties

as they change over time. Such a logic describes properties of sequences of the transitions

between the states of a system. We specify certain properties rather than the full behavior

of the system, such as “if x happens then y may happen in the future”, or “if x happens

then y will happen in the future”, though it is not specified how long in the future. Time

is not mentioned explicitly; instead the concepts of before, after, and eventually are used.

To build up expressions In temporal logic we describe the properties of the states of a

system using atomic propositions and Boolean operators such as disjunction, conjunction

and negation, just like propositional logic. Then to describe how the state of the system

evolves over time a set of modal operators called temporal operators is used.

One popular family of temporal logics consists of CTL∗ [11, 13] , CTL (computation

tree logic), and LTL (linear-time temporal logic) [15], CTL and LTL being strict subsets of

CTL∗. In this thesis we will only use CTL, but we define as usual CTL∗ first and then CTL

as a restricted variant of CTL∗.

The semantics for all temporal logics are typically defined in terms of Kripke structures

[8, 13], which offer a model for computing systems. A Kripke structure M over a set AP of

atomic propositions is a tuple M = (S, Y, R, L) where S is a finite set of states, Y ⊆ S is the

set of initial states, R ⊆ S× S is a transition relation that must be total (that is, for every

state s ∈ S there exists a state s′ ∈ S such that (s, s′) ∈ R), and L : S → 2AP is a function

that labels each state with the set of atomic propositions true in that state. A path in the

Kripke structure M = (S, Y, R, L) starting from a state s is a possibly infinite sequence of

states π = s0s1s2 . . . such that s0 = s and (si, si+1) ∈ R for all i ≥ 0.

CTL∗ formulae describe the properties of computation trees, which in turn describe all

the possible paths originating from a given state as infinite trees rooted at the respective

CHAPTER 2. PRELIMINARIES 7

start state. Formulae use path quantifiers and temporal operators. The quantifiers are

used to describe the branching structure of the computation tree. There are two path

quantifiers namely A (“for all computation paths”) and E (“for some computation path”)

and they specify that all of the multiple paths or some of the paths starting form a state

(as the case might be) have some property. The temporal operators describe properties

of a path through the tree. There are five basic operators: X (“next”) which requires that

a property hold in the second state of the path, F (“eventually”) which is used to assert

that a property will hold in some state on the path, G (“globally”) which specifies that

a property holds in every state on the path, U (“until”) which requires that a property

remains true until a second properties becomes true, and R (“releases”) which specifies

that a property must be true until another property becomes true (and thus releases the

first from its obligations).

CTL∗ uses state formulae (which are true in a specific state) and path formulae (which

are true along a specific path) with the following syntax:

• If p ∈ AP then p is a state formula.

• If f and g are state formulae, then ¬ f , f ∨ g and f ∧ g are state formulae.

• If f is a path formula, then E f and A f are state formulae.

• If f is a state formula, then f is also a path formula.

• If f and g are path formulae, then ¬ f , f ∨ g, and f ∧ g are path formulae.

• If f and g are state formulae, then X f , F f , G f , f U g, and f R g are path formulae.

CTL on the other hand is a restricted subset of CTL∗ where each of the temporal oper-

ators X, F, G, U, and R must be immediately preceded by a path quantifier (A or E). All the

CTL formulae are thus state formulae [23]. With a ranging over AP and f , f1, f2 ranging

CHAPTER 2. PRELIMINARIES 8

over state formulae, we have the following syntax for CTL formulae:

f = > | ⊥ | a | ¬ f | f1 ∨ f2 | f1 ∧ f2 |

AX f | AF f | AG f | A f1 U f2 | A f1 R f2 |

EX f | EF f | EG f | E f1 U f2 | E f1 R f2

The CTL∗ semantics is defined with respect to Kripke structures. K, s |= f stands

for the state formula f being true in a state s of the Kripke structure K. This notation is

extended naturally to path formulae as follows: K, π |= f iff in the Kripke structure K the

path formula f is true along the path π . The operator |= is defined inductively as follows,

where f and g are state formulae unless stated otherwise:

1. K, s |= > is always true and K, s |= ⊥ is always false for any state s in K.

2. K, s |= a, a ∈ AP iff a ∈ L(s).

3. K, s |= ¬ f iff ¬(K, s |= f).

4. K, s |= f ∧ g iff K, s |= f and K, s |= g.

5. K, s |= f ∨ g iff K, s |= f or K, s |= g.

6. K, s |= E f for some path formula f iff there exists a path p starting at s such that

K, π |= f .

7. K, s |= A f for some path formula f iff K, π |= f for all paths p starting at s.

We use π i to denote the i-th state of a path π , with π0 being the starting (first) state. The

semantics of the relation |= for path formulae is the following:

1. K, π |= X f iff K, π1 |= f for any state formula f .

2. K, π |= F f iff ∃i ≥ 0 : π i |= f for some state formula f .

CHAPTER 2. PRELIMINARIES 9

3. K, π |= G f iff ∀i ≥ 0 : π i |= f for every state formula f .

4. K, π |= f U g for state formulae f and g iff there exists j ≥ 0 such that K, π j |= g and

K, π i |= f for all 0 ≤ i < j. In other words, g must become true in some state s j, and

f must hold in all the previous states (from s0 to s j−1).

5. K, π |= f R g for any state formula f and g iff for all j ≥ 0 if K, π i 6|= f for all

0 ≤ i < j then K, π i |= g for all 0 ≤ i < j. In other words, g must remain true until

f becomes true and releases g from its obligations.

The CTL semantics is then the immediate restriction to the CTL∗ semantics given by

the restrictions imposed syntactically over the CTL formulae.

Chapter 3

Previous Work

We describe in this chapter two problems apparently exhibiting superunitary behavior.

We will later develop logical models for these problems, thus showing that this is not the

case.

The reason for choosing these particular problems is two fold: First, they come from

different paradigms (real-time and constrained computations, respectively). Secondly,

they are the basis of compelling arguments for the existence of computations beyond the

Church-Turing thesis [7, 14].

3.1 Pursuit and Evasion on a Ring

The pursuit and evasion on a ring problem [7] was used to show that real-time problems

form a strong infinite hierarchy with respect to the number of the processors necessary for

solving them. That is, given any number of processors available for a real-time algorithm,

there exist problems that can not be solved by that algorithm, but can be solved if we

increase the number of the available processors. This happens even if each processor in

the new increased set is arbitrarily slower than each of the processors in the initial set. This

hierarchy is developed as a series of ω-timed languages Lk, k > 0. This problem is real

time according to the formal definition presented in a previous paper [6]; this definition is

10

CHAPTER 3. PREVIOUS WORK 11

in itself the generalization of several earlier definitions and matches very well the practical

notion of real time.

The first language L1 is defined as follows:

L1 = {w ∈ L0Lu : for any i > 0, zi(w) ⊆ z(w, ci), and there exists some t, t > 0,

and some i0, 0 ≤ i0 ≤ r− 1, such that |s(w, t)|a = |s(w, t)|b}

with L0, Lu, zi, z, and s defined as follows.

L0 contains words with all the symbols available at time 0 (the beginning of the com-

putation) and showing the initial value of words that will be modified later in time:

L0 =
{
(σ , τ) | σ ∈ {a, b}r , τi = 0 for all 1 ≤ i ≤ r

}
. (3.1)

As the time passes, modifications to the initial word are introduced by the languages Lt,

t > 0 defined as follows: Lt = {(σ , τ) : |σ | = j, 1 ≤ i ≤ p+1, σ1 ∈ {+,−} ,σ2... j ∈

{a, b} j−1 , τi = t for all 1 ≤ i ≤ j}. A word in Lt stands for the change to the initial word

happening at time t. Such a word in starts with a + or − as its first symbol, followed by

at most p a and/or b symbols. The language Lu defines all the changes over the time. For

some positive constant c:

Lu = ∏
i>0

Lci, (3.2)

Let w ∈ {a, b}r and u = u0u′ such that u0 ∈ {+,−} and u′ ∈ {a, b} j, j ≤ p. Then for

some i (the “insertion point”), 0 ≤ i < r the concept of the insertion modulo r at point

i of u in w is defined as a function insr that receives three parameters (w, u, and i), then

returns a new word w and a new i. How insr behaves is defined as follows: Let i′ = i + p

if u0 = + and i′ = i− p otherwise. Then insr(w, u, i) = (w′, i′ mod r) where w′ computed

as follows (with x denoting the reversal of the word x):

1. If i′ < 0 (and so u0 = −) then let i” = i′ mod r; then, w′ = u′0...iwi+1...i”+1u′i+1... j1.

CHAPTER 3. PREVIOUS WORK 12

2. If i′ > i− 1 (and thus u0 = +) then w′ = u′r−i... j−1wi”+1...i−1u′0...r−i−1.

3. Otherwise (that is, when 0 ≤ i′ < r), let i1 = min(i, i′), i2 = max(i, i′), x = u′ if

u0 = + and x = u′ otherwise; then, w′ = w0...i1−1xwi2+1...r−1.

Define then the operator
⊕

as follows: the result of (σ , i)
⊕

j∈Aσ j is the successive inser-

tion modulo r of all the strings σ j, j ∈ A in order (from smaller to larger j) into σ starting

at the initial insertion point i (which will change after each insertion based on the value

returned by insr).

Consider a word w ∈ L0Lu, w = w0
∏i>0 wi with w0 ∈ L0 and wi ∈ Lci,i>0. For some

time value t and some i0,0 ≤ i0 ≤ r− 1, let

s(w, t) = (σ0, i0)
⊕

0≤ci≤t

σ i (3.3)

where σ i = detime(wi).

An algorithm A that receives w as an input and uses π processors, π ≥ 1 (when π = 1

algorithm is sequential; otherwise it is parallel). may at any moment inspect (i.e., read

from memory) some symbol from s(w, t). In a parallel algorithm many processors may be

inspecting at the same time different indices in parallel. For each processor q, 1 ≤ q ≤ π

let ιqt be the most recent index inspected by the processor q up to time t. If some processor

has inspected no symbols from s(w, t) then by convention ιqt = −1. Let It
t be the history

of symbols inspected by the processor q up to time t that is, Iq
t =

⋃
t′≤t ι

q
t′ \ {−1}. Let now

lo = min1≤q≤π (ι
q
t), hi = max1≤q≤π (ι

q
t), and I =

⋃
1≤q≤π (Iq

t). Then we define z(w, t), the

acceptable insertion zone at time t as follows:

z(w, t) =


{|i|0 ≤ i < r} if lo = −1
{|i|0 ≤ i < r, i 6= lo} if lo 6= −1 ∧ ∃ j /∈ I : j > hi ∨ j < lo
{|i|lo ≤ i < hi} otherwise

(3.4)

The set of indices z(w, t) has the following form: if all the indices in the contiguous

sequence surrounded by the latest inspected indices have been inspected in the past, then

CHAPTER 3. PREVIOUS WORK 13

all these indices are excluded from the acceptable insertion zone; otherwise, the acceptable

insertion zone contains all of the indices except one of the inspected indices (the smallest).

Starting from L1 as the “one-dimensional” definition (see Section 3.1.1 for the reason

behind this name) we can extend this definition to “k dimensions”, k > 1 by defining the

language Lk as follows: Fix k > 1, p > 0, r > 2p, let r′ = kr, and let L′0 = {(σ , τ) : σ ∈

{a, b}r′ , τi = 0 for all 1 ≤ i ≤ r′}. L′0 is similar with L0, but now we have k regions each

consisting of r symbols.

Further let Nk = {enc(i) : 1 ≤ i ≤ k}, where enc is a suitable encoding function

from N to {I}∗, for some symbol I /∈ Σ. The actual form of enc is not important, except

that |enc(j)| ≤ j for any j ∈ N, and that enc−1 is defined everywhere and computable

in finite time (these properties clearly hold for any reasonable encoding function). Define

LN
t = {(σ , τ) : σ ∈ Nk, τi = t for all 1 ≤ i ≤ |σ |}. Then the multidimensional version

of Lt is L′t = LN
t Lt. Additionally to the direction of insertion and the word to be inserted

(as in the one-dimensional case), a word in L′t is now providing a “dimension” (from 1 to

k) along which the insertion takes place. Finally, as before let L′u = ∏i>0 L′ci for a given

constant c > 0. The k-dimensional language Lk will be a subset of L′0L′u.

Given some word w ∈ {a, b}r′ , let w = w(1)w(2) . . . w(k), where |w(i)| = r, 1 ≤ i ≤ k,

and call each w(i) a segment of w. Let w ∈ {a, b}r′ , and u = u′u′′ with u′ ∈ Nk and u′′ ∈ Σ j,

1 ≤ j ≤ p + 1, u′′1 ∈ {+,−}, and u
′
2...p ∈ {a, b} j−1. Then, for some i, 0 ≤ i ≤ r− 1, define

(w, i)
⊗

u =

(
d−1

∏
j=1

w(j)

)
((w(d), i)

⊕
u′′)

(
k

∏
j=d+1

w(j)

)

where d = enc−1(u′). The operator
⊗

defines the insertion modulo r in one of the k

segments, as follows: the two components of the word which is going to be inserted are u′

(encoding a number from 1 to k) and u′′ (denoting the actual actual word to be inserted).

The operator then inserts (modulo r) u′′ into the segment of w, given by u′. The operator⊗
is defined analogously to (and based on)

⊕
.

CHAPTER 3. PREVIOUS WORK 14

For some word w ∈ L′oL′u (w = wo
∏i>0 wi with w0 ∈ L′o and wi ∈ L′ci, i > 0) and for

some i0, 0 ≤ i0 ≤ r− 1, let

s′(w, t) = (σ0, i0)
⊗
ci≤t

σ i (3.5)

where σ i = detime(wi), i ≥ 0. Relation (3.5) is a generalization of Relation (3.3) to k

dimensions, with only one of these dimensions being modified by the current insertion.

As before, consider an algorithm A which receives some word w ∈ L′oL′u as input and

uses π processors. Then for some t ≥ 0 define z j(w, t) = z(w(j), t), 1 ≤ j ≤ k, with

z(w(j), t) defined as before, except for the following change: if at time t some processor

inspects an index outside s(w(j), t), then ιqt (j) = −1 and Iq
t (j) = ∅.

Putting everything together, let z′(w, t) =
⋃k

j=1 z j(w, t) and call z′(w, t) the acceptable

insertion zone at time t. We now define Lk as follows:

Lk = {w ∈ L′oL′u : for any i > 0, z′i(w) ⊆ z′(w, ci), and there exists some t,

t > 0, and some i0, 0 ≤ i0 ≤ r− 1, such that |s′(w, t)|a = |s′(s, t)|b} (3.6)

with s′(w, t) and z′(w, t) as defined before and z′i(w) denoting the set of indices whose

values are modified by the timed sub-word wi of w, wi ∈ Lci, i > 0 [7].

Proposition 1 [7] There exists no (2n-1)-processor parallel deterministic real-time algorithm that

accepts Ln, n ≥ 1. There exists a 2n-processor parallel deterministic real-time algorithm that

accepts Ln and that uses arbitrarily slow processors, n > 1.

3.1.1 An Intuitive Problem Statement

In order to facilitate the understanding of the pursuit and evasion problem described

above we will consider the following intuitive formulation which is also mentioned in the

original paper [7] and is also alluded to in the previous section: Using geometry as a tool,

each word w(i) of s′(w, t), 1 ≤ i ≤ k will become a circle, where w(i)r−1 is (conceptually)

CHAPTER 3. PREVIOUS WORK 15

adjacent to w(i)0. Each update u′u′′ replaces j consecutive symbols in the “circle” speci-

fied by u′, starting from the current insertion point and moving from that position to the

right or the left, based on the value of u′′0 (+ for right, − for left). The function insr is de-

signed to perform exactly this kind of insertion (or modification of the respective circle).

Imagine now that these modifications are performed by a “pursuee” whose movements

are given as input to an algorithm (the “pursuer”). Note in passing that the pursuee has

a topmost “velocity” of p/r-th of the circles circumference per time unit. The modulo op-

eration makes the two ends of w conceptually adjacent, thus the pursuit space becomes

(conceptually) a circle.

The algorithm that accepts Lk (that is, the “pursuer”) should inspect all the symbols

that are modified during the insertion process. The algorithm is successful if it “catches

up” with the input that is, is able to determine the content of all the circles before they

are further modified. In other words, the pursuer has to match the moves of the pursuee

[7]. The “velocity” of the accepting algorithm is determined by its ability to inspect sym-

bols stored in memory, and thus this velocity is directly proportional to the speed of the

processors(s) used by the algorithm.

To illustrate the concept of insertion modulo r we refer to one of the original examples

for the one-dimensional case [7] shown graphically in Figure 3.1, where r = 8 and p = 3.

Initially we have s(w, t) = bbbbbbbb, with the insertion point of i = 1. The word s(w, t)

is represented here as a circle (as explained above), with 8 identified locations that corre-

sponds to the eight symbols stored in s(w, t). These locations are labeled with their indices

(inside the circle) and with the values stored therein (outside). The first circle shows the

insertion of the word u = −a1a2a3 (all the as are the same symbol, the subscripts pro-

vided solely for illustration purposes). The pursuee moves to the left (or counterclock-

wise), rewriting symbols at indices 1, 0, and 7, in this order. Afterward the new insertion

point becomes i = 7, and s(w, t + c) = a2a1bbbbba3. Consider now that the next word to

CHAPTER 3. PREVIOUS WORK 16

0

1

2

3

4

5

6

7

b

b

b

b

b

b

b

b

a1

a2

a3

(i)

0

1

2

3

4

5

6

7

b

b

b

b b

a1

a2

a3

(i)

a4

a5

Figure 3.1: Pursuit and evasion in one circle.

be inserted is u = +a4a5. The indices whose values are modified are 7 and 0. This process

is illustrated in the second circle. The final result is i = 0 and s(w, t + 2c) = a5a1bbbbba4.

Even when two pursuers are slow compared with the pursuee, as long as they inspect

a contiguous segment instead of “jumping” around the circle, they are able to define the

acceptable insertion zone z(w, t) which consists only of the not yet visited indices between

their current position. Given that the pursuee is only allowed to modify indices inside

z(w, t), the pursuers are able to “corner” it (and are thus able to complete their task) by

progressively narrowing z(w, t). They are thus able to “catch” the pursuee despite the

possible speed disadvantage. On the other hand, a single pursuer does not get the benefit

of the acceptable insertion zone (which in this case contains only one index), and so is

unable to catch the pursuee unless it is faster.

The k-dimensional geometric version can be explained intuitively as an extension of

the one one-dimensional version as in Figure 3.2. There are k circles, each of length r.

Each collection of k identical indices (one on each circle) is connected by a special path;

there are r such paths, and they are shown using thin lines between the circles. As soon

CHAPTER 3. PREVIOUS WORK 17

0

1

2

3

4

5

6

7

• • •

k “circles”

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Figure 3.2: Pursuit and evasion through k dimensions.

as the pursuers use these paths they loose the advantage of the acceptable insertion zone,

whereas the pursuee can use them at will. If 2k pursuers do not jump, between the circles

or within a circle, then they can establish one acceptable insertion zone per circle and

progressively narrow it until the pursuee is caught. If on the other hand there are 2k− 1

pursuers or less, there will be at least one “unguarded” circle, whose acceptable insertion

zone only consists of a single index, and so the pursuee cannot be caught, meaning that

the content of the circles cannot be verified.

3.2 A Constrained Sorting Problem

The following problem was proposed as an illustration of the absence of universality in

computation and is stated as follows [14]: We are given an array called A, consisting of the

n locations A[0], A[1], . . . , A[n− 1] capable of storing one integer each. It is requested that

the values stored in the array be sorted in-place into nondecreasing order (so that when

the algorithm terminates we have A[0] < A[1] < · · · < A[n− 1]) subject to the following

CHAPTER 3. PREVIOUS WORK 18

constraint: After each step of the sorting algorithm, no three consecutive integers satisfy

A[j] > A[j + 1] > A[j + 2] for any 0 ≤ j ≤ n− 3. For brevity in what follows we will call

this problem constrained sorting.

Sorting is ubiquitous in computing. This variant of the ages old sorting problem has

one extra twist in that no computation step is allowed to leave three consecutive values in

the wrong order; the way in which the algorithm progresses matters just as much as the

end result. This being said, there are no restrictions on the parallel or sequential model

being used or on the algorithm being deployed on that model.

A parallel algorithm using n/2 processors on a shared memory parallel machine can

solve the problem handily by means of pairwise swaps applied to the input array [14]. It

is however claimed [14] that a parallel machine with fewer than n/2 processors, including

a 1-processor that is, sequential machine, will fail to solve the problem since it will fail to

solve the problem for all possible n! permutations of the input and at the time satisfy the

on-going condition at every computational step. A particular unfavorable situation is the

input being sorted in the wrong order (that is, A[0] > A[1] > · · · > A[n− 1]); it is claimed

[14] that any algorithm using fewer than n/2 processors will fail to satisfy the on-going

constraint in its very first step.

In the end, the authors who introduced this problem claim that the result contradicts

the common belief that any computation by any model of computation can be effectively

simulated by the standard Turing machine, and thus the Church-Turing thesis is invali-

dated.

Chapter 4

A CTL Formulation of Pursuit and
Evasion on a Ring

The pursuit and evasion problem is a compelling case for superunitary behavior, in that

the number of processors themselves make a difference, irrespective of the performance

of the individual processors , meaning that the 2n processors may be even slower than the

2n− 1 bunch and yet be able to solve more instances. However, we will show now that

the problem is in fact within the Church-Turing thesis. To do so we follow a somehow

convoluted but nonetheless clear path: we develop a method of obtaining a CTL formula

out of every instance of the problem such that the formula is satisfiable iff the problem

instance is solvable.

4.1 High Level Description

The logical formulation will essentially state that the pursuers are free to move around

and leave marks in their trails subject to the original restrictions, while the pursuee , for

a bit of variation hereinafter named “the bird”, is allowed to move into any unmarked,

adjacent location. The CTL formula thus obtained is satisfiable iff there is a sequence

of moves by the pursuers that trap the bird in a single location and unable to move, as

19

CHAPTER 4. A CTL FORMULATION OF PURSUIT AND EVASION ON A RING 20

desired.

It may be tempting to track the moves of the bird and its pursuers throughout the

circles, but this approach has a number of pitfalls; such a tracking is difficult (perhaps

impossible) to implement given the limitations of CTL, and it is certainly not in the spirit

of a logical specification of an evolving system. Instead, we will involve the following

ingredients in our specification:

1. We specify the possible moves of the pursuers.

2. We then specify the moves that are available to the bird in the current circle, subject

to the past moves of the pursuers.

3. Then we specify the possible “inter-circle” moves of the bird.

This specification will result in a “rolling condition”, meaning a condition that will

hold for all the states until the end condition of the bird being trapped is met. That is, we

start from the following meta-formula:

(“The bird is not trapped”) U (“The bird is trapped”)

Then we further refine the formula according to the description of the rolling condition

above to the following:

E (E (E ((EX “The bird can move in the circle”)∨
(EX “The bird can move to another circle”))

U (“The bird is trapped in one circle”))
R (EX “The bird can move to another circle”))

U (“There are no move circles to go”)

(4.1)

In other words, “The bird is not trapped” consists of two parts: the bird is not trapped

in the current circle, or the bird can move to at least one other circle.

For the sake of a more concise presentation we will give symbolic names to the various

propositions used in the CTL formula, as follows. Note that some of those propositions

CHAPTER 4. A CTL FORMULATION OF PURSUIT AND EVASION ON A RING 21

have already been encountered above, while some others will come into play later during

the subsequent refinement.

• P = “The bird is caught”

• F = “The bird can move in the circle”

• G = “The bird cannot move in the circle”

• O = “The bird can move to another circle”

• N = “The bird cannot move to another circle”

Recall from Section 3.1 that each circle has r positions, and that there are k circles

overall.

4.2 Trapping the Bird

We will focus first of the movements happening in one circle. For this purpose Ci will be

a variable that is true iff the bird is at position i in the respective circle, 0 ≤ i < r. Later

on we will also use C j,i to specify the complete position of the bird in the ensemble of k

circles; that is, C j,i will be true iff the bird is at position i in the circle k, 0 ≤ i < r and

1 6= j ≤ k.

The best strategy for the pursuers is to move away from each other, thus catching the

bird in a pinch. However, this is not the only winning strategy; for example, one pursuer

can stay put while the other one advances, and the bird will still get trapped ; though it

will take more time for this to happen. It will in the other hand make no sense for the

pursuers to jump around, as this will eliminate their advantage. From the point of view

of the logical description however, none of the above make any difference; one only need

to set the conditions up such that a winning strategy will win and of course a loosing

CHAPTER 4. A CTL FORMULATION OF PURSUIT AND EVASION ON A RING 22

strategy will not. To simplify the formulation however, we will not restrict the movement

of the pursuers to adjacent locations in the circle; while this deviates from the original

formulation (in which jumping cannot lead to the capture of the bird), but is nonetheless

without loss of generality since (a) choosing not to jump is an obvious particular situation

in this jumping is otherwise allowed, and (b) jumping cannot succeed in those cases that

lack a successful strategy that does not involve jumping.

Recall that in essence the pursuers leave marks as they move along, more precisely,

they define the acceptable insertion zone based on their movement. We will represent

these marks using the variables Li, 0 ≤ i < r, one for each location in the circle. The

possible values of these variables are P, standing for the respective position being either

marked, or occupied by a pursuer, and A, which stands for the position being available

for the bird. Figure 4.1 shows how the circle is thus divided into a marked region and an

unmarked one. While we do not technically impose such a division, this is done without

loss of generality and so can and will be assumed. Note incidentally that later on we will

use a second set of marks names L j,i which refer to position i in circle j.

We can now formulate various useful properties using the marks. For example, to

specify that the bird can move to any place that is not marked we can write EX
∨r−1

i=0 (Ci ∧

Li = A). We note however that the bird is more constrained, in that it can only move

to adjacent locations. Therefore we can state the condition F (“The bird can move in the

circle”) as follows: for the bird not to be trapped in the circle it must be able to move into

one of the two adjacent locations. That is,

F = EX((Cx+1 mod r ∧ Lx+1 mod r = A) ∨ (Cx−1 mod r ∧ Lx−1 mod r = A))

It is also useful to introduce the condition that makes the bird trapped in a circle. This

is technically ¬F , but we believe that an explicit formulation makes the overall picture

CHAPTER 4. A CTL FORMULATION OF PURSUIT AND EVASION ON A RING 23

Figure 4.1: Boolean variables for the logical formulation of pursuit and evasion in a single
circle.

clearer:

G = EX (Cx+1 mod r ∧ (Lx+1 mod r = P)) ∧ (Cx−1 mod r ∧ (Lx−1 mod r = P))

Indeed, the bird is trapped if it is sandwiched between the two pursuers (or their marks).

To extend this construction to multiple circles, we must specify the condition F for

each of the k circles. In particular, we need a new set of variables like Ci and Li for each of

the k circles. We will therefore name the new variables by adding a subscript identifying

the circle, such that C j,i represents location i in circle j and L j,i represents the label of the

location i in circle j. The new index j will range from 1 to k. An example for the C j,i family

of variables with two circles having 10 locations each is given in Figure 4.2.

With this notation, the condition O (“The bird can move to another circle”) can be

stated as follows:

O = EX (C j,i ∧
∨

1≤n≤k,n 6= j Ln,i = A)

Indeed, we specify that some position i in some other circle than the current one is avail-

able, which means that the bird can move to that position (meaning, to the same position

CHAPTER 4. A CTL FORMULATION OF PURSUIT AND EVASION ON A RING 24

Figure 4.2: Example of location labeling in multiple circles.

i but in a different circle).

Similarly, we can specify that the bird cannot move to another circle as follows:

γ = EX (C j,i ∧
∧

1≤n≤k,n 6= j L j,i = P)

Indeed, this means that the bird had no place i to go in any other circle.

We thus reach the following expression for the condition P (“The bird is trapped”):

P = EX((Cx+1 mod r ∧ (Lx+1 mod r = P)) ∧ (Cx−1 mod r ∧ Lx−1 mod r = P)) ∧

(C j,i ∧
∧

1≤n≤k,n 6= j L j,i = P)

Plugging everything together in the meta-formulation of the problem namely, Expres-

sion 4.1 will produce a CTL formula that is equivalent with the respective instance of the

pursuit and evasion on a ring problem.

4.3 Equivalence between Pursuit and Evasion Instances and the
Derived CTL Formulae

It is worth emphasizing that we use two sets of variables C and L, one with a single

subscript (and referring to the situation in some implicit circle) and another with two

subscripts, which identify explicitly the circle we refer to.

CHAPTER 4. A CTL FORMULATION OF PURSUIT AND EVASION ON A RING 25

The circles represents a the word in the language Lt, with all the changes up to time

t incorporated. The goal of the pursuers is to analyze this word in time before the next

changes occur. Given the direct “translation” to CTL used in this chapter it is quite im-

mediate that the CTL formula corresponding to a particular instance as developed here

specifies the same thing. Indeed, we have specified logically the situation in which the

entities (bird and pursuers) are sufficiently constrained so that the pursuers can succeed

iff they succeed by following a successful strategy strategy in the original problem. In

particular, 2k pursuers will continue to be successful while 2k− 1 pursuers will not.

More specifically, for the “only if” part of the equivalence we note that whenever the

pursuers are able to catch the bird in the original problem they will need to “corner” it

that is, reduce the acceptable insertion zone to one location (the one with the bird on it).

Clearly, the formula P , which is the second argument of the outermost U operator in

Expression 4.1 specifies the same thing: the locations adjacent to the bird are blocked (G),

as are all the other equivalent locations in the other circles (N). In the meantime, the first

argument of the outermost U operator specifies the acceptable behavior of the bird: It can

move inside the current circle (F) as much as it wishes (even if moving to another circle

is also an option) for as long as such a move is available (G as the second argument of

the innermost U), or it can move to a different circle if this is possible (O as the second

argument of R).

In addition the statements used in Expression 4.1 are clearly equivalent to the pro-

cessing taking place in the original problem. F ensures that the bird can only move to an

adjacent location and only if that location is not marked, whileO is true iff the bird moves

to the same location in a different circle and once more the new location is not marked.

At the same time, G specifies that the two locations adjacent to the location of the bird are

both marked, so that the bird cannot move in the current circle, andN specifies that if the

location of the bird in the current circle is i then all the other locations i in all the other

CHAPTER 4. A CTL FORMULATION OF PURSUIT AND EVASION ON A RING 26

k − 1 circles are marked, so that the bird cannot leave the current circle. Finally, P is a

conjunction of G and N , thus being equivalent to the bird being trapped.

The fact that the bird is eventually caught is ensured by the semantics of p U q which

is true only if the second argument q becomes eventually true at some point.

The “if” part of the equivalence is established in the same manner as the “only if” part

above, indeed, most of the argument above is based on equivalence rather than implica-

tion, except for one thing namely, the management of the acceptable insertion zone. This

is the only major thing that we have not specified logically. More precisely, the original

problem specifies that this zone disappears as soon as the pursuers jump, yet this is not

the case in the CTL formulation. This lack of management is however without loss of

generality. Indeed, we note that jumping pursuers can catch the bird very quickly by just

jumping to adjacent positions. However, not jumping will still produce the same result,

only slower: instead of jumping the pursuers can just move to the same adjacent positions

sequentially, going through all the intermediate positions. In other words, jumping is just

a shortcut and so it does not make any difference since we are interested in solving the

problem and not in the time it takes for the solution to become available; therefore not

managing the acceptable insertion zone will not loose generality.

In all, what we have achieved is a direct logical formulation of the possible ways that

the the system pursuers can take to catch the bird, as desired.

Chapter 5

A CTL Formulation of Constrained
Sorting

While the immediate algorithmic approach fails to solve the constrained sorting problem

if fewer than n/2 processors are available, the very nature of the problem statement seems

to suggest that a temporal logic approach is particularly suitable for this problem. Indeed,

the requirement that a certain condition is maintained throughout all the computational

steps appears to be particularly suited for the use of the G (or perhaps U) operator.

Sure enough, that turns out to be indeed the case. We start by noticing that the follow-

ing condition needs to be met at each computational step:

ψ = ¬
(

n−3∨
i=0

A[j] > A[j + 1] > A[j + 2]

)

Indeed, any violation of this condition implies that there are three consecutive values

in the array that are in decreasing order, which is explicitly forbidden by the problem

statement.

On the other hand, we can just as easily state the following condition that has to be

met in order for the problem to be solved:

φ = A[0] < A[1] < · · · < A[n− 1]

27

CHAPTER 5. A CTL FORMULATION OF CONSTRAINED SORTING 28

Putting everything together we need to specify thatψ is continuously true until the prob-

lem is solved that is, until φ becomes true. We thus reach the following natural logical

translation of a constrained sorting instance: EX(ψ Uφ) that is,

EX

(
¬
(

n−3∨
i=0

A[j] > A[j + 1] > A[j + 2]

)
U A[0] < A[1] < · · · < A[n− 1]

)

The initial X operator is needed because the initial state of the array A stores the input

values, which do not necessarily observe any constraint; the “no three consecutive values

in decreasing order” constraint applies from the next step on instead.

5.1 Equivalence between Constrained Sorting Instances and the
Derived CTL Formulae

The equivalence is quite immediate, since the environment and desired result of the com-

putation are faithfully described logically: The end result is that the array is sorted, clearly

equivalent to φ. That this state is reached is ensured by the semantics of the U operator

which requires that its second argument becomes true eventually. Before ψ becomes true

φ needs to hold , again by the semantics of U. However,φ is the negation of the condition

that is explicitly forbidden by the original problem, and so φ holding until the array is

sorted is equivalent to the forbidden condition never happening during the sorting pro-

cess, as desired.

What happens when the sequence is sorted to begin with? It can be argued, and we

did so here however implicitly, that if this is the case then the sequence will remain sorted

in all the subsequent states and soψ releasesφ from its obligations starting from the next

(second) state and thus the situation continues to fall within the scope of our CTL formula.

It can be argued however that the formula should be true from the very beginning to

maintain a strong equivalence with the original problem. This argument can be addressed

CHAPTER 5. A CTL FORMULATION OF CONSTRAINED SORTING 29

by strengthening the CTL formula from EX(ψ Uφ) which we establish above to

φ ∨ EX(ψ Uφ)

With this formulation, if the sequence is already sorted then φ holds in the start state

and that makes the formula true irrespective of the second operand of the disjunction.

Otherwise, the first operand of the disjunction is false and so the truth value of the formula

is determined by the truth value of the second operand as described above.

Chapter 6

Conclusions

We succeeded in bringing two problems that support significant findings in the area of

superunitary behavior back into the Church-Turing thesis fold. We did so in a somehow

roundabout manner, by formulating every instance of these problems as equivalent CTL

formulae. In other words, solving each of these problems is equivalent to determining

that the equivalent CTL formula is satisfiable. This plus the fact that satisfiability problem

for CTL is decidable proves our point.

The first problem namely, pursuit and evasion on a ring is an interesting problem

because it addressed for the first time a common criticism to the superunitary behavior

effort: Many problems apparently exhibiting superunitary behavior are solvable when

n processors are available, but they turn out to be equally solvable when a single pro-

cessor is available but that processor is n times faster than the original processors being

considered. The pursuit and evasion problem does not have this limitation; indeed, the

processors (pursuers) can be arbitrarily slow and the superunitary behavior still mani-

fests itself. This feat is accomplished by asking the algorithm to handle data that arrives

in real time and also by requiring that input data be constrained by the behavior of the

algorithm that tries to cope with it. These features are hardly rare in the real world of

30

CHAPTER 6. CONCLUSIONS 31

computing: real-time computations are everywhere, and input data sensitive to the com-

putation that processes it (or the other way around) abound, most notably in industrial

control processes whose primary purpose is to interact with and thus control or constrain

equipment. In addition, the pursuit and evasion problem establishes a very strong result:

no matter how many processors we have at our disposal, we can always come out with

an instance that overwhelms them.

Constrained sorting is another notable problem: It is very simple, it features supe-

runitary behavior, and is not even real time. We chose it mostly for the last feature, since

superunitary behavior examples come overwhelmingly from the real-time domain. The

problem features constrains that should be observed not just at the end of the computation

but all the time while the computation is being carried out. Again, there is nothing un-

usual about such a requirement, as situations like this do appear in real-world computing

systems [14].

The papers that introduce these two problems show that they are not solvable un-

less enough resources (namely, processors) are available, further implying implicitly or

explicitly that this violate the Church-Turing thesis. Based on these two problems and

many other similar ones it was often concluded that the thesis only holds for “classical”

problems, where the input is all available at the beginning of the computation, the output

should be made all available at the end of the computation, and the computation itself

is not constrained time-wise or indeed in any other way, except for providing the correct

output for the given input.

What happened in reality is that the proofs that these two problems are unsolvable

CHAPTER 6. CONCLUSIONS 32

unless enough resources are available hold only for direct, algorithmic approaches. Some-

how surprisingly, taking the roundabout approach of converting these problems to a tem-

poral logic formulation and then solving that is far more successful and turns out to in-

validate the proof of unsolvability. This also invalidates the aforementioned direct, algo-

rithmic approach, meaning that there must exist classical, sequential algorithms running

on say, the universal Turing machine, that solve these two problems. Turing wins this

particular round.

A quick look at the many other superunitary behavior problems would appear to sug-

gest that they too are amenable to similar approaches. Whether this is indeed the case

however remains to be established. We believe that investigating a general, logic-based

framework of superunitary behavior is the way to continue this investigation rather than

tackling these problems one by one; this way Turing may win or lose a whole match in a

single swoop.

In the end the Church-Turing thesis remains a. . . thesis, which can be disproved but

can never be proven. Temporal logic is not a panaceum and has its own limitations. For

example our CTL formulations look clean and simple in the end but have been a chal-

lenge mainly because neither CTL nor CTL∗ can express all the regular properties [4]. We

believe our work suggests two, apparently contradictory but equally promising lines of

investigation. On one hand, the general, logic-based framework for superunitary behav-

ior as we know it today is worth pursuing as we already mentioned earlier. On the other

hand, digging deeper into the limitations of temporal logic has the potential of reveal-

ing new, stronger problems that feature superunitary behavior. However, one needs to be

careful in this approach, for where temporal logic fails some other Turing-complete model

of computation might succeed.

Bibliography

[1] S. G. AKL, Unconventional wisdom: Superlinear speedup and inherently parallel computa-

tions, International Journal of Unconventional Computing, 13 (2018), pp. 283–307.

[2] S. G. AKL AND S. D. BRUDA, Parallel real-time optimization: Beyond speedup, Parallel

Processing Letters, 9 (1999), pp. 499–509.

[3] R. ALUR AND D. L. DILL, A theory of timed automata, Theoretical computer science,

126 (1994), pp. 183–235.

[4] R. AXELSSON, M. HAGUE, S. KREUTZER, M. LANGE, AND M. LATTE, Extended com-

putation tree logic, in International Conference on Logic for Programming Artificial

Intelligence and Reasoning, Springer, 2010, pp. 67–81.

[5] R. BERGER, The undecidability of the domino problem, no. 66 in Memoirs of the American

Mathematical Society, American Mathematical Society, 1966.

[6] S. D. BRUDA AND S. G. AKL, Towards a meaningful formal definition of real-time compu-

tations, in Proceedings of the Fifteenth International Conference on Computers and

Their Applications, Citeseer, 1999.

[7] , Pursuit and evasion on a ring: An infinite hierarchy for parallel real-time systems,

Theory of Computing Systems, 34 (2001), pp. 565–576.

33

BIBLIOGRAPHY 34

[8] E. M. CLARKE AND I. A. DRAGHICESCU, Expressibility results for linear-time and

branching-time logics, in Workshop/School/Symposium of the REX Project (Research

and Education in Concurrent Systems), Springer, 1988, pp. 428–437.

[9] J. H. CONWAY, On numbers and games, AK Peters/CRC Press, 2000.

[10] B. J. COPELAND AND D. PROUDFOOT, Alan turings forgotten ideas in computer science,

Scientific American, 280 (1999), pp. 98–103.

[11] R. DE NICOLA AND F. VAANDRAGER, Three logics for branching bisimulation, Journal

of the ACM (JACM), 42 (1995), pp. 458–487.

[12] M. J. FISCHER AND R. E. LADNER, Propositional modal logic of programs, Journal of

Computer and Systems Sciences, 18 (1979), pp. 194–211.

[13] O. GRUMBERG, E. CLARKE, AND D. PELED, Model checking, 1999.

[14] N. NAGY AND S. AKL, Time inderterminacy, non-universality in computation, and the

demise of the church-turing thesis, Tech. Rep. 011-580, Queen’s University, 2011.

[15] A. PNUELI, The temporal semantics of concurrent programs, Theoretical computer sci-

ence, 13 (1981), pp. 45–60.

[16] R. M. ROBINSON, Undecidability and nonperiodicity for tilings of the plane, Inventiones

mathematicae, 12 (1971), pp. 177–209.

[17] J. E. SAVAGE, Models of computation, vol. 136, Addison-Wesley Reading, MA, 1998.

[18] H. T. SIEGELMANN, Computation beyond the Turing limit, Science, 268 (1995), pp. 545–

548.

[19] A. M. TURING, On computable numbers, with an application to the entscheidungsproblem,

Proceedings of the London mathematical society, 2 (1937), pp. 230–265.

BIBLIOGRAPHY 35

[20] M. Y. VARDI AND L. STOCKMEYER, Improved upper and lower bounds for modal logics of

programs: Preliminary report, in Proceedings of the seventeenth annual ACM sympo-

sium on Theory of computing (STOC 85), Lecture Notes in Computer Science, 1985,

pp. 240–251.

[21] WIKIPEDIA, Church-Turing thesis. https://en.wikipedia.org/wiki/Church-Turing

thesis.

[22] D. WOOD AND D. WOOD, Theory of computation, Harper & Row New York, 1987.

[23] R. ZUO, On the equivalence between computation tree logic and failure trace testing, Mas-

ter’s thesis, Bishops University, 2018.

	Introduction
	Preliminaries
	Timed -Languages
	Temporal Logic

	Previous Work
	Pursuit and Evasion on a Ring
	An Intuitive Problem Statement

	A Constrained Sorting Problem

	A CTL Formulation of Pursuit and Evasion on a Ring
	High Level Description
	Trapping the Bird
	Equivalence between Pursuit and Evasion Instances and the Derived CTL Formulae

	A CTL Formulation of Constrained Sorting
	Equivalence between Constrained Sorting Instances and the Derived CTL Formulae

	Conclusions
	Bibliography

