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Abstract 
This thesis proposes a new semantic model for reasoning about real-time system specifications 
featuring a combination of timed processes and formulas in linear-timed temporal logic with time 
constraints (TLTL). Based on a theory of timed omega-final states, the thesis presents a 
framework of timed testing and two refinement timed preorders similar to De Nicola and 
Hennessy’s may and must testing. The paper also provides alternative characterizations for these 
relations to show that the new preorders are extensions of the traditional preorders and to lay the 
basis for a unified logical and algebraic approach to conformance testing of real-time systems. 
The thesis then establishes a tight connection between TLTL formula satisfaction and the timed 
must-preorder. More precisely, it is shown that a timed labeled transition system satisfies a TLTL 
formula if and only if it refines an appropriately defined timed process constructed from the 
formula. Consequently, we developed a timed must-preorder which allows for a uniform 
treatment of traditional notions of process refinement and model checking under time constraints. 
The implications of this novel theory are illustrated by means of a simple example system, in 
which some components are specified as transition systems and others as TLTL formulas. 
Key words: real time, real-time transition system, timed process, timed preorder, timed testing, 
conformance testing, model checking, LTL. 
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1 Introduction 

1.1 Thesis motivation 

The development of hardware and software is getting more and more 

complex. How to guarantee validity and reliability is one of the most pressing 

problems nowadays [1,2].Among many theoretical methods for this, conformance 

testing [3,4] is the most notable one for its succinctness and high automatization. 

Its aim is to check whether an implementation conforms to a given specification.  

Formal system specifications [5], together with implementations, can be 

classified mainly into two kinds: algebraic and logic. The first favors refinement, 

when a single algebraic formalism is equipped with a refinement relation to 

represent a system’s specification and implementation [6,7]. An implementation 

is validated correct if it refines its specification. Since it often defines the system 

transitionally, process algebrae [8], labelled transition systems [7], and finite 

automata [9] are commonly used, with traditional refinement relations being 

either behavioural equivalences or preorders [7, 10]. A typical example is 

model-based testing [7]. The second approach to conformance testing prefers 

assertive constructs; different formalisms are used to describe the properties of 

the system specifications and implementations [7,11]. Specifications are usually 

defined in a logical language while implementations are given in an operational 
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notation. The semantics of assertions is to determine whether an implementation 

satisfies its specification. A typical example is model checking [11].  

The domain of conformance testing includes reactive systems, which interact 

with their environment (also regarded as a reactive system). Often such systems 

are required to be real time, meaning that in addition to the correct sequence of 

events, they must satisfy constraints on the delays separating certain events. A 

system that does not respond within our lifetime is obviously not useful, but 

many times we require a more precise time-wise characterization. Real-time 

specifications [5] are then used as the basis of conformance testing for such 

systems.  

The aim of this paper is to develop a semantic theory for real-time 

heterogeneous system specifications featuring mixtures of real-time transition 

systems and formulas in linear-time temporal logic with time constraints (TLTL). 

Using a new theory of timed ω-final states as well as a timed testing framework 

based on De Nicola and Hennessy’s may- and must-testing [10] as starting points, 

we develop our timed may and must preorders that relate timed processes on the 

basis of their responses to timed tests. We also provide concise alternative 

characterizations of these two preorders, the syntax and semantics of TLTL. We 

set up and refine an algorithm for constructing timed processes from TLTL 

formulas together with a parallel composition operator for interface of different 

parts in the specification so that we can apply our testing on the heterogenous 
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specifications. Our testing framework is as close to the original framework of 

(untimed) testing as possible, and is also as general as possible. While many 

studies of real-time testing exist, they have mostly restricted the real-time domain 

to make it tractable; by contrast, our theory is general. As a consequence, it is 

perhaps not immediately applicable in practice; however, it considers the whole 

domain with all its particularities. We believe that starting from a general theory 

is more productive than starting directly from some practically feasible (and thus 

restricted) subset of the issue.  

1.2 Thesis contribution 

The key result of this paper is that TLTL model checking can be reduced to 

model-based testing. More precisely, a timed process Tφ  can be constructed 

from a TLTL formula φ  in such a way that a timed labelled transition system 

satisfies φ  if and only if it is larger than Tφ  with respect to the timed 

must-preorder. Whenever a heterogeneous system is presented, the specification 

needs to be converted into a unified form in order to solve the problem of 

conformance checking. One way of doing this is by converting TLTL formulas 

into timed processes, which can then be verified using algebraic methods. The 

other way is to express everything using TLTL formulas, which can then be 

verified using logical methods. Since we have chosen timed preorders as the 

starting point to set up the framework of timed testing, we prefer constructing 
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timed processes to TLTL formulas. We also show that our must-preorder is 

compositional for a parallel composition operator, and then illustrate our 

technical results by a small example featuring the heterogeneous design of an 

airline boarding system.  

1.3 Thesis organization 

The thesis is organized as follows: In the next chapter, some preliminaries 

are presented. In the third chapter, we introduce our notion of timed processes. 

Chapter 4 defines the framework of timed testing and timed testing preorders. In 

Chapter 5, we define the syntax and the semantics of the temporal logic that is 

used in the thesis and then the connection between timed must-testing and TLTL 

model checking is investigated. A parallel composition operator is developed in 

Chapter 6 while Chapter 7 applies our specification framework to a simple 

example. The last two chapters contain our conclusions and open problems. 
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2 Preliminaries 

Preorders are reflexive and transitive relations. They are widely used as 

implementation relations comparing specifications and implementations. 

Preorders are easier to construct and analyze compared to equivalence relations, 

and once a preorder is established, an associated equivalence relation is 

immediate. We denote | |  by ω . 

 

2.1 Timed automata and timed transition systems 

Our theory is based on an action alphabet A representing a set of actions 

excluding the internal action τ, and on a time alphabet L, which represent time 

values (often the set of strictly positive real numbers) and is ranged over by the 

set V of time variables. The set of time clocks C is a set of clocks (i.e., variables 

in V) associated to states. CΦ  is the set of time constraints over a set C of 

clocks. A clock interpretation for a set C is a mapping C |→ L. Clock progress 

denotes the effect of time sequences that increase clock values. If t > 0 and k is a 

clock interpretation over C, in the clock interpretation k′ = k + t we have k′(x) = 

k(x) + t for all clocks Cx∈ . Clocks can be reset to zero. 

A time constraint is also called clock constraint here, since we constrain the 

clocks of the states to constrain time between states. If x is a clock and c is a real 
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number, then x ~ c is a clock constraint, where },,,,,{~ ≥>≠=<≤∈ . Clock 

constraints can be joined together either in conjunctions (∧) or disjunctions (∨). 

That is, if x is a clock, the following is an admissible clock constraint: x < 3  ∨ x 

> 5 (  ∧ is for multiple clocks). 

A time-event sequence is a potentially infinite sequence of pairs of actions 

and time values, i.e., a member of (A L) (A L)ω∗× ∪ × .  

The basic idea of labelled transition system (LTS) [6] is to fix an alphabet 

(which usually need not be finite) of labels and to define the evaluation relation 

→ as a relation on triples of an expression, a label, and another expression. 

Formally, a labelled transition system is a 4-tuple 0( , , )S L s→， , where S is a 

set of states, L is a set of labels,→ S (L { }) Sτ⊆ × ∪ ×  is a the transition relation, 

and 0s  is the initial state. 

Timed automata [12] are based on the automata theory and introduce the 

notion of time constraints over their transitions. We define timed automata in 

terms of timed transition tables [12]: A timed automaton is a tuple 

0( , , , , )S S C EΣ , where Σ is a finite alphabet, S is a finite set of states, 0S S⊆ is 

a set of start states, C  is a finite set of clocks, and 2CE S S C⊆ × ×Σ× ×Φ is the 

transition relation. A member ( , ', , , )s s a λ φ of the transition relation represents a 

transition from state s to state s′ on input symbol a. The set λ gives the clocks to 

be reset with the transition, and φ  is a clock constraint over C. 

Using the theory of timed automata, we can transform a potentially infinite 
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labelled transition system into a timed transition system. The difference between 

timed automata and timed transition systems is that the states, time intervals, and 

transitions in the latter are not necessarily finite or even countable. A timed 

transition system is essentially a labelled transition system extended with time 

values associated to actions. It is then a tuple 0( , (A L) { }, , )S sτ× ∪ → , where S is 

a countable, non-empty set of states; A is a set of visible actions with Aτ ∉  

representing the special, internal action; L is a set of time values (which we 

informally call time actions); (A L) { }S Sτ→⊆ × × ∪ ×  is the timed transition 

relation; and 0s S∈  is the initial state. Note that time can only be associated to 

visible actions.
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3 Timed Processes, Timed Traces and 

Timed Languages 

Labelled transition systems are used to model the behaviour of various 

processes. They serve as a semantic model for formal specification languages. 

Here, we define our notion of timed process based on timed transition systems. 

 

Definition 1. For a set A of observable actions ( Aτ ∉ ), a set L of times values, 

and a set C of clocks with an associated set CΦ  of time constraints, a timed 

process is a tuple 0 0((A L) { }, , , , ( , ))C S s cτ× ∪ → , where 

– S is a countable set of states; p = (s, c)  ∈ S, where s is the location (or label) 

of the state and c is a clock interpretation over C1; 

– ((A L) { })S S Cτ→⊆ × × ∪ × ×Φ is the transition relation. Commonly, we use 

( , )

'
a

c
p p

δ

Φ
→  instead of ( , ( , ), ',Φ )p a p cδ ∈→ ; 

– 0 0( , )s c is the initial state2. 

The process picks its way from one state to the next state according to the 

transition relation. Whenever
( , )

( , ) ( ', ')
a

c
s c s c

δ

Φ
→ , the process performs a with delay δ; 

the delay causes the clocks to progress so that c′ = c+ δ; the transition is enabled 

                                                        
1 For simplicity we consider only one clock, as we only need one clock to establish our results. Generalizing 
to multiple clocks however is immediate. 
2 Wherever the transition relation is global and understood we can regard a state as the process whose initial 
state is the given state. 
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only if Φc holds in state (s, c). 

Timed processes are distinguished from labelled transition systems in their 

treatment of traces (by associating time information with them). Normally a trace 

is described as a sequence of events or states, but not the delays between them. 

To add time to a trace, we add time information to the usual notion of trace (that 

contains values only). 

 

Definition 2. A timed trace over A, L, and CΦ  is a member of (A L C)∗× ×Φ  

(A L C)ω∪ × ×Φ , where A is a finite set of events, L is a set of time actions 

and CΦ  is a set of time constraints. 

 

If both L and CΦ are empty, the timed process is the same as a labelled 

transition system, and the timed trace is a normal trace. However, one of L 

or CΦ could be empty and we still obtain a timed trace; this will be used later. 

We will use the following relation: '
),(

pp
a

C

δ

Φ
⇒  iff 0 1 2 ...p p p p

τ τ τ τ
= → → → →  

( , )

'
a

n C
p p

δ

Φ
→  for some 0n ≥ , and 'p p

ε
⇒  iff 0 1 2 ... 'np p p p p p

τ τ τ τ
= → → → → =  

for some 0n ≥ . By abuse of notation, we also write 
w

p q⇒  whenever 

0Φ( , , )i i i i kcw a δ < ≤=  and 
3 31 1 2 2

1 2 3

( , ) ( , )( , ) ( , )

1 2 3... '
k k

k

a aa a

kc c c c
p p p p p p

δ δδ δ

Φ Φ Φ Φ
⇒ ⇒ ⇒ ⇒ = . 

 

Definition 3. Let 0 0((A L) { }, , , , ( , ))M C S s cτ= × ∪ → be a timed process. A 

timed path ( )Mπ is a potentially infinite sequence 1 1 Φ( ( , ), ( , , ),i i i i ics c a δ− −<  
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0( , ) )i i i ks c < ≤> , where
Φ

( , )

1 1( , ) ( , )
i ia

i i i ic
s c s c

δ

− − ⇒ , for all 0 i k< ≤  with A, L,i ia δ∈ ∈  

Φ ic C∈Φ  

 

We use |π| to refer to k, the length of π. If |π| = ω, we say that π is infinite; 

otherwise, π is finite. A deadlock occurs when the process cannot move to 

another state. If | |π ∈  and | | | |( , )s cπ π →/  (i.e., | | | |( , )s cπ π is a deadlock state), 

then the timed path π is called maximal. trace(π), the (timed) trace of π is defined 

as the sequence 0 | |Φ( , , ) (A L ) (A L )i i i ica C C ω
πδ ∗

≤ ≤ ∈ × ×Φ ∪ × ×Φ . 

We use (( ', ')), (( ', ')), (( ', '))f m Is c s c s cΠ Π Π , (or ( ')f pΠ etc.) to denote the 

sets of all finite timed paths, all maximal timed paths, and all infinite timed paths 

starting from state ( ', ') (or )s c S p S∈ ∈ , respectively. We also put ( ')pΠ =  

( ') ( ') ( ')f m Ip p pΠ ∪Π ∪Π . The empty timed path π (with |π| = 0) is symbolized 

by () and its (always empty) trace by ε.  

We can now introduce the different languages associated with a timed 

process p. 

 

Definition 4. The timed finite-trace language (( , ))fL s c , timed maximal-trace 

(complete-trace) language (( , ))mL s c , and timed infinite-trace language 

(( , ))IL s c  of p = (s, c) are 

(( , )) { ( ) | (( , ))}  (A L )*f fL s c trace s c Cπ π= ∈∏ ⊆ × ×Φ  

(( , )) { ( ) | (( , ))}  (A L )*m mL s c trace s c Cπ π= ∈∏ ⊆ × ×Φ  
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(( , )) { ( ) | (( , ))}  (A L )* (A L )I IL s c trace s c C C ωπ π= ∈∏ ⊆ × ×Φ ∪ × ×Φ  

Then the set of initial actions of state p′ = (s′, c′) in process p is defined as 

follows: 
( , )

Φ
Φ(( ', ')) {( , , ) (A L C) : ( ", ") ( ', ') ( ", ")}

a

p pc
s c a c s c s c s c

δ

δΙ = ∈ × ×Φ ∃ ⋅ ⇒ . 

3.1 Timed ω-languages and ω-final states 

A timed ω-language is defined as a language that can be accepted by a timed 

ω- automaton [12]. A timed word over an alphabet Σ consists in a pair (σ, t), 

where 1 2...σ σ σ= is an infinite word over Σ and t is a time sequence (a sequence 

of time values). A timed language over Σ is then a set of timed words over Σ.  

In our theory, timed ω-languages are defined slightly differently (notice 

however that there is a natural isomorphism between our definition and the 

original [12]), in order to reflect the use of such languages for system 

specifications (where we consider that time passes only between actions) and also 

to simplify the presentation. A timed ω-language is then a set of time-event 

sequences (see Section 2.1) 1 2 3...v v v v= ⋅ ⋅ . When the sequence is finite, the 

last element must be ω.  

Timed ω-final states are the states which allow time-event sequences defined 

by a timed ω-regular language to be accepted by appearing infinitely often in the 

corresponding timed path. For untimed sequences and automata, the theory of 

ω-languages is not as simple as the theory of finite automata. The theory becomes 

even more complex when we move to timed traces where we have two notions of 
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infinitude (event length and time length) which might not coincide. To alleviate 

this problem, we introduce ω-final states as a recurrence over the state sequence. 

The events between the states in a single recurrence are all the same, but the 

associated time intervals are not necessarily the same. 

Consider for instance a very simple timed trace (over an empty set of time 

constraints) (a, 1)(a, 1)(a, 1) · · · , whose infinite time-event sequence is ( ,1)a ω . 

Another time trace might be (a, 1)(a, 1/2)(a, 1/4) · · · , whose infinite time-event 

sequence is (a, 1)(a, 1/2)(a, 1/4) · · · . If L has no positive lower-bound on the 

time length, then timed traces over L may exhibit Zeno behaviours, as in our 

second example. Our design choice is to explicitly exclude such Zeno behaviours 

from the languages that we consider, that is, no sequence is allowed to show Zeno 

behaviour. The second trace in the example above is therefore not a valid trace 

(while the first one is). In other words, time progresses and must eventually grow 

past any constant value (this property is also called progress [12, 13]).  

In all, we define the timed ω-regular-trace language as follows. 

 

Definition 5. The timed ω-regular-trace language of some process p is 

( )L pω = { ( ) : ( )} (A L C) (A L C)trace p ω
ωπ π ∗∈Π ⊆ × ×Φ ∪ × ×Φ , where ( )pωΠ  

contains exactly all the ω-regular timed paths. That is, ω-final states must occur 

infinitely often in any ( )pωπ ∈Π . 
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Divergence, the special notion of partially defined states (that may engage in 

an infinite internal computation), is important for the testing theory of reactive 

systems. State (s′, c′) of process p is divergent, denoted by ( ', ') ps c ⇑ , if 

( ', '), ( )I s c traceπ π ε∃ ∈Π = . State (s′, c′) is called (time) w-divergent (denoted 

by ( ', ') ps c w⇑ ) for some 0( , , ) (A L ΦC) (A L ΦC)i i i i kw a C ωδ ∗
< <= Φ ∈ × × ∪ × ×  

if one can reach a divergent state starting from (s′, c′) when executing a finite 

prefix of w, i.e., if 
'

( '', '') : , ( ', ') ( ", ")
w

pl s c S l k s c s c∃ ∈ ∈ ≤ ⇒ ⇑N, , with ' ( , ,i iw a δ=  

0Φ ) i lc < ≤ . For convenience we write ( ')DL p for the divergence language of p′, i.e., 

( ') { (A L C) (A L C) | ' }D pL p w p wω∗= ∈ × ×Φ ∪ × ×Φ ⇑ . 

Conversely, state (s′, c′) is (time) convergent or (time) w-convergent 

(denoted ( ', ') ps c ⇓ and ( ', ') ps c w⇓ , respectively) if it is not the case that 

( ', ') ps c ⇑ and ( ', ') ps c w⇑ , respectively.
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4 A Testing Theory 

In this chapter we extend the testing theory of De Nicola and Hennessy [10] 

to timed testing. The traditional testing framework defines behavioural preorders 

that relate labelled transition systems according to their responses to tests [14]. 

Tests are used to verify the external interactions between a system and its 

environment. We use timed processes as the basis for relating processes (and thus 

reasoning about timed specifications). Recall that our timed processes extend 

labelled transition systems not only with time information but also by their ability 

to consider infinite traces. 

4.1 Timed tests and timed testing preorders 

In our framework a test is a timed process where certain states are considered 

to be success states. In order to determine whether a system passes a test, we run 

the test in parallel with the system under test and examine the resulting finite or 

infinite computations until the test runs into a success state3 (pass) or a deadlock 

state (fail). In addition, a set of ω-final states is used to compartmentalize the 

timed test into finite and infinite. 

 

Definition 6. A timed test 0 0((A L) { }, , , , , ( , ), )t t
tC T s c Sucτ× ∪ → Ω  is a timed 

                                                        
3 Success states are deadlock states too, but we distinguish them as special deadlock states. 
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process 0 0((A L) { },C, , , ( , ))T s cτ× ∪ →  with the addition of a set Suc T∈ of 

success states and a set TΩ∈ of ω-final states. Furthermore, L = O  for tests 

and therefore (A { }) Ct S Sτ→ ⊆ × ∪ × ×Φ . 

 

The transition relation differs from the original one because the test runs in 

parallel with the process under test4. This latter process (called the implement- 

tation) features time sequences but no time constraints, while the test features 

only time constraints. It is meaningless to run the test by itself. If ΦC = O  which 

means there is no time constraint in the test, we call the test classical. The set of 

all timed tests is denoted byΓ . 

 

Definition 7. A partial computation c with respect to a timed process p and a 

timed test t is a potentially infinite sequence 
( , )

1 1 0( , ) , )
i i

i

a

i i R i i i k
c

p t p t
δ

− − < ≤
Φ

< > < > , 

where { }k ω∈ ∪ , such that (1) ip P∈  and it T∈ for all 0 < i ≤ k, and (2) 

i( , ) (A L) { }ia δ τ∈ × ∪  is taken from p, Φ ic  is the time constraint (if any) taken 

from t and R∈{1, 2, 3} for all 0 < i ≤ k. 

 

The relation  is defined by the following rules: 

                                                        
4 Note however that the difference is syntactical only, as the transition relation for a timed process allows 

for an empty set L. 
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–
( , )

1 1 1 i-1 i-1 i-1, ,  ,  , ,    
i i

i

a

i i i i i i i
pc

p t p t if p p t t and t Suc
δ τ

α τ− −
Φ

< > < > = → = ∉  

–
( , )

1 1 2 i-1 1 i-1, ,  ,  ,  ,   
i i

i

a

i i i i i i i i
tc

p t p t if p p t t and t Suc
δ τ

α τ− − −
Φ

< > < > = = → ∉  

–
Φ

( , ) ( , ) ( , )

1 1 3 i-1 1 i-1, ,  ( , ) ( ),  , ,  
i i i i i i

i i

a a a

i i i i i i p i i t i
c c

p t p t if A L p p t t and t Suc
δ δ δ

α δ− − −
Φ

< > < > ∈ × → → ∉  

 

The first expression in the definition of  indicates that when the process 

under the test is executing an internal action from 1ip −  to ip , the test keeps its 

state. The second expression indicates that when the test is executing an internal 

action from 1it −  to it , the process under test keeps its state. The third expression 

indicates that when the action is not internal, the test and the process under test 

execute their respective action in parallel, and spend the same time while doing 

so. Moreover, the test also needs to check the time constraint. 

If k∈ then c is finite, denoted by |c| < ω; otherwise, it is infinite, i.e., |c| = 

ω. The projection ( )pproj c  of c on p is defined as 1( , (( , )), ) C
P

i i i i i I
p pα δ− ∈

< >  

( )p∈∏ , where {0 | {1,3}}C
P iI i k R= < ≤ ∈ . Similarly, the projection ( )tproj c of c 

on t if defined as 1 Φ( , (( , ), ), ) ( )C
t

i i i i i i I
t c t tα δ− ∈

< > ∈∏ , where {0 |C
t iI i k R= < ≤ ∈  

{2,3}} . 

 

Definition 8. A partial computation c is called computation if it satisfies the 

following properties: (1) c is maximal, i.e., k∈  implies ,p tk kp t
τ τ
→ →  and 



CHAPTER 4: A TESTING THEORY 

 

17

( ) ( ) Op k t kI p I t∩ = ( kp  and kt  cannot execute the same action), or the time 

sequence of kp does not satisfy the time constraint of kt ; and (2) k = ω implies 

( ) ( )p Iproj c p∈∏ . 

 

The set of all computations of p and t is denoted by C(p, t). 

 

Definition 9. Computation c is called successful if | |ct Suc∈ whenever | |c ∈ , 

and ( ) ( )p Iproj c t∈∏  whenever |c| =ω. 

 

Definition 10. p may pass t, denoted by    Tp may t , if there exists at least one 

successful computation ( , )c C p t∈ . Analogously, p must pass t, denoted by 

    Tp must t  if every computation ( , )c C p t∈  is successful. 

 

Intuitively, an infinite computation of process p and test t is successful if the 

test passes through a set of ω-final states infinitely often. Hence—in contrast with 

the classical testing theory [10]—some infinite computations can be successful in 

our setting. Since timed processes and timed tests potentially exhibit 

nondeterministic behaviour, one may distinguish between the possibility and 

inevitability of success. This is captured in the following definition of the timed 

may and must preorders. 
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Definition 11. Let p and q be timed processes. Then, 

–         ,                    may
T T Tp q iff t p may t q may t∀ ∈Γ ⇒  

–         ,                    must
T T Tp q iff t p must t q must t∀ ∈Γ ⇒  

 

It is immediate that the relations andmay must
T T are preorders. They are defined 

analogously to the classical may and must preorders (which are based on labelled 

transition systems and restrict Γ  to classical tests). 

 

4.2 Alternative characterizations 

We now present alternative characterizations of the timed may and must 

preorders. The characterizations are similar in style to other characterizations and 

provide the basis for comparing the existing testing theory to our timed testing. 

The first characterization is similar to the characterization of other preorders [14] 

and relates timed testing directly with the behaviour of processes. 

 

Theorem 1. 1.    ( ) ( )    ( ) ( )may
T f fp q iff L p L q and L p L qω ω⊆ ⊆  

2        ((A L) (A L) )      must
Tp q iff for all w such that p wω∗∈ × ∪ × ⇓  it holds that: 

(a) q w⇓  

(b) if | |w ω<  then ', '     ', '     ( ') ( ')
w w

p qq q q implies p p p and I p I q∀ ⇒ ∃ ⇒ ⊆  

(c) if | |w ω=  then ( )  ( )w L q implies w L pω ω∈ ∈  
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The second characterization is given in terms of timed trace inclusions, once 

more similarly to the characterization of other preorders [6]. Note that we are 

now concerned with must
T only, as the simpler must

T is already characterized in 

terms of timed traces in Theorem 1. 

To introduce this result we need to introduce the notion of pure 

nondeterminism. We call a timed process p purely nondeterministic, if for all 

states p’ of p, (a)  '  implies '
a

p pp p
τ
→ →  and 

( , )

|{(( , ), ") : ' "} | 1
a

pa p p p
δ

δ → = . 

Note that every timed process p can be transformed into a purely 

nondeterministic timed process p′, such that ( ) ( '),f fL p L p= ( )DL p =  

( '),DL p ( ) ( ')m mL p L p= and ( ) ( ')L p L pω ω=  by splitting every transition 

( , )

' "
a

pp p
δ

→  into two transitions ',( , ), "' p p a pp p
τ

δ< >→ and
( , )

',( , ), " "
a

pp a pp p
δ

δ< > → , where 

',( , ), "p a pp δ< >  is a new, distinct state.  

 

Theorem 2. Let p and q be timed processes such that p is purely nondeterministic. 

Then, must
Tp q  iff all of the following hold: 

1. ( ) ( )D DL q L p⊆ , 

2. ( ) \ ( ) ( )f D fL q L q L p⊆ , 

3. ( ) \ ( ) ( )m D mL q L q L p⊆ , and 

4. ( ) \ ( ) ( )DL q L q L pω ω⊆ . 
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Fig. 1. Timed tests used for the characterization of timed may and must preorders. 

 

With respect to finite traces, the characterizations of timed tests differ from 

the ones of classical preorders by the addition of time variables. Here, we do not 

limit the number of clocks, but since every action between two states requires at 

most one time constraint, the number of clocks is associated with the number of 

time constraints. We also need to refine the classical characterizations so as to 

capture the behaviour of timed may- and must-testing with respect to infinite 

traces. The proof of the two characterization theorems rely on the properties of 

the following specific timed tests. 

– For ,
0( , ) (A L) , let { },C, , , ,0, )May

i i i k ww a t A T kδ τ φ∗ ∗
< ≤= ∈ × =< ∪ → , where 
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0{0,1,..., },and { 1, ( , , ) : 0 }.i
i i j iT k i a i c i kδ== →= < − = Σ < ≤  

– For ,
0( , ) (A L) , let A { },C, , , ,0, )May

i i i k ww a t T Tω ωδ τ φ< ≤= ∈ × =< ∪ → , where 

0, {( 1, ( , , ) : 0}i
i i j iT i a i c iδ== →= − = Σ > . 

– For ,
0( , ) (A L) , let A { },C, , ,{ },0, ),May div

i i i k ww a t T kδ τ φ∗
< ≤= ∈ × =< ∪ → where 

0{0,1,..., }, {( 1, , , ) : 0 } { , , ,True}.i
i i j iT k i a i c i k k kδ τ== →= − = Σ < ≤ ∪  

– For ,
0( , ) (A L) , let (A { },C, , , ,0,{ }),i i i k ww a t T sδ τ φ∗ ⇓ ∗
< ≤= ∈ × = ∪ →  where 

{0,1,..., } { }T k s= ∪ , 0{( 1, , , ) : 0 } {( , , ,True) :i
i i j ii a i c i k i sδ τ=→= − = Σ < ≤ ∪   

0 }i k< ≤  

– For ,
0( , ) (A L) , let A { },C, , ,{ },0,{ }),i i i k ww a t T s sωδ τ∗ ⇓
< ≤= ∈ × =< ∪ →  where 

0{ }, {( 1, , , ) : 0} {( , , ,True) : 0}i
i i j iT s i a i c i i s iδ τ== ∪ →= − = Σ > ∪ >  

– For ,*
0( , ) (A L) , let (A { },C, , , ,0,{ }),Must

i i i k ww a t T sδ τ φ∗
< ≤= ∈ × = ∪ →  where 

0{0,1,..., } { }, {( 1, , , ) : 0 } {( , , ,True) : 0i
i i j iT k s i a i c i k i s iδ τ== ∪ →= − = Σ < ≤ ∪ ≤

}k<  

– For ,max
0 1 2( , ) (A L) , let (A { },C, , , ,0,{ , }),Must

i i i k ww a t T s sδ τ φ∗
< ≤= ∈ × = ∪ →  

where 1 2 0 1{0,1,..., } { , }, {( 1, , , ) : 0 } {( , ,i
i i j iT k s s i a i c i k i sδ τ== ∪ →= − = Σ < ≤ ∪

,True) : 0 }i k≤ < 2 Φ{( , , ,True) : ( , ) A C}k a s a c∪ ∈ ×Φ  

– For ,
0( , ) (A L) , let (A { },C, , , ,0,{ }),Must

i i i k ww a t T sω ωδ τ φ< ≤= ∈ × = ∪ →  where 

0{ }, {( 1, , , ) : 0} {( , , ,True) : }.i
i i j iT s i a i c i i s iδ τ== ∪ →= − = Σ > ∪ ∈  

– For 0 ,( , )(( , ) (A L)  and A, let A { },C, , , ,0,Must
i i i k w A Lw a A t Tδ τ φ∗

< ≤= ∈ × ⊆ =< ∪ →

1 2{ , }),s s where 1 2 0{0,1,..., } { , }, { 1, ( , , ) : 0 }i
i i j iT k s s i a i c i kδ== ∪ →= < − = Σ < ≤

1 2{( , , ,True) : 0 } {( , , , ) : }i s i k k a s True a Aτ∪ ≤ < ∪ ∈  
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These tests are depicted graphically in Figure 1. In the figure ω-final states are 

marked by the symbol ω and success states are distinguished from regular states 

by thick borders. Intuitively, while the timed tests ,*May
wt and ,May

wt
ω  test for the 

presence of a finite and infinite trace w, respectively, the timed tests ,May div
wt , 

,
wt
⇓ ∗  ,and ,

wt
ω⇓  are capable of detecting divergent behaviour when executing trace 

w. These are “presence” tests, that check whether a trace w (finite or infinite) 

exists in the implementation. The timed tests ,*Must
wt , ,maxMust

wt , and ,Must
wt

ω test for 

the absence of the finite trace, maximal trace, and ω-state trace (i.e., trace that 

goes through infinite occurrences of ω-final states) w, respectively. Timed 

must-testing is a little bit tricky, since we cannot feasibly check all the possible 

traces or computations exhaustively (as we need to do according to the definition 

of must testing). So we think the other way around: We assume one “failure 

trace,” which does not satisfy the test and leads to failure. If there exists at least 

one such failure trace, then the test fails. On the other hand, if we cannot find the 

failure trace in the implementation, the test succeeds. We then test the absence of 

this trace in must-testing. Finally, the timed test ,( , )
Must
w A Lt  is capable of comparing 

the initial action sets of states reached when executing trace w with respect to a 

subset AA⊆ . Note that we use the tightest time constraint possible in our test. 

We denote 0
i

i j ic δ== Σ  by Φ ic  in what follows (and also in Figure 1). 
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Our specific timed tests satisfy the following desired properties: 

 

Lemma 1. 

1. ,* (A L) . ,  ( )    May
f T wLet w Then w L p iff p may t∗∈ × ∈  

2. , (A L) . ,  ( )    May
T wLet w Then w L p iff p may tω

ω
∞∈ × ∈  

3. , (A L) . ,  ( )    May div
T wLet w Then w L p iff p may tω

∗∈ × ∈  

4. , (A L) . ,      T wLet w Then p w iff p must t∗ ⇓ ∗∈ × ⇓  

5. , (A L) ( , ) . ,  w    T wLet w A L Then p iff p must tω ω∗ ⇓∈ × ∪ ⇓  

6. , (A L)   , . , ( )    Must
f T wLet w such that p w Then w L p iff p must t∗ ∗∈ × ⇓ ∉  

7. ,max (A L) .  , . , ( )    Must
m T wLet w such that p w Then w L p iff p must t∗∈ × ⇓ ∉  

8. , (A L)   , . , ( )    Must
T wLet w such that p w Then w L p iff p must tω ω

ω∈ × ⇓ ∉  

 

Proof. The proofs are simple analyses of the potential computations arising when 

running the timed tests in lock-step (to a deadlock or successful state) with 

arbitrary timed processes. Let 0( , )i i i kw a δ < ≤=  for some { }k ω∈ ∪ . 

 

– Item 1, :  ⇒ ( )fw L p∈ , and thus 
1 1 2 2 ( , )( , ) ( , )

0 1

k kaa a

kp p p
δδ δ

⇒ ⇒ ⋅⋅⋅ ⇒ (Definition 4). On 

the other hand, 
1 1 2 2

1 2Φ Φ Φ

( , )( , ) ( , )
, , ,

0 1

k k

k

aa a
May May May

kc c c
t t t

δδ δ
∗ ∗ ∗⇒ ⇒ ⋅⋅⋅ ⇒ (definition of ,May

wt
∗  

including the form ofΦ ic ). Therefore, 
Φ

( , )
, ,

1 1 0( , ) ( , )
i i

i

a
May May

i i i i i kc
p t p t

δ
∗ ∗

− − < ≤< > < > , 

so w is the trace of a potential computation c for both p and ,May
wt

∗ . In fact w is 
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even the trace of a computation of p and ,May
wt

∗ (indeed, ,May
kt

τ
∗ →/  and 

,( ) ( ) O )May
p k t kI p I t ∗∩ = , and is further the trace of a successful computation 

(since ,May
kt Suc∗ ∈ ). It then follows that ,  May

T wp may t ∗ .    

 :⇐  Given that ,  May
T wp may t ∗ , we have a successful computation c of p and 

,May
wt

∗ . That is, 
Φ

( , )
, ,

1 1 0( , ) ( , )
i i

i

a
May May

i i i i i kc
p t p t

δ
∗ ∗

− − < ≤< > < > , ,May
kt

τ
∗ →/ , ( ) (p k tI p I∩  

, ) )May
kt φ∗ = , and , ,May May

w kt t Suc∗ ∗= ∈ . By a reverse argument we conclude 

then that ( )fw L p∈
1 1 2 2

1 2Φ Φ Φ

( , )( , ) ( , )
, , ,

0 1( ,
k k

k

aa a
May May May

kc c c
t t t

δδ δ
∗ ∗ ∗⇒ ⇒ ⋅⋅⋅ ⇒ then 

1 1 2 2 ( , )( , ) ( , )

0 1

k kaa a

kp p p
δδ δ

⇒ ⇒ ⋅⋅⋅ ⇒ , and thus ( )fw L p∈ ). 

 

– Items 2 and 3 are proven similarly. 

 

– Item 4, :⇒  Assume that , T wp must t⇓ ∗ does not hold. However, the trace w 

passes ,
wt
⇓ ∗  (by the definition of ,

wt
⇓ ∗ ), only divergence can cause the test to 

fail. So for some 0 l k< ≤  there exists one trace 
1 1 2 2 ( , )( , ) ( , )

0 1

l laa a

lp p p
δδ δ τ

⇒ ⇒ ⋅⋅⋅ ⇒ →  

lp ⋅ ⋅ ⋅  which means that p w⇑ , a contradiction. So it must be that 

,  T wp must t⇓ ∗ .               

 :⇐  Assume that p w⇑ . Then for some 0 l k< ≤  there exists one trace 

1 1 2 2 ( , )( , ) ( , )

0 1

l laa a

l lp p p p
δδ δ τ

⇒ ⇒ ⋅⋅⋅ ⇒ → ⋅⋅⋅  which fails the test ,
wt
⇓ ∗ . This contradicts the 

condition ,  T wp must t⇓ ∗  and so it must be that p w⇓ . 

 

– Item 5 is proven similarly. 
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– Item 6, :⇒  Assume that ,  Must
T wp must t ∗  does not hold. According the 

definition of ,Must
wt

∗ , there are two ways for p to fail the test: Either 

1 1 2 2 ( , )( , ) ( , )

0 1

l laa a

p p
δδ δ

⇒ ⇒ ⋅⋅⋅ ⇒  l lp p
τ
→ ⋅⋅⋅ , or 

1 1 2 2 ( , )( , ) ( , )

0 1

k kaa a

kp p p
δδ δ

⇒ ⇒ ⋅⋅⋅ ⇒ . These 

contradict the conditions p w⇓  or ( )fw L p∉ , respectively.   

       :⇐  Assume that ( )fw L p∈ . By the definition of 

,Must
wt

∗ , w fails to pass this test. This contradicts the condition that 

,  Must
T wp must t ∗ .  

 

– Item 7 and 8 are proven similarly.  

 

The proof of Theorem 1 relies extensively on these intuitive properties of 

timed tests. Notice that the usage of ω-state tests (that is, tests that accept based 

on an acceptance family, not only on Suc)—even when discussing finite-state 

timed processes—is justified by our view that timed tests represent the arbitrary, 

potentially irregular behaviour of the unknown real-time environment. 

 

Proof of Theorem 1  Item 1 of the theorem is fairly immediate. For the ⇒  

direction we distinguish the following cases: 

( )fw L p∈  implies that ,  May
T wp may t ∗ . Since May

Tp q  it follows that p  

, May
T wmay t ∗  and thus ( )fw L p∈ . 
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( )w L pω∈  has two sub-cases: 

1. If | |w ω= , then ,  May
T wp may t ω . Since May

Tp q  it follows that 

  Tp may  ,May
wt

ω  and thus ( )w L pω∈ . 

2. If | |w ω< , then ,  May div
T wp may t . Since May

Tp q  it follows that p  

, May div
T wmay t  and thus ( )w L pω∈ . 

We go now to the ⇐  direction for Item 1. Let t be any timed process such that 

  Tp may t , i.e., there exists a successful computation ( , )c C p t∈ with w trace=  

( ( )) ( ( ))p tproj c trace proj c= .  

1. If | |w ω= , when ( )w L pω∈  and thus ( )w L qω∈ (since ( ) ( ))L p L qω ω⊆ . It 

follows that we can construct a successful computation ' ( , )c C q t∈  such 

that ( ( ')) ( ( '))q tw trace proj c trace proj c= = and ( ') ( )t tproj c proj c= . It 

follows that  Tq may t and therefore May
Tp q . 

2. If | |w ω< , we can split the proof into two cases: either ( )fw L p∈  or 

( )w L pω∈ . We can then establish that  Tq may t  as above. 

On to Item 2 now. For the ⇒  direction we have that Must
Tp q , (A L)w ∗∈ × ∪  

(A L)ω×  such that p w⇓ . Then, 

1. ,  T wp must t⇓ ∗  or ,  T wp must t ω⇓ (Lemma 1), then , T wq must t⇓ ∗  or ,  T wq must t ω⇓  

(Definition 11), thus q w⇓ (Lemma 1). 

2. It could be that | |w ω=  or not, so we distinguish two cases.  

  (a) | |w ω< : Let '
w

q q⇒ for some q’, i.e., ( )fw L q∈ . Assume that there is no 
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p’ such that '
w

p p⇒ and ( ') ( ')p qI p I q⊆ . 

 i. Suppose that 
w

p⇒/ i.e., ( )fw L p∉ . Then ,  Must
T wp must t ∗  does not hold 

(contrapositive of Lemma 1), a contradiction. 

    ii. Suppose now that 
w

p⇒ . Let then {( , ) ( ') : '}
w

pX a I p p pδ φ= ∈ ⇒ ≠ . 

Since ( ') ( ')p qI p I q⊆/ (assumption), for every A X∈ there exists an 

( , ) \ ( ')qa A I qδ ∈ . Let B be the set of all such actions a (ignoring the time 

actions). It is then immediate that , Must
T w Bp must t (by the construction of 

,
Must
w Bt ); however, it is not the case that , Must

T w Bq must t  (since 
( , )

'
a

q
δ

⇒/ for any 

( , ) ( , )a B Lδ ∈ ). This contradicts the assumption that must
Tp q . 

(b) | |w ω= : Assume that ( )w L pω∉ . Then ,  Must
T wp must t ω (Definition 11) 

   and thus ( )w L qω∉ (Lemma 1). This contradicts ( )w L qω∈ (given). 

Finally, for the ⇐  direction of Item 2, let t be any timed process such that 

  Tq must t does not hold, i.e., there exists an unsuccessful computation (c = <  

1 1 0Φ, , ( , , ), , ) ( , )i i i i i i i i kq t a c q t C q tδ− − < ≤> < > ∈ (Definition 10). Let ( pw trace proj=  

( )) ( ( ))tc trace proj c= . 

1. Assume that p w⇓ . We can then construct an unsuccessful, infinite 

computation c’ which resembles c until p can engage in its timed divergent 

computation and then we force t not to contribute anymore. Then ( ')pproj c ∈  

( )pωΠ  and ( ') ( )tproj c tω∉Π (because | ( ') |pproj c ω< ). This implies that 

  Tp must t  does not hold (Definition 10) and thus must
Tp q ( since q  

 Tmust t  does not hold by the contrapositive of Definition 11) 
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2. Assume now that p w⇓ , i.e., ( )Dw L p∉ . Then, 

(a) If | |c ω<  then: (i) ( )fw L q∈ , '
w

q q⇒ for some q’ and kt Suc≠  by 

definition of ,Must
wt

∗ , (ii) , , ( ) ( )c c
k k q k t kq t I q I t

τ τ
φ→ → ∩ =/ /  by definition of 

,maxMust
wt ; and (iii) ' : ', ( ') ( ')

w
c c
p qp p p I p I q∃ ⇒ ⊆  by condition. 

(b) By observations (i)-(iii) we have a finite computation 1 1' ( , ' ,i ic p t− −= < >  

0Φ( , , ), , ' ( , )i i i i i i la c p t C p tδ < ≤< > ∈  with ( ') ( )t tproj c proj c=  and ,lp<  

",l kt p t>=< > , where ' "p p
ε
⇒  for some " pp

τ
→/ . Note that such a p” 

must exist since p w⇓ . Then ( ") ( ')c c
p pI p I p⊆ , definition of c’ and p”, 

and observations (i) and (ii) above imply that ( ") ( ) ( ')c c c
p t k qI p I t I q∩ ⊆  

( ' ) ( ) ( )c c c
t l q k t lI t I q I t∩ ⊆ ∩ ; thus c’ cannot be extended. Since 'l kt t=  

Suc∉ , c’ is unsuccessful, so  Tp must t  does not hold. 

3. If | |c ω=  then ,  Must
T wq must t ω  does not hold. It follows that ( )w L qω∈ , 

and thus ( )w L pω∈ (given). So ,  Must
T wp must t ω does not hold either (contra- 

positive of Lemma 1). In all, must
Tp q , as desired.  

 

The proof of Theorem 2 also relies on the properties of the timed tests 

introduced in Lemma 1. 

 

Proof of Theorem 2  For the ⇒  direction, assume that must
Tp q and let 

(A L) (A L)w ω∗∈ × ∪ × . Then, 

 (1) ( )Dw L q∈  implies q w⇑ , so it is not the case that ,  T wq must t ω⇓  
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(Lemma 1(5)). Therefore it is not the case that , T wp must t ω⇓ (since must
Tp q ), so 

p w⇑ , or ( )Dw L p∈ , as desired. 

 (2) ( ) \ ( )f Dw L q L q∈  implies q w⇓  and thus p w⇓ (same as (1) but 

using Lemma 1(4)). In addition, it is not the case that ,  Must
T wq must t ∗ (Lemma 

1(6)) and thus ,  Must
T wp must t ∗  does not hold (since must

Tp q ). Therefore, 

( )fw L p∈ , again as desired. 

 

The proofs of (3) and (4) are the same as the proof of (2) using Lemma 1(7) and 

Lemma 1(8), respectively. 

 

On to the ⇐  direction now. We assume that (1), (2), (3), and (4) hold. We 

further assume that there exists a timed test t such that  Tq must t  does not hold 

(if such a test does not exist then must
Tp q for any process p). Thus there exists 

an unsuccessful computation 1 1 0( , ( , ) , ) ( , )i i i i i i i kc q t a q t C q tδ− − < ≤= < > < > ∈ , with 

( ( )) ( ( ))q tw trace proj c trace proj c= = . 

1. If p w⇑  then construct an unsuccessful, infinite computation c’ which 

resembles c until p can engage in its divergent computation, at which point t 

can be forced to stop contributing to c’. Thus q w⇑  and it is not the case 

that   Tp must t . 

2. If p w⇑ , | |c ω< , and kt Suc∉ : 

(a) Let ( ) \ ( )f mw L q L q∈ . Then there exists some ( , ) A La δ ∈ × such that 
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( , )a

qkq
δ

→  but 
( , )a

tkt
δ

→/ . That is, ( , ) ( )mw a L qδ⋅ ∈ and so (by(3)) ( , ) ( )mw a L pδ⋅ ∈ . 

Since p is purely nondeterministic, we can construct a finite computation 

1 1 0' ( , ( , ) , ) ( , )i i i i i i i lc q t a q t C q tδ− − < ≤′ ′= < > < > ∈  where ( ) ( )t tproj c proj c′= , 

l kt t′ = , and 
( , )a

l pp
δ

→ . The computation is maximal (since 
( , )

)
a

k j tt t
δ

′′= →  and 

unsuccessful (since | |c ω′ <  and lt Suc′∉ ). Therefore,   Tp must t  does not 

hold.  

(b) Let ( )mw L q∈ (and thus ( )mw L p∈ ). We can then construct a maximal 

computation c’ as above and then  Tp must t  does not hold given that 

  Tq must t  does not hold. 

3.  If p w⇓  and | |c ω= , since ( ) ( )tproj c tω∉Π , ( ) ( )tproj c qω∉Π , and 

( )w L pω∈ , we can construct an infinite computation ( , )c C q t′∈ such that 

( ) ( )t tproj c proj c′= . Similar to the above, c’ is unsuccessful and so   Tp must t  

does not hold. 

 

All the cases lead to must
Tp q , as desired.
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5 Timed must-testing and linear-time 

temporal logic 

In this chapter, we establish a connection between the timed must-preorder 

must
T and the satisfaction relation |= for linear-time temporal logic with time 

constraints (TLTL). More specifically, our goal is to show how to construct a 

timed process Pφ  from a TLTL formula φ  in such a way that |q φ=  if and 

only if must
TP qφ , for any timed process q. Our result builds on timed Muller 

automata [12] approaches to LTL model checking [10,15,16,17,18,19]. 

5.1 Syntax and Semantics of TLTL 

Our variant of TLTL interprets formulas with respect to sequences of actions 

with time constraints, and states. Accordingly, atomic propositions will also be 

interpreted with respect to actions and their time delays. Moreover, our variant 

extends traditional LTL [15,16,20], in that its semantics is given with respect to 

infinite and finite timed traces, i.e., timed words in (A L) (A L)ω∗× ∪ × . This 

allows formulas to constrain ongoing as well as deadlocking behavior [16] for 

both actions and time.  

 

The formal syntax of TLTL formulas is defined by the following BNF. 



CHAPTER 5: TIMED MUST-TESTING AND LINEAR-TIME TEMPORAL LOGIC 

 

32

:φ = true | false | ( , )a ψ | ( , )a ψ¬ | φ φ∧ | φ φ∨ | φΔΧ | ˆ φΔΧ | Uφ φΔ | 

Rφ φΔ |φ φΔ→ | |φ φΔ→  

 

Here, ( , ) ( , )a Aψ ∈ Ψ  is an atomic proposition that is true for action ( , )a δ , 

whose δ is within the time constraint ψ , and false for any other action within 

the time constraint ψ  or for no action in the time constraint. ψ  consists in two 

real numbers x and y, the lower and upper bound, respectively. An example of 

time constraint is [1, 4) . ˆ φΔΧ  is the dual of the next-state operator φΔΧ . A 

typical way to add a metric for time is to allow the definition of bounded 

operators.[20] Inspired by this, Δ , is the time constraint for some operators, 

which is the same form as ψ  but limits the time between two formulas with an 

operator. It does not only apply on the modal operators such as X, U, R, but also 

on the truth-functional operators such as ∧ ,∨,→.  

 

Definition 12 The time constraints ψ  and Δ  are formed by two time bounds, 

lower time bound x and upper time bound y. A time constraint is an interval of 

time values, which may or may not be closed at any end. Examples include:  

[ , ], [ , ), ( , ] or ( , )x y x y x y x y  with , ,x R y R y x+ +∈ ∈ ∪+∞ ≥ .5 

 

 If an action ( , )a δ  occurs within the time bounds ψ , we say that δ  

                                                        
5 When y = +∞ , the interval cannot be closed on the y side, so we only have [ , ) or ( , )x x+∞ +∞  
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satisfies ψ , written |δ ψ= . Also if the time interval [ , ']δ δ  is included in the 

time interval Δ , we say that [ , ']δ δ  satisfies Δ , written [ , '] |δ δ = Δ . 

In the following, we denote the set of all TLTL formulas by F. Recall the 

definition of timed traces in Chapter 3. We say that a timed trace 

0( , ) (A L) (A L)i i i kw a ωδ ∗
< ≤= ∈ × ∪ × satisfies φ  iff |w φ= holds ( | |k w=  is the 

length of w). The relation | ((A L) (A L) )ω∗=∈ × ∪ × × F is the least relation 

satisfying the conditions in the semantics of TLTL formulas shown below, with 

jw standing for ( , ) (A L)i i j i ka δ ∗
≤ ≤ ∈ × , for any 1 j k≤ ≤ . We also say that a 

timed process p satisfies the TLTL formula φ , written |p φ= , if m ( )w L p∀ ∈  

( ) ( )DL p L pω∪ ∪ , |w φ= . It should be noted that our syntax limits the 

application of negation to actions and time, rather than generally defining a 

formula φ¬  with meaning |w φ= ¬  iff |w φ≠ . This is not a restriction since 

our logic is self-dual. The operators ˆand ,  and ,  and U RΔ Δ Δ Δ∧ ∨ Χ Χ ,φ φΔ→  

and |φ φΔ→  are dual to each other. 

 

The semantics of TLTL: 

|w true=  and |w false≠  

| ( , )w a ψ=  if  and  when |i iw a aε δ ψ≠ = =  

| ( , )w a ψ= ¬  if | ( , )w a ψ≠  

1 2|w φ φ= ∧  if 1|w φ=  and 2|w φ=  

1 2|w φ φ= ∨  if 1|w φ=  or 2|w φ=  
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|w φ= Χ  if  and ' |  w wε φ≠ = (with ( , ) 'w wα δ= ) 

ˆ|w φ= Χ  if  implies ' |  w wε φ≠ =  

1 2|w φ φΔ= →  if 1 20 : | |j ij i k w wφ φ∃ < < ≤ = ⇒ =  and [ , ] |j iδ δ = Δ  

1 2| |w φ φΔ= →  if 10 , |jj k w φ∃ < ≤ = , 2, |ij i k w φ∀ < ≤ = and [ , ] |j iδ δ = Δ  

1 2|w Uφ φΔ=  if 20 ,0 , |ii k j k w φ∃ < ≤ < ≤ = , [ , ] |j iδ δ = Δ and 10 , |jj i w φ∀ < < =  

1 2|w Rφ φΔ=  if 2( 0 , | )ii k w φ∀ < ≤ =  or 1( 0 , | ,[ , ] |  i ji k w φ δ δ∃ < ≤ = = Δ  and 

2 0 , | )jj i w φ∀ < < =  

 

The intuitive meaning of the TLTL operators is the following. The symbols 

true and false stand for the propositional constants true and false, which are 

satisfied by every timed trace and no trace, respectively. A finite or infinite timed 

trace satisfies the atomic proposition ( , )a ψ  if the timed trace is not empty and if 

there is an action a withinψ . It satisfies ( , )a ψ¬  if it does not satisfy ( , )a ψ . The 

propositional constructs ∧  and ∨  have their usual interpretation as 

conjunction and disjunction, respectively. The unary operators ΔΧ and 

ˆ
ΔΧ represent next-state operators. Intuitively, the trace w  satisfies 

ˆ and φ φΔ ΔΧ Χ  if 'w satisfiesφ  while ( , ')δ δ satisfies Δ . The only difference 

between ˆ and φ φΔ ΔΧ Χ arises when considering the empty trace ε . Indeed, 

ε satisfies ˆ φΔΧ  but violates φΔΧ . Formula 1 2φ φΔ→  shows a binary necessity, 

if w satisfies 1φ , it must satisfy 2φ during the time ( , ')δ δ  satisfyingΔ . 1 2|φ φΔ→  

is the dual formula of 1 2φ φΔ→ , which shows that if w satisfies 1φ , it must not 
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satisfy 2φ during the time ( , ')δ δ satisfying Δ .  Formula 1 2Uφ φΔ  represents an 

until property and is satisfied by any timed trace which satisfies 1φ  until 

2φ becomes valid withinΔ . 1 2Rφ φΔ  is a release formula and is satisfied by any 

trace which satisfies 2φ unless this formula is released from its obligation by the 

truth of 1φ  during Δ ( which might never occur if 2φ =false). Finally, we 

introduce the derived operators G(“generally”) and F(“eventually”) by defining 

 and G falseR F trueUφ φ φ φΔ Δ Δ Δ= = . 

 

5.2 Constructing Timed Processes from TLTL Formulas 

We are now ready to show how a TLTL formula can be converted into a 

timed process, such that the timed traces satisfying the timed process also satisfy 

the formula.  

 

5.2.1 Constructing Timed Process 

Based on previous work on converting temporal logic formulas to automata 

or transition systems [21,22,23], we now build a timed process 0( , , )P S Sφ = → , 

such that ( ) ( ) ( )m DL P L P L Pφ ω φ φ∪ ∪  is exactly the set of computations satisfying 

the formulaφ . 
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The data structure used as the state names in the set S is the following. Also note 

that “Clock” is not part of the state name: 

– Name: A string that is the name of the state, such as 1s . 

– Incoming: The set of incoming edges; each edge is represented by the name of 

the source node(s) whose outgoing edge leads to the current node. 

– New: A set of temporal properties (formulas) that must hold at the current state 

and have not yet been considered. 

– Old: The properties that must hold in the state and have already been 

considered. 

– Next: Temporal properties that must hold as the temporal formulas in the set 

New of the next state. 

– Clock: A set of clocks that decides when the properties should be considered.  

 

The initial states are all in 0S . A state is an initial state if and only if its 

Incoming set is empty. 

( )Cl φ is the closure of a TLTL formula φ  which includes all the 

sub-formula6 sets ofφ . ( )2Cl φ  is a product of two sets (A L)×  because every 

                                                        
6 Suppose φ  is a formula of TLTL. A sub-formula of φ  is defined inductively as follows: 

1.φ  is a sub-formula of φ . 
2. if φ¬  is a sub-formula of φ  for some TLTL formula ϕ , then so is ϕ . 
3. if φΧ  is a sub-formula of φ  for some TLTL formula ϕ , then so is ϕ . 

3. if (    )or or Uα β α β α βΔ Δ∧ →  is a sub-formula of φ  for some TLTL formula α , β , then so 

are α  and β . 
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TLTL formula φ  also includes time constraints.  

The clocks of the set C in Pφ  is are used to measure the time increase 

between two states. Here, they will also be used to check the timed constraints of 

the operators. In the timed process Pφ , the time constraints of atomic 

propositions are checked using time sequences, and the time constraints of 

operators are checked using clocks. 

The transition relation →  is constructed as edges between states according 

to the following algorithm. 

Without losing generality, we may assume that the formula does not contain 

the operators ‘F’ and ‘G’, which can be replaced by formulas using the operator 

‘U’, and that all the negations are pushed inside until they only precede 

propositional variables. 

The algorithm that constructs the transition relation corresponding to φ  

starts with a single node. This node has no incoming edge. Thus, by the end of the 

construction, a node will be initial iff it contains no incoming edge. It has initially 

one new obligation in New, namely φ , and the sets Old, Next and Clock are 

initially empty. 

With the current node N, the algorithm checks if there are unprocessed 

obligations left in New. If not, the current node is fully processed and ready to be 

added to the state set S. If there already is a node in the state set S with the same 

obligations in both its sets Old and Next, the copy that already exists needs only 
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to be updated with the new set of incoming edges; the set of incoming edges to 

the new copy is added to the ones of the old copy. 

If no such node exists in state set, then the current node is added to this list, 

and a new current node is formed for its successor as follows: 

•  There is initially one edge from N to the new current node, and this edge is 

added to the set Incoming of the new current node. 

•  The set New is set initially to the set Next of N. 

•  The sets Old, Next and Clock of the new current node are initially empty. 

When processing the current node, a formula η  in the set New is removed 

from its list, in the case that η  is a proposition. If η¬  is in Old, the current 

node is discarded, as it contains a contradiction. Otherwise, η  is added to Old if 

it is not already there. 

When η  is not an atomic proposition, the actions on the current node 

depend on the form of η : 

– η ϕΔ= Χ  ( ˆη ϕΔ= Χ ) Add ϕ  into Next. Set one clock to zero to associate 

with the Δ  of ϕΔΧ  ( ˆ ϕΔΧ ) 

– η μ ϕ= ∧  Add both μ  and ϕ  to New as the truth of both formula is needed 

to make η  hold. 

– η μ ϕ= ∨  The node is split into two new nodes, adding μ  to New of one 

new node, and ϕ  to the other. These nodes correspond to the two ways in 

which η  can be made to hold. 
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– Uη μ ϕΔ=  The node is split into two new nodes: for the first new node, add 

μ  to New and Uμ ϕΔ  to Next. For the other one, add ϕ  to New and Next 

and set one clock to zero to associate with the Δ  of U ϕΔ . 

– Rη μ ϕΔ=  The node is split into two new nodes: add ϕ  to New of one new 

node and η  to the Next and set one clock to zero to associate withΔ  of R ϕΔ . 

Then add μ  to New of the other new node. 

– η μ ϕΔ= →  Add μ  to New and ϕ  to Next. Set one clock to zero to 

associate withΔ  of ϕΔ→ . 

– |η μ ϕΔ= →  Add μ  to New and ϕ¬  to Next. Set one clock to zero to 

associate withΔ  of | ϕΔ→ . 

 The idea of splitting nodes is inspired by the CTL model checking graph 

[24,25,26] when dealing with binary formulas.  

 The copies are processed in DFS order, i.e., when expansion of the current 

node and its successors are finished, the expansion of the second copy and its 

successors is started.  

 The algorithm is listed as follows in pseudo-code. The function new_node() 

generates a new string for each successive call. The function negation(), is 

defined as follows: negation( Pφ ) Pφ= ¬ , negation( Pφ¬ ) Pφ= , and similarly for 

the Boolean constants true and false. The functions NewX(), 

NextX(),IncomingX(),OldX(),ClockX() ( X ε= represents the current node); 

X ∈  is an order for the nodes after splitting) are the functions generating the 
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sets in the splitted nodes. Note that the number of variables in the set ClockX() is 

not limited, but the clocks are created by two kinds time constraints, ψ  and Δ . 

 

1 define process_node = [Name: string, Incoming: set of strings, New: set of 

2  formulas, Old: set of formulas, Next: set of formulas, Clock: set of clocks]; 

3 function expansion (Node, Nodes_Set) 

4   if New(Node)= 0/  then 

5    if ND∃ ∈Nodes_Set with Old(ND)=Old(Node), Next(ND)=Next(Node) 

6   Clock(ND)=Clock(Node) 

7  then Incoming(ND)=Incoming(ND)∪ Incoming(Node); 

8  return(Nodes_Set) 

9  else return(expansion([Name⇐New_node(), 

10   Incoming⇐{Name(Node)}, New⇐Next(Node), 

11   Olde⇐ 0/ , Next⇐ 0/ , Clock⇐ 0/ ], 

12   {Node}∪Nodes_Set)) 

13    else 

14  let η∈New(Node); 

15  New(Node):=New(Node)\{η } 

16  case η : 

17  Pφη =  or Pφ¬  or trueη =  or falseη =  

18   if falseη =  or negation(η )∈Old(Node) 
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19    then return(Nodes_Set) 

20    else Old(Node)=Old(Node)∪ {η } 

21    return(expansion(Node,Nodes_Set)); 

22  η ϕΔ= Χ  or ˆη ϕΔ= Χ  

23     return(expansion([Name⇐Name(Node), 

24   Incoming⇐ Incoming(Node), New⇐New(Node), 

25   Old⇐Old(Node)∪ {η }, Next⇐Next(Node)∪ {ϕ }, 

26   ⇐Clock(Node)∪ { cΔ }]) 

27  η μ ϕ= ∧  

28   return(expansion([Name⇐Name(Node), 

29   Incoming⇐ Incoming(Node), 

30   New⇐New(Node)∪ { ,μ ϕ }\Old(Node), Old⇐Old(Node)∪ {η }, 

31   Next⇐Next(Node), Clock⇐Clock(Node)], Nodes_Set)) 

32  η μ ϕ= ∨  

33   Node1:=[Name⇐new_node(), Incoming⇐ Incoming(Node), 

34    New⇐New(Node)∪ ({New1( μ )}\Old(Node), 

35    Old⇐Old(Node)∪ {η }, Next⇐Next(Node) } 

36    Clock⇐Clock(Node)] 

37   Node2:=[Name⇐new_node(), Incoming⇐ Incoming(Node), 

38    New⇐New(Node)∪ ({New2(ϕ )}\Old(Node), 

39    Old⇐Old(Node)∪ {η }, Next⇐Next(Node), 
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40    Clock⇐Clock(Node)] 

41        return(expansion(Node2,expansion(Node1,Nodes_Set))); 

42  Uη μ ϕΔ=  

43   Node1:=[Name⇐new_node(), Incoming⇐ Incoming(Node), 

44    New⇐New(Node)∪ ({New1( μ )}\Old(Node), 

45    Old⇐Old(Node)∪ {η }, Next⇐Next(Node)∪ {Next1(η )} 

46    Clock⇐Clock(Node)] 

47   Node2:=[Name⇐new_node(), Incoming⇐ Incoming(Node), 

48    New⇐New(Node)∪ ({New2(ϕ )}\Old(Node), 

49    Old⇐Old(Node)∪ {η }, Next⇐Next(Node)∪ {Next1(ϕ ), 

50    Clock⇐Clock(Node)∪ { cΔ }] 

51        return(expansion(Node2,expansion(Node1,Nodes_Set))); 

52   Rη μ ϕΔ=  

53   Node1:=[Name⇐new_node(), Incoming⇐ Incoming(Node), 

54    New⇐New(Node)∪ ({New1( μ )}\Old(Node), 

55    Old⇐Old(Node)∪ {η }, Next⇐Next(Node)∪ {Next1(η )} 

56    Clock⇐Clock(Node)] 

57   Node2:=[Name⇐new_node(), Incoming⇐ Incoming(Node), 

58    New⇐New(Node)∪ ({New2(ϕ )}\Old(Node), 

59    Old⇐Old(Node)∪ {η }, Next⇐Next(Node), 

60    Clock⇐Clock(Node)∪ { cΔ }] 
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61        return(expansion(Node2,expansion(Node1,Nodes_Set))); 

62  η μ ϕΔ= →  

63    return(expansion([Name⇐Name(Node), 

64    Incoming⇐ Incoming(Node), New⇐New(Node)∪ { μ }, 

65   Old⇐Old(Node)∪ {η }, Next⇐Next(Node)∪ {ϕ } 

66    Clock⇐Clock(Node)∪ { cΔ }] 

67   |η μ ϕΔ= →  

68    return(expansion([Name⇐Name(Node), 

69    Incoming⇐ Incoming(Node), New⇐New(Node)∪ { μ }, 

70   Old⇐Old(Node)∪ {η }, Next⇐Next(Node)∪ { ϕ¬ } 

71    Clock⇐Clock(Node)∪ { cΔ }]) 

72 end expansion; 

73 main function create_node (ϕ ) 

74   return(expansion([Name⇐new_node(),Incoming⇐{init}, 

75    New⇐{ϕ }, Old⇐ 0/ , Next⇐ 0/ , Clock⇐ 0/ ], 0/ )) 

76 End create_node; 

 

 

 

Figure 2 offers a partial example of the algorithm. It is immediate from the 

algorithm that builds the transition relation that the timed process allows finite 
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timed traces compatible with the initial TLTL formula. Thus, we have the 

following theorem. The timed process FPφ  is the one constructed according to 

the algorithm presented above. 

 

 
Fig. 2. An example for the algorithm 
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Theorem 3 Let φ  be a TLTL formula. Then there exists a timed process FPφ  

such that |w φ=  if and only if ( )F
fw L Pφ∈ , for any *( )w A L∈ ×   

 

In the remainder of this chapter, we show how to generate a timed process Pφ  

satisfying |w φ=  if and only if ( ) ( )mw L P L Pφ ω φ∈ ∪ ∪  ( )DL Pφ , for any 

(A L) (A L)w ω∗∈ × ∪ × We show this by separating the domains to which w 

belongs.  

 

5.2.2 Allowing Finite Maximal Timed Traces 

In the first step we show how to generate a timed process MPφ satisfying 

|w φ=  if and only if ( )mw L Pφ∈ , for any (A L)w ∗∈ × . The basic approach 

relies on altering the timed process FPφ  to handle maximal timed traces. More 

precisely, for every state s in FPφ , we check if all formulas contained in the New 

set are satisfied by the trace ε. Checking for acceptance of the trace ε can be done 

syntactically in the algorithm along the structure of the formulas. Then, for every 

state s in FPφ  such that each TLTL formula φ  labeling the New set in s is 

satisfied by ε, we add a transition s s
τ

ε→ , where sε  is a new state with the New 

set labeled with { ˆ falseΧ }, and for which the set New and Next only contains ε. 

We use such a state to distinguish from other states also having no outgoing 

transitions. Note that sε  is a deadlock state, but it differs from the some other 
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deadlock states to allow the identification of maximal time traces.7 

 

Theorem 4 Let φ  be a TLTL formula. Then there exists a timed process MPφ  

such that |w φ=  if and only if ( )M
mw L Pφ∈ , for any *( )w A L∈ ×  

Proof 

Let MPφ  be constructed using the algorithm above. 

⇒ : According to the algorithm outlined above, if |w φ= , (A L)w ∗∈ × and φ  is 

the formula MPφ  is constructed from, then 0

w
s s s

τ

ε⇒ → holds. That is 0

w
s sε⇒ → . 

Thus, w is a maximal trace in MPφ . Recall Definition 4 in Chapter 3,  and we 

have ( )M
mw L Pφ∈ . 

⇐ : If ( )M
mw L Pφ∈  for any (A L)w ∗∈ × , there exits 0

w
s s⇒ →  in 

MPφ (Definition 4). According to the algorithm of MPφ , there exits 0

w
s s s

τ

ε⇒ → . 

Thus, |w φ= . (φ  is the formula MPφ  is constructed from)  

 

Theorem 4 is a consequence of the fact that our construction ensures that 

( )M
mw L Pφ∈  if and only if M

w

Ps sφ ε⇒ and that M

w

Ps sφ ε⇒  holds if and only if 

|w φ= . 

 

                                                        
7 Other deadlock states such as the divergent state, the set New and Next are empty and Incoming set 
contains the current node.  
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5.2.3 Allowing ω-final Timed Traces 

The states in the timed process FPφ we constructed are labeled by sets of 

formulas. The construction of this timed process, or more precisely, the algorithm 

of the transition relation already ensures that infinite timed traces emanating from 

a state are guaranteed to satisfy each formula labeling this state. Recall the 

definition of ω-final states from Chapter 3 (Definition 5). To alter the timed 

process FP
φ

 to handle ω-final timed traces, for every state s in Pω
φ  we check 

whether all formulas contained in the set New of s are satisfied by the ω-final 

condition. If so, we reduce all the same recurrences to one ω-final state. Note that 

the ω-final condition is similar but still differs from the traditional Muller 

acceptance [12] as long as we try to build timed process from TLTL formula. For 

example, in a time-action sequence, the action sequence may look like this: 

abacbadbcababdcdcadb… 8 . This sequence satisfies [1,2](( )a b→ ∧  

[1,2] [1,2] [1,2]( )) (( ) ( ))b a c d d c→ ∧ → ∧ →  provided that the time sequences of the 

actions satisfy the time constraints. The New set in ω-final state then contains  

[1,2] [1,2] [1,2] [1,2]{( ), ( ), ( ), ( )}a b b a c d d c→ → → → .  

We have the following results. 

 

Theorem 5 Let φ  be a TLTL formula. Then there exists a timed process Pω
φ  

                                                        
8 The whole action sequence is not a repeating run as accepted by Muller acceptance [9], We prefer to call 
ab and cd recurrences rather than runs. As a matter fact b occurs after a, and then another a occurs after b…; 
c,d do the same, but there is no order between ‘a,b’ and ‘c,d’. 
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such that |w φ=  if and only if ( )w L Pω
ω φ∈ , for any ( )w A L ω∈ ×  

 

Theorem 6 Let p be a convergent timed process, and let φ  be a TLTL formula. 

Then |p φ=  if and only if ( ) ( )M
m mL p L Pφ⊆  and ( ) ( )L p L Pω

ω ω φ⊆  

5.2.4 Allowing Divergent Timed Traces 

As a third step, we build a timed process DPφ  that additionally takes 

divergent timed traces of timed processes into account. We modify Pφ  to a 

timed process DPφ  by adding divergent states. According to the definition of 

divergence, the divergent states of DPφ  should have the following property; If 

(A L)w ∗∈ ×  such that ' |w w φ⋅ =  for any ' (A L) (A L)w ω∗∈ × ∪ × , then the 

states reachable in DPφ  via w should be divergent. Essentially, divergence is 

intended to capture tautologies. The construction of DPφ relies on the construction 

of a timed process for recognizing words in (A L)∗× , which is done by Pφ . 

Thus, for each state s in Pφ , we check whether the formula ( )F l s Fφ φ∈ ∈∨ ∧  is a 

tautology, where ( )l s  is the set of sets of formulas labeling the set New of s in 

the timed process. We check every formula labeling the set New of s until we find 

a tautology formula; this makes s a divergent state and also makes the formula 

( )F l s Fφ φ∈ ∈∨ ∧  a tautology.   If so, we make this state s divergent by adding a 

τ-loop edge to it and eliminating any other edge to any other state. Note that the 

tautology check can be performed algorithmically [27] 
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Lemma 2 Let s be the start state of the timed process DPφ , and let (A L)w ∗∈ ×  

such that DP
s w

φ
⇑ . Then ' |w w φ⋅ = , for any ' (A L) (A L)w ω∗∈ × ∪ × . 

 

Proof : 

Since DP
s w

φ
⇑ , (A L)w ∗∈ × , and ' (A L) (A L)w ω∗∈ × ∪ × , it holds that 

'w w

Ds s→ → , where Ds  is a divergent state. According to the algorithm, we already 

capture the tautologies at Ds , since w’ is a divergent trace. Thus, ' |w w φ⋅ = . 

(Note that, we don’t care how w’ looks like, but since it is a timed trace, 

' (A L) (A L)w ω∗∈ × ∪ ×  always holds.)  

 

Since timed process MPφ and Pω
φ are based on Pφ , and the algorithms do not 

conflict with the one in  DPφ , We can extend Lemma 2 to an infinite prefix. 

 

Lemma 3 Let s be the start state of timed process DPφ , and let (A L)w ∗∈ ×  

(A L)ω∪ ×  such that DP
s w

φ
⇑ . Then ' |w w φ⋅ = , for any ' (A L) (A L)w ω∗∈ × ∪ ×  

 

Theorem 7 Let p be a timed process, and let φ  be a TLTL formula such 

that |p φ= . Then ( ) implies ( )D
D Dw L p w L Pφ∈ ∈ . 

 

The proof of this theorem follows from the fact that if ( ) Dw L p∈ , then there 
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exits a finite prefix w’ of w such that ' " ( )Dw w L p⋅ ∈ .This implies that w’ must 

lead to a divergent state in DPφ . 

 

Proof of Theorem 7 

|p φ=  implies that |w φ=  for every trace w of p. For every divergent timed 

trace ( )D Dw L p∈  , it also holds that |Dw φ= . Then, we can construct a process 

DPφ  from φ  to allow all the divergent timed trace Dw  such that |Dw φ= . The 

rest of the proof is then similar with the proof of Theorem 4. Thus, 

( )D
D Dw L Pφ∈ .  

5.2.5 Allowing all Timed Traces 

Now with the timed processes MPφ , Pω
φ , DPφ , it is easy to construct a 

TPφ based on Pφ  combining all the algorithms in MPφ , Pω
φ , DPφ . This 

construction leads to the following result.  

 

Theorem 8 Let (A L) (A L)w ω∗∈ × ∪ × . Then |w φ=  if and only if w∈   

( ) ( ) ( )T T T
m DL P L P L Pφ ω φ φ∪ ∪  

 

The validity of this theorem is taken care of by Theorem 4, Theorem 5 and 

Lemma 3 when considering that TPφ possesses by construction the same maximal 

timed traces and the same ω-final timed traces and the same divergent timed traces.  
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Theorem 7 and Theorem 8 are the keys to proving the following theorem, 

which extents Theorem 6 to arbitrary timed processes.  

 

 

Theorem 9 Let q be a timed process and φ  be a TLTL formula. Then there 

exists a timed process TPφ  such that |q φ=   

if and only if  ( )Ⅰ ( ) ( )T
D DL q L Pφ⊆  

( ) Ⅱ ( ) \ ( ) ( )T
F D FL q L q L Pφ⊆   

( ) Ⅲ ( ) \ ( ) ( )T
m D mL q L q L Pφ⊆   

( ) Ⅳ ( ) \ ( ) ( )T
DL q L q L Pω ω φ⊆  

 

Proof 

For the ⇒  direction, let |q φ= , i.e. |w φ=  for all ( ) ( ) ( )M Dw L q L q L qω∈ ∪ ∪ . 

By Theorem 8 we also have ( ) ( ) ( )T T T
M Dw L P L P L Pφ ω φ φ∈ ∪ ∪ .  We distinguish 

the following cases. 

Case 1: ( )Dw L q∈  This case is established by Theorem 7. 

Case 2: ( ) \ ( )F Dw L q L q∈  Since q is a timed process, ( )Fw L q∈ is always a 

finite prefix of a maximal trace or an infinite trace. Thus, we may conclude the 

existence of some ' ( ) ( )w A L A L ω∗∈ × ∪ ×  such that ' ( ) ( )T T
Mw w L P L Pφ ω φ⋅ ∈ ∪  

( )T
DL Pφ∪ . By construction, every trace which 'w w⋅  that reaches a divergent or 

ω − final state s in TPφ  still satisfies ( ') (A L)ML s ∗⊆ × (s’ is the state before s), 
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w is therefore a finite prefix for ( ) ( ) ( )T T T
M DL P L P L Pφ ω φ φ∪ ∪ . Thus, ( )T

Fw L Pφ∈ , 

and ( ) \ ( ) ( )T
F D FL q L q L Pφ⊆ , as desired. 

Case 3: ( ) \ ( )M Dw L q L q∈ , (A L)w ∗∈ ×  and by Theorem 8 we have 

( )T
Mw L Pφ∈ , and ( ) \ ( ) ( )T

M D ML q L q L Pφ⊆ , as desired. 

Case 4: ( ) \ ( )Dw L q L qω∈ , (A L)w ω∈ × and by Theorem 8, we have 

( )Tw L Pω φ∈ , and ( ) \ ( ) ( )T
DL q L q L Pω ω φ⊆ , as desired. 

For the ⇐ direction, assume that |q φ≠ , i.e., ( ) ( ) ( )M Dw L q L q L qω∃ ∈ ∪ ∪ : 

|w φ≠ . By Theorem 8 we also know that ( ), ( ),T T
Mw L P w L Pφ ω φ∉ ∉ and 

( )T
Dw L Pφ∉ . We distinguish the following cases. 

Case 1: ( )Dw L q∈  Then ( )T
Dw L Pφ∈  which contradicts ( )T

Dw L Pφ∉ . 

Case 2: ( ) \ ( )M Dw L q L q∈  Then ( )T
Mw L Pφ∈  which contradicts Mw L∉  

( )TPφ . 

Case 3: ( ) \ ( )Dw L q L qω∈  Then ( )Tw L Pω φ∈  which contradicts ( )Tw L Pω φ∉ . 

Thus, direction “⇐” holds, as desired.  

5.3 Relating TLTL Satisfaction to the Timed 

Must-preorder 

As the last step in relating the TLTL satisfaction relation |= to the timed 

must-preorder Must
T ,we transform TPφ into a purely nondeterministic timed 

process Tφ while preserving all languages as outlined in Chapter 4. Thus, 

Theorem 2 is valid for Tφ as well as TPφ . By combining Theorems 2 and 8 we 
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obtain the desired main result: 

 

Corollary 1: Timed Must-Testing and TLTL Model Checking. Let q be a 

timed process and φ  be a TLTL formula. Then there exists a timed process Tφ  

such that |q φ=  if and only if must
TT qφ . 

 

As a consequence of this corollary, our notion of timed must-testing not only 

extends DeNicola and Hennessy’s must-preorder to timed processes, but is also 

compatible with the satisfaction relation of linear-time temporal logic with time 

constraints.
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6 Parallel composition 

A system specification or a protocol can be defined algebraically or logically, 

and usually consists of different parts of the specification mixing algebraical and 

logical design. It is important to consider a method to assemble all the parts into a 

general specification [5]. Indeed, all our previous effort remains of limited use 

without such a method. In this chapter, we introduce an operator on timed 

processes for merging the different parts of the real-time system or protocol: 

parallel composition.  

Our parallel composition operator 
A' L'
||
×

, where A ' L ' A L× ⊆ × , is inspired by 

the interface parallel operator of CSP [28]. However, our actions have time 

components, that is, the events appearing in the common interface A ' L '×  

probably have different time delays in the processes being composed. To solve 

this problem, we simply regard the longer delays as the delays of the common 

actions while we merge two time processes. In other words, the common action 

occurring in one process should wait for the same one in the other process. Now 

the question that naturally arises concerns the interpretation of timed traces. We 

adopt the following point of view: Intuitively, the “fair merge” of the finite traces 

(or ω-final traces) of timed processes p and q should form the finite trace (or 

ω-final trace) of the timed process 
A' L'
||p q
×

. Moreover, an ω-final trace of one 
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timed process, when merged with a finite trace of the other timed process, should 

result in an ω-final trace of the timed process 
A' L'
||p q
×

. 

Note that the failure of a merge (i.e., the deadlock of the parallel composition 

operator), does not include only the usual deadlock of the interface parallel, but 

also the deadlock caused by the (lengthened) delays failing to satisfy their own 

timed constraints (which might have been satisfied before merging).  

Formally, we define the parallel composition of two timed processes 

0((A L ) { }, , , , )p p p pC P pτ× ∪ →  and 0((A L ) { }, , , , )q q q qC Q qτ× ∪ →  to be the 

timed process 
' ' ' ' ' '
|| || || 0 0

' ' ' '
((A L ) { }, , || , , || )

A L A L A L
p q p q p q p q

A L A L
C C P Q p qτ

× × ×× ×
× ∪ ∪ → , 

where 
' ' ' ' ' '
|| { ' || ' | ' , ' } { ' || ' | ' , ' }

A L A L A L
P Q p q p P q Q q p p P q Q

× × ×
= ∈ ∈ ∪ ∈ ∈ . The 

transition relation 
' '
||

A L
p q

×

→  is the least relation satisfying the following rules. 

(1)
( , ) ( , )

' ''  and ' ''
p q

p q

a a

p q
c c

p p q q
δ δ

Φ Φ

→ →  implies ( , ( , ))

||A ' L ' A ' L '
' || ' '' || ''p q

p q

a Max
c c p q

p q p qδ δ
Φ ∩Φ

× ×
⎯⎯⎯⎯⎯→  if 

( ') (A L)L p ω∈ ×  

(2)
( , ) ( , )

' ''  and ' ''
p q

p q

a a

p q
c c

p p q q
δ δ

Φ Φ

→ →  implies ( , ( , ))

||A ' L ' A ' L '
' || ' '' || ''p q

p q

a Max
c c p q

p q q pδ δ
Φ ∩Φ

× ×
⎯⎯⎯⎯⎯→  if 

( ') (A L)L q ω∉ ×  

These rules are in accordance with our above-mentioned intuition of system 

behavior. Rule (2) , the “switching” of the states of p and q allows us to fairly 

merge ω-final traces with ω-final traces and also ω-final traces with finite timed 

traces. One can now obtain the timed may- and must- preorders with respect to 

the new operators. Note in passing that our fair merge is based on the operation of 
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concatenation of well-behaved ω-language [13]. Indeed, all our timed trace 

languages are well-behaved, as we exclude Zeno behavior. 

 

Theorem 10  Let 1 2 1 2, ,  and p p q q  be timed processes and A' L' A L× ⊆ × . 

Then  

(i)  1 2 1 2 and may may
T Tp p q q   implies 1 1 2 2

A' L ' A ' L '
|| ||may

Tp q p q
× ×

 

(ii) 1 2 1 2 and must must
T Tp p q q   implies 1 1 2 2

A ' L' A ' L '
|| ||must

Tp q p q
× ×

 

 

The proof of this theorem is an immediate consequence of the 

characterizations of timed may- and must- preorders and our extension results, as 

presented in Chapter 4.  

 

Proof of Theorem 10: (i) According to Definitions 7, 9, and 10, set t’and t” for 

1 2,p p and 1 2,q q , respectively. By 1 2 1 2 and may may
T Tp p q q ,  1 T may  'p t  and 

2  may "p t  have the same computation c’, also 1 Tmay  "q t  and 2  may "q t  

have the same computation c”. By the definition of parallel composition operator, 

they all execute the same common action(s) with same delays (the longer one) 

included in c’ and c”. According to the definition of partial computation, the 

computation of the common action(s) is same. Thus, 1 1
A' L'
||p q
×

 and 2 2
A' L'
||p q
×

 

have the same computation under same test. Therefore, 1 1 2 2
A' L ' A ' L'
|| ||may

Tp q p q
× ×

 

as desired. Item (ii) is proved similarly with Tmust .  
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Regarding finite timed traces, one can then adapt the corresponding proofs of 

DeNicola and Hennessy [10]. The parallel composition operator is a consequence 

of the formalization of our intuition of fair merging.
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7 Motivating Example 

As motivation for the work in this thesis, consider the design of a very simple 

boarding system as shown in Fig.7.1. 

 

Fig. 7.1 A simple boarding system 

The architecture of the system has already been fixed by some system 

designers and consists of an input interface (Client Interface), a medium 

(Information Processing), and an output interface (Printer). These are shown in 

the figure, where the abbreviations represent the following actions: 

PB = push button 

TCN = type client number 

TI = transfer input data 

DM = display message 

TO = transfer output data 

PBC = print boarding card 

PLT = print luggage tag 
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The components communicate with the system’s environment and among 

themselves via actions. The actions connecting components are regarded as 

common actions, such as TI and DM. Each component in turn has its own 

specification. In this particular case, the Information Processing and the Printer 

are given as timed process, reflecting the fact that their design is relatively 

advanced. The Client Interface is however specified assertionally by a TLTL 

formula, that is, on a more abstract level.  

The formula states that whenever a client pushes the button and types the 

client number in 120 time units during the sequence of the Client Interface, the 

remainder of the execution must begin with a sequence of transfer input data 

actions within 30 time units followed by a display message action in no less than 

240 time units, or with a transfer output data action within 30 time units.  

Finally, the overall specification of the system’s required behavior may be 

given by the following TLTL formula.   

 

[0,2] [0,120] [0,120] [0,60]( ( ,[0,120]) ( (( ,[0, 300]) (Spec G PB X TCN F PBC X PBC= → → →

,[0,360]))))  

 

This formula encodes a certain reliability guarantee of the system regarding 

the eventual delivery of the client information. More precisely, it dictates that in 

any sequence of actions which the system performs, whenever a client pushes the 



CHAPTER 7: MOTIVATING EXAMPLE 

 

60

button and types in the numbers, two print actions eventually follow within their 

proper time constraints. Now the obvious question that a designer would be 

interested in is whether the specification of the Client Interface is “strong 

enough” to ensure that the system satisfies Spec. To demonstrate that the TLTL 

specification of the Client Interface is strong enough to ensure that the system is 

correct, in the sense of satisfying the TLTL formula Spec given above, we may 

use the results of this paper as follows. 

•  Construct the purely nondeterministic timed process SpecT  for TLTL formula 

Spec, as illustrated in Chapter 5. 

•  Construct the purely nondeterministic timed process clientT  for TLTL formula 

clientφ  describing the behavior of the client interface as showed in Fig 7.1. 

•  Assemble the overall system: 

{ , } { }
|| Information Processing || Printerclient

TI DM TO
System T=  

•  Determine whether Must
Spec TT System  

 

In this case, the answer is positive. Theorem 10 guarantees that replacing 

clientT  with any timed process p such that must
cient TT p  will ensure that the 

overall system meets its specification. If p is a timed process then 

must
cient TT p holds exactly when | clientp φ= . One example of such a p is shown in 

Fig 7.2. 
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Fig 7.2 Refinement of Client Interface 

 

The motivating example we proposed above is a specification of a boarding 

system. Since it is a system specification, we do not have to deal with time delays 

in this particular case. As seen in the example, we have the choice of specifying 

parts of the system logically (such as the Client Interface), and other parts 

algebraically (such as Information Processing and Printer). As we mentioned at 

the beginning of the chapter, the architecture of the system has already been fixed 

by some system designers and some parts are readily defined algebraically using 

timed transition systems such as timed processes, but others are easier to express 

logically using a logical language like TLTL. Our theory is not only applied on 

unifying different parts of one specification, but is also able to make the 

implementation coincide with the specification or the test case generated from it 

while the two might be defined logically and algebraically, respectively.
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8 Conclusions 

We proposed in this paper a model of timed processes based on timed 

transition systems [29]. We addressed the problem of infinite timed processes by 

developing a theory of timed ω-final states. This theory is new but inspired by the 

acceptance family of Muller automata [12]. We also extended the testing theory 

of De Nicola and Hennessy [10] to timed testing. We illustrated that timed 

processes provide a uniform basis for analyzing heterogeneous reactive-system 

specifications given as a mixture of timed labelled transition systems [29] and 

formulas in linear-time temporal logics [11,15,16,20] with timed constraints 

(TLTL—LTL with timed constraints). We then studied the derived timed may 

and must preorders and developed alternative characterizations. These 

characterizations are very similar to the characterization of De Nicola and 

Hennessy’s testing preorders, which shows that our preorders are fully back 

compatible: They extend the existing preorders as mentioned, but they do not 

take anything away.  

We also showed that the timed must-preorder degrades to a variant of reverse 

timed trace inclusion when its first argument is purely nondeterministic. Using 

this result, we established the standard algorithms for constructing timed 

processes from TLTL formulas which can be adapted to our setting in such a way 
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that TLTL model checking reduces to checking our form of timed trace inclusion. 

We provided a uniform basis for analyzing heterogeneous real-time system 

specifications with a mixture of timed transition systems and linear-time temporal 

logic (LTL) formulas with time constraints. To illustrate the utility of our novel 

framework, we presented several operators for constructing specifications, argued 

that the timed must-preorder is substitutive for the operators, and gave an 

example showing how they may be used to help building system design. 

The significance of our results stems from two facts. The first one is that 

while algorithms and techniques for real-time testing have been studied actively 

[30,31], the domain still lacks solid techniques and theories. Our paper attempts 

to present a general theoretical framework for real-time testing, in order to 

facilitate the subsequent evolution of the area. To serve such a purpose our 

framework is as close as possible to the original framework of (untimed) testing, 

as shown in our characterization theorems. In addition, our characterization is 

surprisingly concise in terms of the test cases needed.  

We also note that the algebraic and logic specifications attempt to achieve 

the same thing (conformance testing) in two different ways. Each of them is more 

convenient for certain systems, as they both have advantages and disadvantages: 

logic approaches allow loose specifications (and therefore greater latitude in their 

implementations) but lack compositionality, while algebraic specifications are 

compositional by definition but are often seen as too detailed (and therefore too 
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constraining). This paper offers the first step on bringing logic and algebraic 

timed specifications together, thus obtaining heterogeneous specifications for 

real-time systems, that combine the advantages of the two paradigms. 
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9 Open problems 

This thesis is just a start for developing techniques combining operational 

and assertional styles of timed specifications. The studying of techniques mixing 

operators from timed process algebras and TLTL is a widely open area.  

This thesis establishes standard algorithms for constructing timed processes 

or timed transition systems from TLTL formulas. How to go the other way 

around is still open for research.  

The timed preorder testing developed from DeNicola and Hennessy’s 

preorder testing is not the only testing relation. Other testing relations with the 

addition of time constraints will also be exciting to investigate.  

We set up a testing framework and characterizations which can be regarded 

as general test cases. However, we did not care about the test generation. For sure, 

this will also be an interesting issue for discussion. 
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