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Abstract

This paper explores the connections between two formal verification tech-
niques: must testing and Linear Temporal Logic (LTL). Both are vital for
validating system behaviors and ensuring proper operation. Must testing
captures dynamic behaviors and ensures system requirements are met under
all execution scenarios, while LTL specifies and verifies temporal properties
within systems. Concretely, we explore the equivalence between must test-
ing and LTL. We develop a practical (algorithmic) framework to translate
must-test specifications into equivalent LTL formulas. While we thus go
only half-way toward establishing an equivalence, we believe that the con-
version the other way around is possible as well. On a practical note, we
also note that model checking (the algorithmic LTL verification framework)
is a very mature technology widely uses in practice, while must testing is
deployed to a much lesser extent. We therefore argue that our conversion is
much more useful for practical applications. This being said, a conversion
of LTL formulae into equivalent must tests is a necessary future expansion
of this study to establish formally the equivalence of the two frameworks.
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Chapter 1

Introduction

Ensuring the reliability of complex systems is crucial, especially as they be-
come increasingly concurrent and distributed. Formal verification provides
the mathematical rigor needed to guarantee system correctness, with must
testing and Linear Temporal Logic (LTL) being two powerful tools in this
domain. Must testing, rooted in process algebra, evaluates system behavior
across all potential environments, while LTL is extensively used to specify
and verify temporal properties in reactive systems.

Despite their strengths, the connection between must testing and LTL has
not been fully explored. Uncovering their formal equivalence could lead to
more integrated and robust verification frameworks. This proposal aims to
address this gap by developing a framework that establishes the equivalence
between must-testing and LTL, emphasizing practical applications in system
verification.

Building on recent progress in formal verification, especially in the con-
text of concurrent systems, this research seeks to contribute a new approach
that unifies testing with formal verification, ultimately improving the relia-
bility of complex systems.

Systems need to be reliable because failures can cause serious financial
damage or even put people at risk. Formal verification helps catch prob-
lems before they turn into major issues, making systems more dependable.
One challenge is that testing and formal verification often feel like separate
worlds, even though they both aim to check if a system behaves correctly.
My research focuses on connecting these two by finding a way to convert
test structures into equivalent LTL formulas while preserving must-testing
semantics. This makes it easier to use formal methods in real-world verifica-
tion. Formal verification helps identify potential issues before they become
major problems [4].
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CHAPTER 1. INTRODUCTION 2

Formal verification uses mathematical models and logic to validate sys-
tem behavior and can be approached from either an algebraic or a logi-
cal perspective. Algebraic approaches include model-based testing [2, 16],
while the most common logical approach is model checking, which operates
on a specification formulated in some form of temporal logic [5]. Algebraic
models capture dynamic behavior, while model checking verifies temporal
properties.

Ultimately however both these approaches accomplish the same thing
namely, the specification and verification of computing systems. As a conse-
quence, an interesting research question is whether algorithmic equivalence
between algebraic and logical specifications exist. Previous research estab-
lished an equivalence between failure trace testing and CTL [4, 18]. We now
consider two different frameworks and investigate the equivalence between
must testing and LTL. We aim to develop methods that can be used to ef-
fectively convert must-test specifications into equivalent LTL formulas. Our
big research question is how to develop a practical framework that formally
establishes the equivalence between must testing and Linear Temporal Logic
(LTL).

In this research, we develop a method to systematically translate test
structures into LTL formulas, ensuring that the conversion respects must-
testing semantics. We prove key equivalence results and demonstrated how
this approach strengthens formal verification. This work bridges the gap
between testing and verification, making it easier to reason about system
correctness using LTL. Our approach defines an algorithmic conversion pro-
cess from must testing to LTL formulas. As a consequence it becomes now
possible to formulate must-test scenarios, converting them into LTL, and
validate the results against real-world system failures using model check-
ing. Further research is needed to establish the same kind of algorithmic
conversion the other way around (from LTL formulae to tests under the
must-testing model).

System failures can severely impact sectors like healthcare, finance, and
transportation. Formal verification helps analyze and mitigate these risks.
Must testing and LTL model checking both aim to ensure system reliability.
They both have advantages and disadvantages. Finding common ground
between these techniques offers new research and practical opportunities
[4, 14].



Chapter 2

Preliminaries

In this chapter, we provide a comprehensive overview of fundamental con-
cepts necessary for understanding our research. We begin with an intro-
duction to model checking and model-based testing, followed by a formal
discussion on temporal logic, labeled transition systems, and satisfaction op-
erators. Furthermore, we elaborate on must testing, its formal foundations,
and its application in the verification of system properties.

2.1 Temporal Logic
Temporal logic is a formal language used to reason about time and temporal
relationships within systems. Linear Temporal Logic (LTL) extends proposi-
tional logic with temporal operators to specify properties of systems over
time [12]. The main temporal operators in LTL are:

• 𝑋𝜑: Next 𝜑

• 𝐹𝜑: Eventually 𝜑

• 𝐺𝜑: Globally 𝜑

• 𝜑𝑈𝜓: 𝜑 Until 𝜓

LTL is typically interpreted over Kripke structures which provide the se-
mantic basis for model checking [5, 8]. In many formal verification settings,
particularly in model checking, we use Kripke structures to represent system
behavior. A Kripke structure is defined as 𝑀 = (𝑆, 𝑆0, 𝑅, 𝐿)where:

• 𝑆 is a finite set of states,
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CHAPTER 2. PRELIMINARIES 4

• 𝑆0 ⊆ 𝑆 is the set of initial states,

• 𝑅 ⊆ 𝑆 × 𝑆 is the transition relation (note in particular that transitions
are not labeled in any way).

• 𝐿 : 𝑆 → 2𝐴𝑃 is a labeling function that assigns to each state the set of
atomic propositionsfrom the set 𝐴𝑃 that are true in that state.

Kripke structures provide the semantic foundation for temporal logics like
LTL, as they let us formally specify which properties should hold at each
state along an execution path.

We will also explore LTL semantics over Labeled Transition Systems (LTS).
An LTS is a formalism used in model-based testing to represent state transi-
tions labeled with actions. An LTS is defined as 𝐿𝑇𝑆 = (𝑆, 𝐿, 𝑇)where:

• 𝑆 is a set of states representing the different configurations that the
system can be in,

• 𝐴 is a set of labels (or actions) that drive the transitions between states.

• 𝑇 ⊆ 𝑆 × 𝐴 × 𝑆 is the transition relation, meaning that if (𝑠, 𝑎, 𝑠′) ∈ 𝑇,
then the system can move from state 𝑠 to state 𝑠′ by executing action 𝑎.

Note in passing that a Kripke structure is similar to an LTS but includes
additional information about which atomic propositions hold in each state
[5].

In what follows we will use the natural concept of reachability over pairs
of Kripke structure or LTS states. For the purpose we define the relation{
such that 𝑠 { 𝑠′means that state 𝑠′ can be reached from state 𝑠 by following
a series of transitions [6].

2.1.1 Satisfaction over Kripke Structures
The satisfaction operator is crucial for verifying the properties of systems
modeled using formal methods. It allows formal specifications (expressed
in temporal logic or other formalisms) to be checked against system models
[5, 8]. Evaluating whether specific states satisfy desired properties enables
the detection of errors or the verification of correctness in system behaviors.

In a Kripke structure, we use the satisfaction operator to check if certain
properties hold true at a specific state that 𝑀 = (𝑆, 𝑆0, 𝑅, 𝐿):
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• Atomic Proposition: If the basic fact 𝑝 is true in state 𝑠, then 𝑠 satisfies
𝑝.

𝑀, 𝑠 |= 𝑝 if 𝑝 ∈ 𝐿(𝑠)

• Negation: If 𝜑 is not true at state 𝑠, then 𝑠 satisfies ¬𝜑.

𝑀, 𝑠 |= ¬𝜑 if 𝑀, 𝑠 ̸|= 𝜑

• Conjunction: If both 𝜑 and 𝜓 are true at state 𝑠, then 𝑠 satisfies 𝜑 ∧𝜓.

𝑀, 𝑠 |= 𝜑 ∧ 𝜓 if 𝑀, 𝑠 |= 𝜑 and 𝑀, 𝑠 |= 𝜓

• Next: If the next state 𝑠′ reachable from 𝑠 satisfies 𝜑, then 𝑠 satisfies
𝑋𝜑.

𝑀, 𝑠 |= 𝑋𝜑 if there exists 𝑠′ such that (𝑠, 𝑠′) ∈ 𝑅 and 𝑀, 𝑠′ |= 𝜑

• Eventually: If you can eventually reach a state 𝑠′ where 𝜑 is true,
starting from 𝑠, then 𝑠 satisfies 𝐹𝜑.

𝑀, 𝑠 |= 𝐹𝜑 if there exists 𝑠′ such that 𝑠 { 𝑠′ and 𝑀, 𝑠′ |= 𝜑

• Globally: If 𝜑 is true in 𝑠 and all states reachable from 𝑠, then 𝑠 satisfies
𝐺𝜑.

𝑀, 𝑠 |= 𝐺𝜑 if for all 𝑠′ such that 𝑠 { 𝑠′, 𝑀, 𝑠′ |= 𝜑

• Until: If there is a state 𝑠′ reachable from 𝑠 where 𝜓 is true, and 𝜑 is
true in all states from 𝑠 up to 𝑠′, then 𝑠 satisfies 𝜑𝑈𝜓.

𝑀, 𝑠 |= 𝜑𝑈𝜓 if there exists 𝑠′ such that 𝑠 { 𝑠′ and 𝑀, 𝑠′ |= 𝜓,

and for all 𝑠′′ such that 𝑠 { 𝑠′′ and 𝑠′′ ≠ 𝑠′, 𝑀, 𝑠′′ |= 𝜑

2.1.2 Satisfaction over Labeled Transition Systems
In a Labeled Transition System (LTS), we also use the satisfaction operator [6]
to check properties, but we focus on actions that cause transitions between
states that 𝐿𝑇𝑆 = (𝑆, 𝐿, 𝑇):

• Atomic Proposition: If the basic fact 𝑝 is true in state 𝑠, then 𝑠 satisfies
𝑝.

𝐿𝑇𝑆, 𝑠 |= 𝑝 if 𝑝 ∈ 𝐿(𝑠)
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• Negation: If 𝜑 is not true at state 𝑠, then 𝑠 satisfies ¬𝜑.

𝐿𝑇𝑆, 𝑠 |= ¬𝜑 if 𝐿𝑇𝑆, 𝑠 ̸|= 𝜑

• Conjunction: If both 𝜑 and 𝜓 are true at state 𝑠, then 𝑠 satisfies 𝜑 ∧𝜓.

𝐿𝑇𝑆, 𝑠 |= 𝜑 ∧ 𝜓 if 𝐿𝑇𝑆, 𝑠 |= 𝜑 and 𝐿𝑇𝑆, 𝑠 |= 𝜓

• Next: If the next state 𝑠′ reachable from 𝑠 by an action 𝑎 satisfies 𝜑,
then 𝑠 satisfies 𝑋𝜑.

𝐿𝑇𝑆, 𝑠 |= 𝑋𝜑 if there exists a transition
(𝑠, 𝑎, 𝑠′) ∈ 𝑇 such that 𝐿𝑇𝑆, 𝑠′ |= 𝜑

• Eventually: If from state 𝑠, you can eventually reach a state 𝑠′ where
𝜑 is true, then 𝑠 satisfies 𝐹𝜑.

𝐿𝑇𝑆, 𝑠 |= 𝐹𝜑 if there exists a state 𝑠′ such that 𝑠 { 𝑠′ and 𝐿𝑇𝑆, 𝑠′ |= 𝜑

• Globally: If 𝜑 is true in 𝑠 and all states reachable from 𝑠, then 𝑠 satisfies
𝐺𝜑.

𝐿𝑇𝑆, 𝑠 |= 𝐺𝜑 if for all states 𝑠′ such that 𝑠 { 𝑠′, 𝐿𝑇𝑆, 𝑠′ |= 𝜑

• Until: If there is a state 𝑠′ reachable from 𝑠 where 𝜓 is true, and 𝜑 is
true in all states from 𝑠 up to 𝑠′, then 𝑠 satisfies 𝜑𝑈𝜓.

𝐿𝑇𝑆, 𝑠 |= 𝜑𝑈𝜓 if there exists a state 𝑠′ such that
𝑠 { 𝑠′ and 𝐿𝑇𝑆, 𝑠′ |= 𝜓, and for all states 𝑠′′

such that 𝑠 { 𝑠′′ and 𝑠′′ ≠ 𝑠′, 𝐿𝑇𝑆, 𝑠′′ |= 𝜑

2.2 Model-Based Testing
Model-based testing uses formal models of system behavior to generate test
cases. These models abstract the system’s behavior, allowing systematic and
efficient test case creation. Techniques used in model-based testing include
finite state machines and labeled transition systems. These techniques help
represent system behavior formally, leading to comprehensive test coverage
and efficient bug detection [2].

A finite state machine is a particular case of LTS. A FSM is defined as a
tuple 𝑀 = (𝑆, 𝑆0, 𝐼 , 𝑇, 𝐹)where:
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• 𝑆 is a finite set of states.

• 𝑆0 ⊆ 𝑆 is the set of initial states.

• 𝐼 is the set of inputs.

• 𝑇 : 𝑆 × 𝐼 → 𝑆 is the transition function.

• 𝐹 is the set of final states.

2.2.1 Must Testing
Must testing is a formal verification technique used to ensure that a system
satisfies specified requirements under all possible environmental conditions.
Let 𝑆 represent the system under test and let 𝑀 denote a set of requirements
or properties that 𝑆 must fulfill [10, 14].

Formally, must-testing evaluates whether all possible environments 𝐸

interacting with 𝑆, the composed system 𝑆 ∥ 𝐸 satisfies 𝑀. This is expressed
as:

∀𝐸.(𝑆 ∥ 𝐸 |= 𝑀)
where 𝑆 ∥ 𝐸 denotes the system 𝑆 running concurrently with environment
𝐸, and |= denotes satisfaction of the requirements 𝑀.

The objective of must testing is to ensure that 𝑆 behaves correctly and
meets its essential specifications regardless of the external conditions it en-
counters during execution. This verification process is crucial for validating
the reliability and robustness of systems across various operational scenar-
ios.

In academic research, such as that by Uddin et al. [14], the formal defi-
nition of must-testing serves as a foundational concept for subsequent the-
oretical developments and empirical investigations. It provides a rigorous
basis for analyzing system behavior and verifying compliance with critical
requirements.

Must-testing is defined inductively. This method involves defining tests
step-by-step, starting from basic elements and progressing to more complex
scenarios.

The basic test cases are atomic actions as well as the basic tests
STOP(deadlock) and SUCCESS(successful test termination). An atomic ac-
tion test 𝑎 can be defined as:

test(𝑎) = {𝑎}
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This test observes whether the system can act 𝑎.
More complex tests can observe sequences of actions. If 𝛼 and 𝛽 are

sequences of actions, then their concatenation 𝛼 · 𝛽 forms a new test:

test(𝛼 · 𝛽) = test(𝛼) ∪ test(𝛽)

This test observes whether the system can perform the sequence 𝛼 followed
by 𝛽.

To handle incomplete observations, we consider the prefix closure of
tests. If 𝛼 is a test, then the prefix closure prefix(𝛼) includes all prefixes of 𝛼:

prefix(𝛼) = {𝛽 | 𝛽 is a prefix of 𝛼}

Tests may include non-deterministic choices, represented by the union
of multiple tests. If 𝛼 and 𝛽 are tests, then their non-deterministic choice is:

test(𝛼 ∪ 𝛽) = test(𝛼) ∪ test(𝛽)

Tests can also observe concurrent actions. If 𝛼 and 𝛽 are tests, then their
concurrent execution is:

test(𝛼 ∥ 𝛽) = {(𝛼′, 𝛽′) | 𝛼′ ∈ test(𝛼), 𝛽′ ∈ test(𝛽)}

Must testing defines test processes, which interact with the system un-
der test (SUT) to check for specific behaviors. A test process specifies the
expected sequences of events and interactions. The SUT must refine the test
process for the test to be considered successful. This means the behavior of
the SUT must be a superset of the behavior defined by the test process. A
must-test is successful if, for every possible interaction specified by the test
process, the SUT can exhibit the expected behavior. If the SUT can pass all
such interactions, it satisfies the must-test.

2.2.2 Process Algebraic Definition of Must-Testing
A process algebra such as CSP [9] is commonly used to specify tests and
systems under test. Here, we present the minimal set of CSP operators es-
sential for understanding the remainder of this manuscript and in particular
needed for the definition of must testing. Readers interested in the full CSP
definition are encouraged to consult other resources [13, 15].

We define a finite set of actions Σ and two special actions 𝜏 (internal
action) and 𝜔 (success), where 𝜏, 𝜔 ∉ Σ. The basic processes include
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STOP, which does not perform any action and thus has no semantics, and
SUCCESS, which performs the special action 𝜔:

SUCCESS 𝜔−→STOP

For any CSP process 𝑃 and action 𝑎, 𝑎 → 𝑃 denotes a CSP process with
the following semantics:

(𝑎 → 𝑃) 𝑎−→𝑃

The prefix choice 𝑥 : 𝐴→ 𝑃(𝑥), where 𝐴 ⊆ Σ and 𝑃(𝑎) are CSP processes
for all 𝑎 ∈ 𝐴, generalizes the prefix operator above and has the following
semantics:

(𝑥 : 𝐴→ 𝑃(𝑥)) 𝑎−→𝑃(𝑎)
[
𝑎 ∈ 𝐴

]
Prefix choices are more generally represented using the external choice

operators 𝑃 □ 𝑄 and □ 𝑖∈𝐼𝑃𝑖 with the following semantics:

𝑃 𝑎−→𝑃′

𝑃 □ 𝑄 𝑎−→𝑃′

𝑄 □ 𝑃 𝑎−→𝑃′

[
𝑎 ≠ 𝜏

]
𝑃 𝜏−→𝑃′

𝑃 □ 𝑄 𝜏−→𝑃′ □ 𝑄

𝑄 □ 𝑃 𝜏−→𝑄 □ 𝑃′

𝑃𝑗
𝑎−→𝑃′

□ 𝑖∈𝐼𝑃𝑖
𝑎−→𝑃′

[
𝑗 ∈ 𝐼 , 𝑎 ≠ 𝜏

]
𝑃𝑗

𝜏−→𝑃′
𝑗

□ 𝑖∈𝐼𝑄
𝜏−→ □ 𝑖∈𝐼𝑃′𝑖 with 𝑖 ≠ 𝑗 =⇒ 𝑃′

𝑖
= 𝑃𝑖

[
𝑗 ∈ 𝐼

]
As opposed to external choice, the internal choice 𝑃 ⊓ 𝑄 is resolved

before interaction with the environment, and can be easily defined using
internal actions:

𝑃 ⊓ 𝑄 𝜏−→𝑃

𝑃 ⊓ 𝑄 𝜏−→𝑄

⊓ 𝑖∈𝐼𝑃𝑖
𝜏−→𝑃𝑗

[
𝑗 ∈ 𝐼

]
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Processes 𝑃 and 𝑄 can be run in parallel using the alphabetized par-
allel operator 𝐴∥𝐵 , which restricts the interfaces of 𝑃 and 𝑄 to 𝐴 and 𝐵,
respectively, and synchronizes 𝑃 and 𝑄 over common actions (in 𝐴 ∩ 𝐵):

𝑃 𝑎−→𝑃′

𝑃 𝐴∥𝐵 𝑄 𝑎−→𝑃′ 𝐴∥𝐵 𝑄

𝑄 𝐵∥𝐴 𝑃 𝑎−→𝑄 𝐵∥𝐴 𝑃′

[
𝑎 ∈ 𝐴 \ 𝐵 ∪ {𝜏}

]
𝑃 𝑎−→𝑃′

𝑄 𝑎−→𝑄′

𝑃 𝐴∥𝐵 𝑄 𝑎−→𝑃′ 𝐴∥𝐵 𝑄′
[
𝑎 ∈ 𝐴 ∩ 𝐵

]
The shortcut ∥ is common and represents 𝛼(𝑃)∥𝛼(𝑄) 𝑄, where 𝛼(𝑋) is the
interface of 𝑋, i.e., the set of actions that can be performed by process 𝑋. We
note in passing that CSP features a few more parallel composition operators,
but all of them are either particular instances of, of slight generalizations of
the alphabetized parallel operators.

Finally, the hiding operator 𝑃 \ 𝐴 hides in 𝑃 all the occurrences of any
action 𝑎 ∈ 𝐴 by converting them into internal actions 𝜏. It has the following
semantics:

𝑃 𝑎−→𝑃′

𝑃 \ 𝐴 𝜏−→𝑃′ \ 𝐴
[
𝑎 ∈ 𝐴

]
𝑃 𝑎−→𝑃′

𝑃 \ 𝐴 𝑎−→𝑃′ \ 𝐴
[
𝑎 ∉ 𝐴

]
Formulating must testing in CSP A system under test 𝑃 is tested against
the test 𝑇 by considering all maximal executions of the process (𝑃 ∥ 𝑄) \ Σ.
The hiding of all the actions means that we are interested only in the outcome
of the test (success or failure). The process 𝑃 passes the must test 𝑇 (denoted
as 𝑃 must 𝑇) if all maximal executions of (𝑃 ∥ 𝑄) \ Σ result in 𝜔, indicating
successful execution [15].

For example, consider the processes:

𝑃1 = 𝑎 → STOP □ 𝑏 → STOP
𝑃2 = 𝑎 → STOP ⊓ 𝑏 → STOP

Differentiated by the test 𝑇 = 𝑏 → SUCCESS, 𝑃1 must 𝑇 as it guarantees
successful execution based on the test, whereas ¬(𝑃2 must 𝑇) because 𝑃2’s
internal choice may deadlock before reaching SUCCESS [13, 15].



Chapter 3

Previous Work

Understanding the relationship between failure trace testing and Computa-
tion Tree Logic (CTL) has been a crucial area of research in formal verifica-
tion. Zuo’s foundational work established key connections between failure
trace testing and CTL [18], demonstrating their semantic links [4]. This
background provides the context for further exploration of related topics,
including the connections between Linear Temporal Logic (LTL) and must
testing, which are central to this thesis.

Recent studies have built on these foundations, exploring the equiva-
lence between different temporal logics and their applications in system
verification. For example, Bruda et al. examined how failure trace testing
aligns with CTL, focusing on modeling and verifying failure scenarios using
temporal logic [4]. This work highlights the ongoing effort to unify different
approaches to temporal logic and testing, thereby providing a more robust
framework for system verification.

3.1 Previous Efforts on LTL and Must Testing
In the domain of Linear Temporal Logic (LTL) and must testing, several
research efforts have contributed to the current understanding. Büchi au-
tomata have played a significant role in relating LTL to testing preorders,
particularly in defining semantic equivalences. Early work by DeNicola
and Hennessy [10] used Büchi automata to establish a unified semantic
theory that connected LTL with Labelled Transition Systems (LTS) through
trace inclusion. This approach laid the groundwork for constructing Büchi
processes that could be used to represent the behaviors specified by LTL
formulas.

11
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The transition from Büchi automata to practical system verification, es-
pecially in the real-time domain[7], has been a significant area of focus. This
progression has influenced the methodologies used in converting must-tests
into equivalent LTL formulas, which is a central theme of this thesis [1].

3.2 Ongoing Effort
Recent advancements have significantly contributed to the conversion of
must-tests to Linear Temporal Logic (LTL) formulas. Notably, De Nicola
and Hennessy’s foundational work on testing equivalences provides essen-
tial methodologies for relating various testing strategies to temporal logic
formulas [11]. Building upon this, Bruda et al. have developed new al-
gorithms that facilitate the conversion between different testing strategies
and temporal logic representations [4]. These developments offer valuable
insights and methodologies directly applicable to the conversion process
discussed in this thesis. By integrating these recent advancements, this
research not only builds upon the existing body of knowledge but also con-
tributes to the latest progress in the field.

Additionally, the relationship between CTL and algebraic specifications
has seen limited but noteworthy investigation. Early research in this area,
which introduced constructive conversions of LTS into equivalent Kripke
structures, serves as a precursor to modern efforts in the field [11]. This
work, alongside DeNicola’s algorithmic conversions involving “dummy”
elementary propositions, provides a historical backdrop for understanding
the challenges and opportunities in aligning must testing with LTL [10].

This thesis aims to integrate these historical perspectives with recent ad-
vancements, demonstrating how contemporary methodologies can enhance
the practical application of LTL in must-testing scenarios. By synthesizing
these efforts, this research seeks to establish a comprehensive framework for
translating must-test specifications into equivalent LTL formulas, thereby
contributing to the broader field of formal verification.



Chapter 4

Converting Must-Tests to LTL
Formulas

This chapter presents a method for converting a test structure into an equiv-
alent Linear Temporal Logic (LTL) formula. The goal of this conversion is to
align the test structure with must-testing semantics, ensuring that the test
applies to all possible executions of a system. In other words, we aim to
express the conditions of the test in a temporal logic framework that can
verify whether all potential executions of the system meet these conditions.
This approach is crucial in the verification of concurrent systems, where
there are multiple potential execution paths that must all be considered in
the test.

To begin, we establish a formal semantics for the behavior of a system,
drawing inspiration from Bruda et al. This foundational model provides a
way to relate the structure of the test to the possible behaviors of the system.
Following this, we present a proof of equivalence using structural induction
to show that any must test 𝑇 is logically equivalent to its corresponding LTL
formula 𝑅(𝑇). This proof is key to ensuring that the conversion maintains
the integrity of the original test conditions. Finally, we validate the approach
through several practical examples and counterexamples, demonstrating the
correctness and applicability of the conversion method.

4.1 Principles
To ensure the correctness of the conversion, we define a function 𝑅(𝑇) that
maps each must test𝑇 to an equivalent LTL formula. The conversion follows
a set of principles designed to preserve the intent of the test as follows:

13
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• If 𝑇 is a simple action test, where the test expects a specific action to
occur, the corresponding LTL formula 𝑅(𝑇) is simply the atomic LTL
proposition that represents that action.

• If 𝑇 consists of sequential actions 𝑇1;𝑇2, where 𝑇1 must be followed by
𝑇2, the LTL formula becomes 𝑅(𝑇) = 𝑅(𝑇1) ∧ 𝑋𝑅(𝑇2). The operator 𝑋

represents the "next" operator, indicating that after 𝑇1 is satisfied, 𝑇2
must occur.

• If 𝑇 allows for a choice between actions 𝑇1 and 𝑇2, the LTL formula is
𝑅(𝑇) = 𝑅(𝑇1) ∨ 𝑅(𝑇2). This reflects that either 𝑇1 or 𝑇2 can be satisfied,
capturing the disjunction between the choices.

• If 𝑇 involves looping behavior, the LTL formula uses temporal oper-
ators like 𝐺 (globally) and 𝐹 (eventually) to express repetition. For
instance, if 𝑇 requires an action to repeat infinitely, the LTL formula
might include 𝐺 to indicate that the action must occur at every point
in the future.

The use of structural induction on 𝑇 allows us to prove that this transforma-
tion preserves logical equivalence with the must-testing semantics, ensuring
that the resulting LTL formula accurately reflects the test’s intent.

4.1.1 Examples and Counterexamples
Example 1: Simple Action Test Consider a simple test 𝑇 that requires
action 𝑎 to always occur. The corresponding LTL formula is:

𝑅(𝑇) = 𝐺𝑎

This formula guarantees that action 𝑎 will occur in every execution trace of
the system, ensuring the test’s conditions are satisfied across all potential
executions.

Example 2: Choice Between Actions Suppose 𝑇 allows for the choice
between action 𝑎 and action 𝑏. The equivalent LTL formula is:

𝑅(𝑇) = 𝐹𝑎 ∨ 𝐹𝑏

This formula ensures that at least one of the actions, either 𝑎 or 𝑏, will
eventually be executed, satisfying the test’s conditions.
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Example 3: Sequential Execution Consider a test 𝑇 that requires action 𝑎

to occur first, followed by action 𝑏. The corresponding LTL formula is:

𝑅(𝑇) = 𝑎 ∧ 𝑋(𝐹𝑏)

This formula ensures that after 𝑎 occurs, 𝑏 must eventually occur, capturing
the sequential nature of the test.

Example 4: Looping Behavior Consider a test where action 𝑎 must repeat-
edly occur. The corresponding LTL formula is:

𝑅(𝑇) = 𝐺(𝑎 ⇒ 𝑋𝑎)

This formula ensures that whenever action 𝑎 occurs, it will be followed
by another occurrence of 𝑎 in every execution trace, capturing the looping
behavior of the test.

Counterexample: Failing Conversion Consider a test𝑇 that expects action
𝑎 to occur exactly once. A naive conversion might suggest the LTL formula:

𝑅(𝑇) = 𝐹𝑎 ∧ ¬𝐺𝑎

However, this formula fails to correctly capture cases where 𝑎 occurs multiple
times. For instance, if 𝑎 occurs twice, this formula would incorrectly allow
the test to pass, highlighting the importance of carefully considering the
exact semantics of the test during conversion.

This example demonstrates the need for precise conversion strategies to
ensure that the resulting LTL formula accurately reflects the test’s intent and
constraints.

4.1.2 Role of the Internal Action
Internal actions 𝜏 are transitions that occur within the system but are not
observable from the outside. Despite their invisibility, 𝜏-transitions are
crucial for modeling the internal behavior of concurrent systems. These
actions help to connect states that are logically related without causing
observable changes in the system’s external behavior.

To properly handle 𝜏-transitions, we need to introduce two concepts:

• 𝜏-equivalence and 𝜏-closure:We say that two states 𝑠0 and 𝑠1 are 𝜏-
equivalent, written 𝑠0 ≈𝜏 𝑠1, if there exists a sequence of internal
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transitions (𝜏) from 𝑠0 to 𝑠1 or from 𝑠1 to 𝑠0 — that is, they are obser-
vationally equivalent being differentiated only via 𝜏-transitions. This
relation is reflexive, transitive, and symmetric, and allows us to treat
such states as semantically equivalent in our analysis. This equiva-
lence allows us to treat states that are reachable by 𝜏-transitions as if
they are part of the same execution path. The 𝜏-closure 𝜏(𝑠) of a state
𝑠 is the reflexive and transitive closure of {𝑠} under ≈𝜏.

• Absorbing 𝜏-States: In some cases, states that only have 𝜏-transitions
may be absorbed into the next observable state. This allows us to
simplify the LTS by removing unnecessary 𝜏-states and focusing on
the observable behaviors.

These concepts are critical when converting must tests to LTL formulas,
ensuring that the internal behavior of the system is captured without intro-
ducing unnecessary complexity.

Since 𝜏-transitions are invisible, any states connected by them should
satisfy the same test conditions. This is crucial for ensuring that a test
covers all possible behaviors of the system, including those that involve
internal actions. The presence of 𝜏-transitions means that certain states can
be reached via silent internal actions, without any observable behavior, but
these states should still conform to the same test expectations.

When converting test structures to LTL formulas, we must carefully con-
sider 𝜏-closure to align with must-testing semantics. The 𝜏-closure ensures
that the formula remains accurate and captures all reachable behaviors, even
those that involve invisible 𝜏-transitions. By properly handling 𝜏-transitions,
we ensure that the resulting LTL formula correctly reflects the test’s intent
and accounts for all possible execution paths within the system.

The critical point here is that, although 𝜏-transitions do not directly affect
the system’s observable behavior, they are essential for correctly modeling
the state space and ensuring comprehensive test coverage. Without consid-
ering these invisible transitions, the LTL formula may miss valid behaviors,
potentially leading to false conclusions during verification.

4.2 Conversion Process
The conversion of a test structure into an equivalent LTL formula 𝑅(𝑇) is a
key step to ensure that must-testing semantics are preserved. We proceed
with the construction by structural induction on the form of the test.
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Use of 𝜏-closure. Throughout this construction, we interpret each test
structure 𝑇 as potentially including a sequence of internal (𝜏) transitions
before any observable behavior. Therefore, we define 𝑅(𝑠) for every 𝑠 ∈ 𝜏(𝑇),
i.e., every state reachable from 𝑇 by zero or more 𝜏-transitions. This ensures
that our translation to LTL captures the full behavior of the test, including
the effect of internal transitions.

Base Cases
STOP. The process STOP represents a state where the system halts and no
further actions can be performed. Since the system may reach a STOP state
through internal transitions, we define:

𝑅(𝑠) = false for every 𝑠 ∈ 𝜏(STOP)

In general, whenever we evaluate the satisfaction of a subformula in the con-
version process, we assume that the system may take zero or more internal
(𝜏) transitions before reaching a state where the formula applies. That is,
the next state after an observable action is considered to be any state in the
𝜏-closure of the resulting state. This ensures that our LTL formulas correctly
account for silent internal transitions.

SUCCESS. The SUCCESS state represents a successful test completion,
meaning the system has satisfied all required conditions. Again accounting
for internal transitions, we define:

𝑅(𝑠) = true for every 𝑠 ∈ 𝜏(SUCCESS)

This means that reaching any state in the 𝜏-closure of SUCCESS satisfies the
test.

Inductive Case
Let the test have the form:

𝑇 = □ 𝑎∈𝐴(𝑎 → 𝑃𝑎)

To capture this structure correctly, we define 𝑅(𝑠) for all 𝑠 ∈ 𝜏(𝑇). For each
such state 𝑠, we assume it must match one of the summands in the choice



CHAPTER 4. CONVERTING MUST-TESTS TO LTL FORMULAS 18

(since 𝑠 is reached via 𝜏-transitions from a test that begins with a visible
action). Thus, we define:

𝑅(𝑠) =
∨
𝑎∈𝐴
(𝑎 ∧ 𝑋𝑅(𝑃𝑎))

We justify this inductive step as follows:

𝑃 must 𝑇 ⇔ ∀𝑎 ∈ 𝐴, (𝑃 must (𝑎 → 𝑃𝑎))
⇔ ∀𝑎 ∈ 𝐴, (𝑃 |= 𝑎 ∧ 𝑋𝑅(𝑃𝑎)) (inductive assumption)
⇔ 𝑃 |=

∨
𝑎∈𝐴
(𝑎 ∧ 𝑋𝑅(𝑃𝑎))

That is, 𝑃 must 𝑇 iff 𝑃 |= 𝑅(𝑇), as desired. This ensures that after each
action 𝑎, the corresponding sub-test 𝑃𝑎 must be satisfied. The LTL formula
𝑅(𝑇) guarantees that the system satisfies all required conditions after exe-
cuting each action, and by applying it to every state in 𝜏(𝑇), we capture all
possible internal transitions that may occur prior to the observable behavior.

4.3 Examples and Counterexamples
We start with a follow-up to the simple example discussed earlier (in Sec-
tion 2.2.2). Recall that the two processes

𝑃1 = 𝑎 → STOP □ 𝑏 → STOP
𝑃2 = 𝑎 → STOP ⊓ 𝑏 → STOP

are differentiated by the test 𝑇 = 𝑏 → SUCCESS, as 𝑃1 must 𝑇 but
¬(𝑃2 must 𝑇). The reason for the failure of 𝑇 on 𝑃2 is that the internal
choice in 𝑃2 is resolved before any interaction with 𝑇, and if the result is
𝑎 → STOP then 𝑃2 ∥ 𝑇 deadlock before 𝑇 can become SUCCESS.

The inclusion of 𝜏-closure in the conversion process apparently alters
this reasoning: 𝜏(𝑃2) includes states where both ‘a‘ and ‘b‘ are available as
first actions. Since the 𝜏-closure considers all possible outcomes of internal
nondeterminism, we must check whether each possible outcome satisfies
the formula 𝑅(𝑇) = 𝑏 ∧ 𝑋 true. Since 𝑃2 can internally resolve to the ‘a‘
branch (in which case the formula fails), we conclude that 𝑃2 ̸|= 𝑅(𝑇). The
claim holds because, while 𝜏-closure reveals both ‘a‘ and ‘b‘ as potential
starting actions, the formula requires ‘b‘ to be the first action. Thus, not all
behaviors of 𝑃2 satisfy the formula, and therefore, 𝑃2 ̸|= 𝑅(𝑇). On the other



CHAPTER 4. CONVERTING MUST-TESTS TO LTL FORMULAS 19

hand it is quite obvious that 𝑃1 |= 𝑅(𝑇) and so the processes continue to be
differentiated by 𝑅(𝑇).

We now continue with concrete examples and counterexamples to show
why it is critical to handle internal (𝜏) transitions correctly when converting
must-tests into LTL formulas. We also explain what we mean by a “state” in
our system, as it plays a central role in our definitions.

Recall that in our model, a state represents a specific configuration of the
system at a given moment. In both Labeled Transition Systems (LTS) and
Kripke structures, states capture all the information about the system that is
relevant to its behavior. When converting tests, we must ensure that the be-
havior observed in these states—both observable actions and unobservable
𝜏-transitions—is accurately reflected in the resulting LTL formula.

Example: Validation with 𝜏 To illustrate why it is necessary to properly
handle 𝜏-transitions, consider an LTS with states {𝑠0, 𝑠1, 𝑠2, 𝑠3} and transi-
tions:

𝑠0
𝑎−→ 𝑠1, 𝑠1

𝜏−→ 𝑠2, 𝑠2
𝑏−→ 𝑠3.

Here, 𝑠0, 𝑠1, 𝑠2, and 𝑠3 are the states of our system, each representing a
distinct configuration. The action 𝑎 is observable, whereas the transition
labeled 𝜏 is an internal (silent) transition that we do not see externally.

Now, suppose we have a test

𝑇 = 𝑎 → (𝑏 → SUCCESS),

which requires that once action 𝑎 occurs, the system must eventually perform
action 𝑏 for the test to pass.

We introduce the notation 𝜏∗ to represent zero or more consecutive in-
ternal transitions. This concept helps us account for silent steps that occur
between observable actions.

While 𝜏∗ is not an LTL operator, we use it here informally to express that
the system may move through a sequence of internal states before reaching
a state that satisfies the next part of the formula. A more precise conversion
of the test 𝑇 to an LTL formula would involve checking the satisfaction of
the next subformula in all states reachable via 𝜏-transitions after action 𝑎.

Thus, instead of writing an invalid LTL formula like

𝑅(𝑇) = 𝑎 ∧ 𝑋(𝜏∗ ∧ 𝑏 ∧ 𝑋 true),

we clarify that the intended meaning is: after executing 𝑎, the system may
undergo a sequence of 𝜏-transitions, and eventually reach a state where 𝑏



CHAPTER 4. CONVERTING MUST-TESTS TO LTL FORMULAS 20

occurs, followed by success. That is, 𝑏 → SUCCESS must hold in some state
within the 𝜏-closure following the execution of 𝑎.

This approach ensures that our conversion accurately captures the behav-
ior of systems with silent transitions and preserves the intended must-testing
semantics.

Counterexample: Omitting 𝜏 To further emphasize the importance of
internal actions, consider an incorrect conversion where 𝜏-transitions are
ignored entirely. Suppose we have the same system from the previous
example, with transitions:

𝑠0
𝑎−→ 𝑠1, 𝑠1

𝜏−→ 𝑠2, 𝑠2
𝑏−→ 𝑠3.

Consider the test:
𝑇 = 𝑎 → (𝑏 → SUCCESS),

which expects the system to perform 𝑎, then eventually 𝑏, to pass the test.
Now, consider a naive LTL conversion that simply treats this as:

𝑅′(𝑇) = 𝑎 ∧ 𝑋(𝑏 ∧ 𝑋 true),

This formula assumes that after executing 𝑎, the system must immedi-
ately reach a state where 𝑏 holds. However, in our system, action 𝑏 is only
reachable after an internal 𝜏-transition — so 𝑅′(𝑇) would incorrectly con-
sider the system as failing the test, even though it actually satisfies it under
must-testing semantics.

To address this, we recall our earlier notation 𝜏∗. Thus, the correct
interpretation of 𝑅(𝑇) is not a direct LTL formula involving 𝜏∗, but rather a
semantic condition: after executing 𝑎, the formula 𝑏 → SUCCESS must hold
in some state within the 𝜏-closure of the resulting state. This preserves the
intended semantics of the must test and avoids incorrectly rejecting valid
system behavior.

This counterexample highlights why it is essential to incorporate 𝜏-
closure into our conversion process. Ignoring internal transitions may lead
to LTL formulas that miss valid behaviors, resulting in incorrect verification
outcomes.

4.4 Compact LTL Formulas for Tests with Loops
In the previous sections, we explored the process of converting test structures
into equivalent LTL formulas, focusing on the direct translation of actions
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and conditions into temporal logic expressions. However, a significant chal-
lenge arises when dealing with test structures that contain loops[17]. Such
loops can lead to infinitely repeating behavior in the resulting LTL formulas,
making them complex, inefficient, and difficult to analyze.

To address this challenge, we propose a method for compacting LTL
formulas by recognizing and optimizing loops, similar to the approach used
in CTL formula compaction for failure trace tests [3]. By identifying loops
within the test structure and encoding them more succinctly, we aim to
produce LTL formulas that are both compact and easier to interpret, while
still preserving their intended semantics.

Before we proceed, we recall our use of the notation 𝜏∗ to represent zero
or more consecutive internal transitions. While 𝜏∗ is not part of standard
LTL syntax, we use it as an informal semantic shorthand to indicate that the
next observable action or condition is satisfied in a state reachable through
such internal transitions.

For example, consider a test structure that requires the observable action
𝑎 to be followed by observable action 𝑏, even when interleaved with silent
transitions. The correct interpretation of the corresponding LTL requirement
is:

After performing 𝑎, the system should eventually perform 𝑏,
possibly after a sequence of internal 𝜏-transitions.

To express this informally, we may write:

Intended meaning of 𝑅(𝑇) : 𝑎 ∧ 𝑋(𝜏∗⇒ (𝑏 ∧ 𝑋 true))
Here, the 𝜏∗ component indicates that the system may undergo a se-

quence of silent transitions before reaching a state where 𝑏 holds. We
emphasize that this is not a valid LTL formula in the formal sense, but a
descriptive notation meant to convey the use of 𝜏-closure during satisfaction
evaluation.

By contrast, omitting 𝜏∗ from the reasoning—as in writing 𝑅(𝑇) =

𝑎 ∧ 𝑋(𝑏 ∧ 𝑋 true)—would incorrectly assume that 𝑏 must be observed im-
mediately after 𝑎, ignoring the presence of internal transitions. Such an
omission leads to a failure to capture valid behaviors and would result in an
incorrect interpretation of the test’s semantics.

Similarly, as discussed in the counterexample earlier, omitting 𝜏∗ causes
the resulting LTL expression to misrepresent the system’s actual execution
paths. Internal transitions can delay the observation of required actions,
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and failure to account for them can cause a system that truly satisfies the
test to appear as failing.

Therefore, any compacted LTL formula or reasoning about system be-
havior must integrate the concept of 𝜏∗ appropriately in order to maintain
semantic fidelity with the original must-testing structure. This ensures that
the resulting LTL formulas accurately reflect both observable and silent
behaviors, allowing for efficient and correct model checking even in the
presence of loops and internal nondeterminism.

4.4.1 Detecting and Compacting Loops in Test Structures
The Problem of Infinite Repetition When translating a test structure that
contains loops, the corresponding LTL formula may inadvertently become
infinitely repetitive. This redundancy not only inflates the formula but also
makes model checking and other verification techniques impossible. Instead
of explicitly encoding an infinite sequence, we aim to represent loops in a
way that captures their behavior without unnecessary repetition.

Consider a simple test structure where a sequence of actions repeats
indefinitely:

𝑎1→ 𝑎2→ 𝑎3→ 𝑎1→ 𝑎2→ 𝑎3→ . . .

A straightforward LTL representation might be:

𝜑 = (𝑎1 ∧ 𝑎2 ∧ 𝑎3 ∧ . . . ) ∧ X(𝜑)

This formulation leads to an infinitely expanding sequence of actions. To
manage this, we introduce the concept of a loop entry action, which serves as
a marker for when the loop begins. Instead of unrolling the loop indefinitely,
we construct a compact representation by referring back to this entry action.

Loop Compacting Our method for compacting loops in LTL formulas con-
sists of three key steps:

1. Identifying the Loop: A loop is detected when a sequence of actions
repeats within the test structure. For example, if a sequence 𝑎1 →
𝑎2→ 𝑎3 recurs, we treat it as a loop [3].

2. Marking the Loop Entry: The action where the loop begins (e.g., 𝑎1)
is designated as the loop entry action.
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3. Compacting the Loop: Instead of writing an infinite sequence, we
replace it with a succinct formula that captures the repetitive nature of
the loop:

F(start(𝑎1)) → X(𝜑) ∧ XX(𝜑) ∧ . . .

This ensures that starting from 𝑎1, the sequence of actions repeats
indefinitely, without explicitly unrolling them in the formula.

4.4.2 Inductive Construction of Compact LTL Formulas for
Nested Loops

Many test structures feature nested loops, where one loop is contained
within another. To efficiently construct LTL formulas for such cases, we
adopt an inductive approach, starting with the innermost loop and building
outward.

We proceed along the following example. Consider a test structure with
two nested loops:

𝑎1→ 𝑎2→ 𝑎3→ 𝑎1 (Inner loop)
𝑏1→ 𝑏2→ (𝑎1→ 𝑎2→ 𝑎3→ 𝑎1) → 𝑏3 (Outer loop)

We construct the LTL formula as follows: The inner loop formula becomes:

F(𝑎1) → X(𝑎2) ∧ X(𝑎3) ∧ XX(𝑎1)

and then we integrate the inner loop into the outer loop as follows:

F(𝑏1) → X(𝑏2) ∧ X(Innermost Loop Formula) ∧ X(𝑏3)

This ensures correctness while keeping the formula concise.

4.4.3 Algorithm for Handling Deadlocks and Infinite Loops
in LTL Conversion

In this section, I present a general-purpose algorithm designed to address
potential deadlocks and infinite loops when converting must-test structures
into LTL formulas. The goal is to ensure that for every loop in the test struc-
ture, the resulting LTL formula enforces an eventual exit, thus preventing
the system from getting stuck in non-progressing states.

Overview: The algorithm begins by obtaining the initial LTL formula
from a given test structure using the conversion function 𝑅(𝑇). It then
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iterates over each detected loop in the test structure. For each loop, the
algorithm identifies any exit transitions—that is, actions that lead to a state
outside the loop. If no such exit exists, a default exit condition is defined.
Finally, the algorithm augments the LTL formula with a condition that,
eventually, an exit action or the default exit condition must occur. This
additional constraint guarantees that the system will eventually progress,
even in the presence of infinite looping behavior.

Algorithm 1 Handling Deadlocks and Infinite Loops in LTL Conversion
1: procedure HandleDeadlocks(TestStructure 𝑇)
2: 𝜙← 𝑅(𝑇) ⊲ Convert the test structure 𝑇 into its initial LTL formula
3: for all loops 𝐿 in 𝑇 do
4: ExitActions← {𝑎 ∈ 𝐿 : ∃ (𝑠, 𝑎, 𝑠′)with 𝑠′ ∉ 𝐿}
5: if ExitActions = ∅ then ⊲ No exit transition detected for loop 𝐿

6: Define a default exit condition ExitCond(𝐿) for 𝐿
7: 𝜙← 𝜙 ∧ 𝐹(ExitCond(𝐿))
8: else
9: 𝜙← 𝜙 ∧ 𝐹

(∨
𝑎∈ExitActions 𝑎

)
10: end if
11: end for
12: return 𝜙
13: end procedure

Detailed Explanation:
1. Initialization: We start by applying our conversion function 𝑅(𝑇) to

the test structure 𝑇, which produces an initial LTL formula 𝜙. This
formula encodes the basic behavior of 𝑇 without yet addressing the
issues of deadlocks or infinite loops.
The challenge in this step is that the presence of loops with internal
transitions could in theory create infinite scenarios. There are multiple
ways to avoiding such loops, one of the most straightforward solution
being to limit the search depth to a maximum level 𝑑. We ensure a
complete formula 𝜙 as long as 𝑑 exceeds the number of states in the
test 𝑇.

2. Loop Analysis: The algorithm then iterates through every loop 𝐿

detected in the test structure. A loop is defined as a segment of 𝑇

where a sequence of actions repeats indefinitely.
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3. Exit Transition Identification: For each loop 𝐿, we create a set called
ExitActions that contains all actions 𝑎 for which there exists a transition
(𝑠, 𝑎, 𝑠′)with 𝑠′ not belonging to 𝐿. These actions represent valid exits
from the loop.

4. Handling the No-Exit Case: If no exit transitions are found
(ExitActions is empty), the algorithm defines a default exit condition
ExitCond(𝐿). This condition should capture any observable behavior
that indicates progress, even if it is not explicitly defined as an exit in
the loop. We then enforce that eventually (𝐹) this default condition
must hold.

5. Augmenting the LTL Formula: If exit actions are detected, the al-
gorithm augments the LTL formula by enforcing that eventually at
least one of these exit actions occurs. This is done by appending the
condition 𝐹

( ∨
𝑎∈ExitActions 𝑎

)
to 𝜙.

6. Final Output: After processing all loops, the modified LTL formula 𝜙
is returned. This final formula now guarantees that the system cannot
remain trapped in a loop indefinitely, as there is always an enforced
eventual transition out of the loop.

4.4.4 Computational Complexity and Implementation De-
tails

The complexity of the algorithm that converts must-tests into compact LTL
formula is quadratic in the number of states of the test being converted,
as follows. We henceforth use 𝑛 to denote the number of states in the test
structure 𝑇.

• Computing the Initial LTL Formula 𝑅(𝑇) (line 2 of Algorithm 1): The
first step involves creating the initial LTL formula 𝑅(𝑇) from the test
structure 𝑇. This includes figuring out which states can be reached
through internal 𝜏-transitions. This step requires 𝑂(𝑛× 𝑑) time, where
𝑑 is the depth limit mentioned in the previous section. Indeed, we
might need to check up to 𝑑 transitions for each of the 𝑛 states.
As argued earlier, we ensure a complete conversion as long as 𝑑 exceeds
𝑛 e.g., for 𝑑 = 𝑛 + 1. In this case the worst-case run time is in 𝑂(𝑛 ×
(𝑛 + 1)) = 𝑂(𝑛2).
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• Main Loop (Lines 3—11 of Algorithm 1): Next the algorithm goes
through each state in the structure, for 𝑂(𝑛) iterations. During each
iteration we might need to detect loops, which in the worst case in-
volves looking at every state once more which adds up to 𝑂(𝑛) time.
The overall complexity is thus 𝑂(𝑛2).

Both steps have quadratic complexity, for an overall running time of
𝑂(𝑛2).

Practical Implementation Details. To tackle practical challenges like infi-
nite loops, we implemented a few strategies:

1. Limited-depth Exploration of Internal Transitions (𝜏-closure): To
ensure the algorithm always finishes, even in the presence of loops, we
limit how deep the search can go when exploring internal transitions.
A large enough limit ensure completeness, but in practice the limit 𝑑
can re reduced to improve the running time.

2. Efficient Loop Detection: We use standard graph traversal techniques
such as depth-first search (DFS) to quickly and effectively identify
loops. We mark states as visited and recognize loops immediately
when a state is revisited.

3. Compact Formula Representation: To keep the resulting LTL formulas
concise, especially when loops occur, we need to apply techniques to
compactly represent repeating patterns.

While these compaction techniques help significantly, the resulting formulas
can still become large if the test structures have many states or deeply nested
loops. In practice the combination of depth limitations and compaction
methods generally keeps things manageable. For extremely complicated
cases however further optimizations might be necessary.

Practical Testing and Validation. To see how the algorithm performs in
practice, we suggest running experiments with test structures of varying
complexity:

• Simple Cases: Small-scale tests to verify basic functionality and effi-
ciency.

• Moderate Cases: Tests with some loops and internal transitions to
observe how well the algorithm scales.
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• Complex Cases: Larger, more intricate tests with many states and
nested loops to identify potential performance bottlenecks and opti-
mization opportunities.

These practical experiments will help demonstrate the algorithm’s perfor-
mance and guide future improvements.

Our experiments are relatively restricted. This being said, we did per-
form a few experiments using NuSMV, which provided clear insights into
the algorithm’s performance and the feasibility of verification. In these
experiments, we modeled various test structures and generated the corre-
sponding LTL formulas, then used NuSMV to check their correctness and
performance. The practical runs confirmed that the resulting formulas were
effectively manageable in typical verification scenarios. Additionally, perfor-
mance metrics such as runtime and memory usage indicated good scalability
for moderately complex test structures.

Overall, these practical evaluations demonstrate that the developed algo-
rithm can reliably produce efficient and verifiable LTL formulas for a wide
range of must-test scenarios, guiding future enhancements and optimiza-
tions. We did not notice anything out of ordinary so we did not see the
needs to experiment further.



Chapter 5

Conclusion

This thesis explores the relationship between must-testing and Linear Tem-
poral Logic (LTL), focusing on the systematic conversion of must-test condi-
tions into equivalent LTL formulas. The goal was to enhance formal verifica-
tion techniques by leveraging LTL expressive power to ensure that systems
satisfy their required properties across all possible executions, including
those involving internal (𝜏) transitions.

The proposed conversion process is built on formal semantics and struc-
tural induction, ensuring correctness while preserving must-testing seman-
tics. A key challenge in this conversion was handling 𝜏-transitions, which
are critical in concurrent systems where unobservable actions influence state
evolution. By incorporating 𝜏-closure, we ensured that states connected
by internal transitions remain semantically equivalent, maintaining the in-
tended test behavior.

To validate the correctness of our approach, we provided both examples
and counterexamples, demonstrating how an incomplete translation could
lead to incorrect conclusions. Additionally, we addressed the issue of LTL
formula complexity when dealing with test structures that contain loops. By
adapting techniques from CTL formula compaction, we proposed a method
to reduce redundancy in LTL representations, making them more efficient
for model checking without sacrificing expressiveness.

The findings in this thesis contribute to formal verification by bridging
the gap between must-testing and temporal logic-based verification. We
need to mention however that we only went one way (from must tests to
LTL) so a complete equivalence is not established yet. We believe that such
an equivalence exists, and so developing the same kind of algorithmic con-
version from LTL formulae to must-tests is an obvious immediate extension
of our research.

28
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Looking farther ahead, there are several promising directions for fu-
ture research. One avenue is optimizing LTL formula generation using
automata-based techniques to improve efficiency. Additionally, extending
this approach to richer temporal logics, such as CTL* or HyperLTL, could of-
fer deeper insights into verification strategies for concurrent and distributed
systems.

By systematically translating must tests into LTL formulas, this work
provides a structured framework for verifying system behaviors. Formal
methods have been split into logical and algebraic approaches since forever,
with both approaches having their advantages and disadvantages. Allowing
a mixed, part algebraic and part logical specification offers obvious advan-
tages, combining the advantages of both frameworks without introducing
any major disadvantage. A system engineer can specify parts of the sys-
tem logically and other parts algebraically, whichever kind of specification
is more convenient for the particular sub-system under scrutiny. An algo-
rithm can then simply take over and construct an overall specification that
can then be used in a model checker.
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