
THE GENERATIVE POWER OF UNSYNCHRONIZED
CONTEXT-FREE PARALLEL COMMUNICATING

GRAMMAR SYSTEMS

by

Simin Li

A thesis submitted to the
Department of Computer Science

in conformity with the requirements for
the degree of Master of Science

Bishop’s University
Canada

April 2022

Copyright © Simin Li, 2022

Abstract

Parallel communicating grammar systems (PCGS for short) were introduced as a
grammatical model of parallel computations. Communication plays a major role in
parallel processing architectures and it makes the whole system more powerful in
solving a common task than its grammar components. In this thesis we investigate
the generative power of unsynchronized PCGS with context-free components. We
show that all the languages generated by these systems can be accepted in linear
space and so are context sensitive.

i

Acknowledgments

I would like to thank the Computer Science department at Bishop’s University for
giving me the opportunity to pursue a Master’s degree.

I would like to underline the support, patience and guidance received from Dr.
Stefan D. Bruda, without him none of this would have been possible.

I would like to thank all other professors in Department of Computer Science
at Bishop’s University, Dr. Russell Butler, Dr. Mohammed Ayoub Aloui Mhamd,
from whom I learned a lot.

Last but not least, I would like to thank my parents, for their enduring love and
support, and believing in me when I did not believe in myself.

ii

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Grammars . 3
2.2 Parallel Communicating Grammar Systems 4
2.3 Examples . 7

3 Previous Work 12
3.1 PCGS with Context-Free Components 15
3.2 Unsynchronized PCGS . 16

4 All Languages Generated by Unsynchronized Context-Free PCGS
Are Context Sensitive 18
4.1 Unsynchronized PCGS with no ε-rules 18
4.2 Handling ε-rules . 23

5 Conclusion 27

Bibliography 29

iii

Chapter 1

Introduction

Parallel communicating grammar systems (PCGS for short) have been introduced as
a language-theoretic treatment of concurrent systems [15], with the aim of combining
the concepts of parallelism and communication into a suitable model for theoretical
studies of the properties of parallel processing systems.

A PC grammar system consists of several grammars (components) working in
parallel, each of them having its own sentential form or string. They use a set of
rewriting rules and start from their own axiom (or start symbol), repeatedly rewrit-
ing the corresponding sentential form using the given rules. During the process each
component can point to other components of the system using query symbols. When
the query symbol Qj is introduced by a component i, the current sentential form of
the component j will be sent to the component i, replacing the occurrences of Qj .
This whole process is a derivation that is, a sequence of component-wise rewriting
and communication steps. The communication between components is based on the
query symbol appearing in the current sentential forms generated by the grammars,
and has priority over rewriting: once a query symbol appears it must be satisfied
before any rewriting step can happen. One of these component grammars of a PCGS
is distinguished as the master grammar. Exactly all the terminal strings generated
by the master grammar constitute the generated language. Formal definitions will
be provided in the next chapter.

Grammars communicate in one of two ways: returning or non-returning. In a
returning system, once a communication request has been completed the queried
component will erase its string, replace it with the respective axiom, and continue
the derivation from there. If a system is in non-returning mode, then the compo-
nent string remains unchanged after a communication event, and the subsequent
derivation continues to rewrite that string.

PCGS can also be classified as synchronized or unsynchronized. In a synchro-
nized PCGS, during a rewriting step each component must (synchronously) apply a
rewriting rule. The only exception if when the respective string consists exclusively
of terminals, case in which nothing happens with that string during a rewriting step.

1

CHAPTER 1. INTRODUCTION 2

Otherwise, if some component does not have any suitable rewriting rule, then the
derivation will block. We do not have any such a concern for unsynchronized PCGS.
In such a PCGS each grammar is allowed to either perform a rewriting step or wait.

Because of the synchronization and communication facilities, PCGS whose com-
ponents are of a certain type are generally more powerful than a single Chomsky
grammar of the same type [3, 15].

Synchronized PCGS have received sustained attention through the years. In
particular, all flavors of synchronized PCGS with context-free components have been
found to be Truing complete [4, 18]. The unsynchronized variant on the other hand
has received almost no attention. This motivates our thesis, where we investigate
the generative power of unsynchronized PCGS with context-free components. We
find quite a sharp contrast between the synchronized and the unsynchronized case.
Indeed, we establish that all the languages generated by unsynchronized context-
free PCGS can be accepted in linear space. That is, all these languages are context-
sensitive languages.

Chapter 2

Preliminaries

For an alphabet V , the free monoid generated by V under the operation of concate-
nation, is denoted by V ∗. For x ∈ V ∗, and a set U ⊆ V , |x| is the length of x and
|x|U stands for the number of occurrences of elements of U in x. The empty string
(and only the empty string) is denoted by ε.

2.1 Grammars

A Chomsky grammar is denoted by G = (N, T, S, P), where N is the set of
nonterminal symbols, T is the set of terminal symbols, S ∈ N is the axiom (or start
symbol), and P ⊆ ((N ∪ T)∗N(N ∪ T)∗) × (N ∪ T)∗ is the set of rewriting rules (or
just rules, for short). A rewriting rule (σ, σ′) is customarily written σ → σ′. A
rewriting step replaces the string w = uσv with w′ = uσ′v whenever σ → σ′ ∈ P
(written w ⇒G w′, though we often omit the subscript G whenever the grammar is
understood from the context). The language generated by G is denoted by L(G).
REG, LIN, CF, CS, RE are the families of regular, linear, context-free, context-
sensitive, recursively enumerable languages, respectively.

The Chomsky hierarchy defines four classes of grammars, depending on the form
of the rewriting rules. Let G = (Σ, V, S, P) be a grammar. We then have the
following:

1. G is a type-0 or unrestricted grammar, if G does not have any restriction. This
type of grammar can generate languages which can be semi-decided by Turing
machines. Languages generated by a type-0 grammar are called recursively
enumerable, or RE for short [11].

2. G is a type-1 or context-sensitive grammar, if |α| ≤ |β| for every rewriting
rule α → β in P . This type of grammar can have a rewriting rule of the
form S → ε, but only if S is not on the right-hand side of any rewriting rule.
Languages generated by a type-1 grammar are called context sensitive, or CS

3

CHAPTER 2. PRELIMINARIES 4

for short [11]. It should be noted that all the context-sensitive languages can
be accepted by linear space-bounded Turing machines [16].

3. G is a type-2 or context-free grammar, if |α| = 1 for every rewriting rule α → β
in P (meaning that α is a single nonterminal symbol). Linear grammars are
a special type of context-free grammars, in which no rewriting rule is allowed
to have more than one nonterminal symbol in its right-hand side. Languages
generated by a type-2 grammar are called context free, or CF for short and
languages generated by the linear grammar sub-type are called Linear or LIN
[9, 10].

4. G is a type-3 or regular grammar, if its rewriting rules have one of the following
forms: A → cB, A → c, A → ε, or A → B, where A, B are nonterminals and
c is a terminal. Languages generated by a type-3 grammar are called regular,
or REG for short.
Note in passing that a language is called semilinear if and only if it is letter
equivalent to a regular language. Two languages are called letter equivalent
whenever the languages are indistinguishable from each other if we only look at
the relative number of occurrences of symbols in their strings, without taking
their order into consideration [11].

2.2 Parallel Communicating Grammar Systems

A parallel communicating grammar system (PCGS for short) provides a theoretical
prototype that combines the concepts of grammars with parallelism and commu-
nication. The idea behind PCGS is the notion of multiple grammars that work
together in parallel to generate strings and communicate in the process with each
other. This concept supports the investigation of language-theoretic properties of
parallel systems.

Definition 2.1. PARALLEL COMMUNICATING GRAMMAR SYSTEM [3]: Let
n ≥ 1 be a natural number. A parallel communicating grammar system (or PCGS)
of degree n is an (n + 3)-tuple

Γ = (N, T, K, G1, . . . , Gn)

where N , T , K are pairwise disjoint alphabets, with K = {Q1, . . . , Qn}. The
elements of N are nonterminal symbols and those of T are terminal symbols. Each
Gi, 1 ≤ i ≤ n is a usual Chomsky grammar:

Gi = (N ∪ K, T, Pi, Si) , 1 ≤ i ≤ n

The grammars Gi, 1 ≤ i ≤ n, are called the components of the system. The ele-
ments of K are called query symbols; their indices 1, . . . , n point to the components
G1, . . . , Gn, respectively.

CHAPTER 2. PRELIMINARIES 5

PCGS derivations consist of a series of rewriting and communication steps. The
communication has priority over rewriting, meaning that a rewriting step is allowed
only when no query symbol appears in the current configuration. Note that the
query symbols are associated in a one-to-one manner with the components.

Definition 2.2. DERIVATION IN A PCGS [3]: Given a PCGS Γ as above, for
two n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn), with xi, yi ∈ V ∗

Γ , 1 ≤ i ≤ n
(we call such an n-tuple a configuration), and x1 /∈ T ∗, we write

(x1, x2, . . . , xn) ⇒ (y1, y2, . . . , yn)

if one of the following two cases holds:

1. |xi|K = 0 for all 1 ≤ i ≤ n, then xi ⇒Gi yi or xi = yi ∈ T ∗, 1 ≤ i ≤ n.

2. There is i, 1 ≤ i ≤ n, such that |xi|K > 0. We write such a string xi as

xi = z1Qi1z2Qi2 . . . ztQitzt+1, t ≥ 1,

for t ≥ 1, zi ∈ (N ∪ T)∗, 1 ≤ j ≤ t + 1. If |xij |K = 0 for all 1 ≤ j ≤ t, then

yi = z1xi1z2xi2 . . . ztxitzt+1,

[and yij = Sij , 1 ≤ j ≤ t]. For all the indices i not specified above we have
yi = xi.
A PCGS is returning if the derivation proceeds as above, and non-returning
if the phrase “[and yij = Sij , 1 ≤ j ≤ t]” is removed from the definition

In other words, an n-tuple (x1, . . . , xn) yields (y1, . . . , yn) if either of the two
cases hold:

1. If there is no query symbol in x1, . . . , xn, then we have a component-wise
derivation xi ⇒Gi yi, 1 ≤ i ≤ n (one rule is used in each component Gi),
unless xi is terminal (xi ∈ T ∗), case in which it remains unchanged (yi = xi).

2. If a query symbol appears somewhere in the configuration then a communica-
tion step is required: Each occurrence of Qj in xi is replaced by xj , providing
that xj does not contain query symbols. In a communication step all the
occurrences of query symbols are eventually replaced by strings containing
no such symbols. Once the communication step is complete, the grammar
Gj continues processing from its axiom or from xj depending on whether the
system is returning or non-returning.

We use ⇒ to denote any derivation step (both component-wise rewriting and
communication). Whenever not clear from the context we may use ⇒r and ⇒nr

for the returning and non-returning modes, respectively. A sequence of rewriting

CHAPTER 2. PRELIMINARIES 6

and communication steps are denoted by ⇒∗, the reflexive and transitive closure of
⇒. Again we may occasionally qualify this operator by using ⇒∗

r or ⇒∗
nr (for the

returning or non-returning modes).
A derivation in a PCGS is blocked (that is, cannot continue) in the following

two cases [3, 13, 14, 17]:

1. The derivation cannot continue when a component xi of the current n-tuple
(x1, . . . , xn) contains nonterminals but does not contain any nonterminal that
can be rewritten in Gi.

2. The derivation cannot continue when a circular query appears. This happens
when Gi1 introduces Qi2 , Gi2 introduces Qi3 , and so on until Gik−1 introduces
Qik

and Gik
introduces Qi1 . On one hand, communication has priority. On

the other hand, only strings without query symbols can be communicated. It
follows that no communication is possible in this cycle. In other words, no
continuation of the derivation is possible.

Definition 2.3. LANGUAGES GENERATED BY PCGS [3]: The language gen-
erated by a PCGS Γ is the language generated by its first component (G1 above),
when starting from the configuration (S1, . . . , Sn), that is

Lf (Γ) = {w ∈ T ∗ | (S1, . . . , Sn) ⇒∗ (w, α1, . . . , αn)

where αi ∈ (N ∪ T ∪ K)∗, 2 ≤ i ≤ n.

The tuple of axioms (S1, . . . , Sn) is where the derivation begins. Before G1
produces a terminal string, a number of rewriting and/or communication steps are
performed. At the end we will get a terminal string produced by the master gram-
mar.

Definition 2.4. PCGS SEMANTICS [17]: Let Γ = (N, T, K, G1, . . . , Gn) be a
PCGS.

1. If only G1 is allowed to introduce query symbols, then we say Γ is a centralized
PCGS. On other hand we say Γ is a non-centralized PCGS if there is no
restriction imposed on the introduction of query symbols.

2. A PCGS is said to be returning if each component resumes working from its
axiom after being communicated. When each component continues the pro-
cessing of the current string after communication instead, the PCGS is said
to be non-returning.

3. A system is synchronized when each component grammar uses exactly one
rewriting rule in each component-wise derivation step (except when the com-
ponent grammar is holding a terminal string, case in which it is allowed to
wait). In a non-synchronized system, each component may choose to either
rewrite or wait in any step which is not a communication step.

CHAPTER 2. PRELIMINARIES 7

Since the returning and the non-returning modes of derivation can be used for
the same system, we may denote by Lr(Γ) the language generated by Γ in the
returning mode, and by Lnr(Γ) the language generated by Γ in the non-returning
mode. We will often omit the subscript r of nr whenever we want to refer to both
modes, or the mode is understood from the context.

In the synchronized case we denote by PCn(X), n ≥ 1, the family of lan-
guages generated in the returning mode by non-centralized PCGS with at most n
components and with rules of type X (where X is an element of the Chomsky hi-
erarchy). We add the symbol C if centralized systems are used, and the symbol
N if the non-returning mode of derivation is used. We thus we obtain the classes
CPCn(X), NPCn(X), NCPCn(X). When an arbitrary number of components is
considered, we use ∗ in the subscript instead of n. If the number of components
has no restriction, the subscript n may also be removed, thus obtaining PC(X),
CPC(X), NPC(X), and NCPC(X).

For the unsynchronized case we add the prefix U , thus obtaining the classes
UPC(X), UCPC(X), UNPC(X), and UNCPC(X) (and UPCn(X), UCPCn(X),
UNPCn(X), UNCPCn(X) as well).

We assume that the reader is familiar with the basic structure and behaviour of a
Turing machine [11], so we only provide a definition for the intuitive though not as
frequently used notion of space bounds for these machines.

Definition 2.5. SPACE-BOUNDED TURING MACHINE [16]: Given a Turing
machine M and an input string x ∈ T ∗, the working space of M on x is the length
of all the work tapes of M to accept x. More generally, let S be any function from
N to N. Let L ⊆ T ∗, we say that M semi-decides L in space S provided that M
semi-decides (or accepts) L and uses at most S(n) tape cells on any input of length
n in T ∗. Then M is a S(n) space-bounded Turing machine.

Space-bounded Turing Machines will be used to define the computational com-
plexity of certain classes of PCGS with context-free components.

2.3 Examples

PCGS can be classified according to their grammar structure, behavior after satis-
fying a query, and timing. Now we give some examples to show the corresponding
situations respectively.

Recall that a PCGS is centralized if there is only grammar authorized to intro-
duce query symbols. If the number of grammars that can use the query to request
a string is greater than two, a PCGS is non-centralized.

For example, given

Γ = ({S1, S2, S3}, K, {a, b, c}, G1, G2, G3).

CHAPTER 2. PRELIMINARIES 8

The following is a centralized PCGS, since query symbols only appears in P1.

P1 = {S1 → aS1, S1 → aQ2, S2 → bQ3, S3 → c},

P2 = {S2 → bS2},

P3 = {S3 → cS3}.

On the other hand, the following is a non-centralized PCGS, since query symbols
appears in both P1 and P2.

P1 = {S1 → aS1, S1 → aQ2, S2 → bQ3, S3 → c},

P2 = {S2 → bS2, S2 → bQ3},

P3 = {S3 → cS3}.

Consider now what happens after a component provides the string for the gram-
mar which request it by issuing the corresponding query symbol. In a returning sys-
tem, the grammar will resume working from its axiom. In a non-returning system,
the grammar will continue the rewriting of the current string of the corresponding
component.

Let us consider the following PCGS as an example:

Γ = ({S1, S2, S3}, K, {a, b, c}, G1, G2, G3),
P1 = {S1 → aS1, S1 → aQ2, S2 → bQ3, S3 → c},

P2 = {S2 → bS2},

P3 = {S3 → cS3}.

For the following derivation, the component P1 and P2 return to their corre-
sponding axiom when Q1 and Q2 are satisfied. Thus, PCGS is in returning mode
when the following derivation happens:

(S1, S2, S3) ⇒ (aS1, bS2, cS3) ⇒∗n (anS1, bnS2, cnS3) ⇒
(an+1Q2, bn+1S2, cn+1S3) ⇒ (an+1bn+1S2, S2, cn+1S3) ⇒
(an+1bn+2Q3, bS2, cn+2S3) ⇒ (an+1bn+2cn+2S3, bS2, S3) ⇒
(an+1bn+2cn+3, b2S2, cS3).

By contrast, PCGS is in the non-returning mode if the following derivation
occurs:

(S1, S2, S3) ⇒ (aS1, bS2, cS3) ⇒∗n (anS1, bnS2, cnS3) ⇒
(an+1Q2, bn+1S2, cn+1S3) ⇒ (an+1bn+1S2, bn+1S2, cn+1S3) ⇒
(an+1bn+2Q3, bn+2S2, cn+2S3) ⇒ (an+1bn+2cn+2S3, bn+2S2, cn+2S3) ⇒
(an+1bn+2cn+3, bn+3S2, cn+3S3).

CHAPTER 2. PRELIMINARIES 9

A PCGS is called synchronized if each grammar uses exactly one rewriting rule in
each component-wise derivation step (except if the component grammar is holding
a terminal string). If each grammar can choose either rewrite or wait in any step
which is not a communication step, then the system is called unsynchronized. Note
that the way how a query symbol generates an immediate communication step is
the same in both the synchronized and unsynchronized systems.

We provide an example by using the system Γ with P1, P2, P3 as above. The
following derivation assumes that the system is synchronized:

(S1, S2, S3) ⇒ (aS1, bS2, cS3) ⇒∗n (anS1, bnS2, cnS3) ⇒∗k

(an+kS1, bn+kS2, cn+kS3) ⇒∗m (an+k+mS1, bn+k+mS2, cn+k+mS3) ⇒
(an+k+m+1Q2, bn+k+m+1S2, cn+k+m+1S3) ⇒ . . .

On the other hand, when the system is considered unsynchronized, the following
is a possible derivation:

(S1, S2, S3) ⇒ (aS1, bS2, cS3) ⇒∗n (anS1, bS2, cnS3) ⇒∗k

(an+kS1, b1+kS2, cnS3) ⇒∗m (an+k+mS1, b1+k+mS2, cn+mS3) ⇒
(an+k+mQ2, b1+k+mS2, cn+mS3) ⇒ (an+k+mb1+k+mS2, S2, cn+mS3) ⇒ . . .

Note that the derivation in an unsynchronized system is a special case of the
derivation in the synchronized system. Indeed, any unsynchronized system can be
converted into an equivalent synchronized system by adding the set {A → A : A ∈
N} to all the sets of rewriting rules in all the components.

Now that the semantics of the PCGS communication and synchronization has
been illustrated, we proceed with a few more interesting examples.

Example 1. Consider a centralized non-returning regular PCGS

Γ1 = ({S1, S2}, K, {a, b, c}, G1, G2)

with

P1 = {S1 → aS1, S1 → aQ2, S2 → cQ2, S2 → c},

P2 = {S2 → bS2}.

A derivation in Γ1 has the following form:

(S1, S2) ⇒∗ (akS1, bkS2) ⇒ (ak+1Q2, bk+1S2) ⇒
(ak+1bk+1S2, bk+1S2) ⇒ (ak+1bk+1cQ2, bk+2S2) ⇒
(ak+1bk+1cbk+2S2, bk+2S2) ⇒ (anbncbn+1c . . . cbk+jc, bk+jS2),

for r ≥ 2, ki ≥ 0, 1 ≤ i ≤ r. Therefore:

L(Γ1) = {ak1bk1ak2bk2 . . . akr bkr c | r ≥ 2, k1 ≥ 1, ki ≥ 2, 1 ≤ i ≤ r}.

CHAPTER 2. PRELIMINARIES 10

Although G1, G2 are regular grammars, L(Γ1) is not linear. The result that
L(Γ1) is not linear can be proved easily by using the following necessary condition for
a language to be linear: If L ⊆ V ∗ is a linear language, then two regular languages
L1, L2 exist, such that L ⊆ L1L2 and for each x ∈ L1 (y ∈ L2) there is an
y ∈ L2 (x ∈ L1), such that xy ∈ L.

Example 2. Consider the following PCGS:

Γ2 = ({S1, S′
1, S2, S3}, K, {a, b}, G1, G2)

with

P1 = {S1 → abc, S1 → a2b2c2, S1 → aS′
1, S1 → a3Q2, S′

1 → aS′
1,

S′
1 → a3Q2, S2 → b2Q3, S3 → c},

P2 = {S2 → bS2},

P3 = {S3 → cS3}.

We start with (S1, S2, S3). First using the rule S1 → aS′
1 and the rule S′

1 → aS′
1

in P1 successively, then use the unique rules in P2, P3 for k ≥ 0 times. We get

(S1, S2, S3) ⇒r (aS′
1, bS2, cS3) ⇒∗

r (ak+1S′
1, bk+1S2, ck+1S3).

Eventually, the rule S′
1 → a3Q2 in P1 will be used:

(ak+1S′
1, bk+1S2, ck+1S3) ⇒r (ak+4Q2, bk+2S2, ck+2S3).

Since the query symbol Q2 is present, bk+2S2 is sent to the first component and
replaces Q2 in the following communication step:

(ak+4Q2, bk+2S2, ck+2S3) ⇒r (ak+4bk+2S2, S2, ck+2S3).

Now we perform the following steps:

(ak+4bk+2S2, S2, ck+2S3) ⇒r (ak+4bk+4Q3, bS2, ck+3S3) ⇒r

(ak+4bk+4ck+3S3, bS2, S3) ⇒r (ak+4bk+4ck+4, b2S2, cS3).

Therefore, all strings anbncn, n ≥ 4, can be produced in this way. We can use
the following derivation to obtain the string a3b3c3:

(S1, S2, S3) ⇒r (a3Q2, bS2, cS2) ⇒r (a3bS2, S2, cS3) ⇒r

(a3b3Q3, bS2, c2S3) ⇒r (a3b3c2S3, bS2, S3) ⇒ (a3b3c3, b2S2, cS3).

Finally, the strings abc, a2b2c2 are produced directly by the master component
P1. Therefore the language generates by this system is

Lr(Γ2) = Lnr(Γ2) = {anbncn : n ≥ 1}.

Since there is only one query of P1 to P2 and only one to P3, we obtain the same
language in both returning and non-returning modes.

CHAPTER 2. PRELIMINARIES 11

Note in passing that the above system is centralized. This demonstrates the
increased power of a PCGS. Indeed, quite a simple PCGS with regular components
can generate a classic examples of non-context-free languages.
Example 3. Consider the following PCGS:

Γ3 = ({S1, S2, S3}, K, {a, b, c, d}, G1, G2, G3)

with

P1 = {S1 → aS1, S1 → aQ2, S3 → d},

P2 = {S2 → bS2, S2 → bQ3},

P3 = {S3 → cS3}.

Each derivation in Γ3 starts with

(S1, S2, S3) ⇒∗k (akS1, bkS2, ckS3), k ≥ 0,

and then use the rules S1 → aQ2, S2 → bQ3 in G1, G2 respectively. We obtain
three cases:

(akS1, bkS2, ckS3) ⇒ (ak+1Q2, bk+1S2, ck+1S3),
(akS1, bkS2, ckS3) ⇒ (ak+1S1, bk+1Q3, ck+1S3),
(akS1, bkS2, ckS3) ⇒ (ak+1Q2, bk+1Q3, ck+1S3).

In the first case, after communicating bk+1S2 to G1, the derivation is blocked.
In the second case the result is the same, after communicating ck+1S3 to G2. In the
third case, there are two query symbols in the configuration. Q2 cannot be satisfied
for the moment since it asks for a string containing query symbols. Hence, we first
satisfy Q3:

(ak+1Q2, bk+1Q3, ck+1S3) ⇒ (ak+1Q2, bk+1ck+1S3, v3)

(the form of v3 depends on whether Γ3 is considered as returning or non-returning).
Now Q2 can be satisfied:

(ak+1Q2, bk+1ck+1S3, v3) ⇒ (ak+1bk+1ck+1S3, v2, v3).

When Γ3 is non-returning, v2 = bk+1ck+1S3 and S3 cannot be rewritten in P2, so
the derivation is blocked. Thus, the derivation can be concluded only in the returning
case, case in which we have:

(ak+1bk+1ck+1S3, S2, S3) ⇒ (ak+1bk+1ck+1d, v′
2, cS3),

where v′
2 ∈ {bS2, bQ3}. In conclusion,

Lr(Γ3) = {anbncnd | n ≥ 1}.

The purpose of this example is to show a more complicated way of working with
query symbols in the non-centralized case.

Chapter 3

Previous Work

Many results exist about the generative capacity of various types of PCGS. In this
chapter, we focus on synchronized PCGS since no such results for the unsynchronized
case exists.

The diagram in Figure 3.1 indicates some relations between the eight basic fam-
ilies of languages defined in the previous chapter, as well as their relationships with
families in the Chomsky hierarchy. (MAT denotes the family of languages gen-
erated by matrix grammars with ε-free context-free rules and without appearance
checking).

The two most powerful PCGS are Context sensitive (CS, for short) and recur-
sively enumerable (RE, for short). Surprisingly their behavior is quite similar as well,
though not identical. We first note the obvious fact that a recursively enumerable
grammar is just as powerful as a PCGS with recursively enumerable components.
Thus we have:

RE = Yn(RE) = Y∗(RE), n ≥ 1,

for all Y ∈ {PC, CPC, NPC, NCPC} [3].
To a certain degree, the same holds for PCGS with context-sensitive components

in relation with context-sensitive languages:

CS = Yn(CS) = Y∗(CS), n ≥ 1,

for all Y ∈ {CPC, NCPC} [3]. Note however that this result describes the cen-
tralized case and does not hold for the non-centralized PCGS. Indeed, we note in
Section 3.1 that non-centralized context-free PCGS are Turing complete, which also
make non-centralized context-sensitive PCGS Turing complete (since context-free
languages are also context sensitive).

It should be noted that PCGS with context-sensitive components rely on a com-
putationally expensive model, which limits their usefulness. As with normal gram-
mars, the most useful classes are the simple ones. Therefore, we are more interested
in the PCGS with regular (REG, for short) or context-free (CF, for short) compo-
nents.

12

CHAPTER 3. PREVIOUS WORK 13

Figure 3.1: Hierarchies of PC families

Now recall the result below, which shows that the class of languages generated
by a centralized returning PCGS with regular components is a subset of the class of
languages generated by a non-centralized returning PCGS with regular components.
In other words, a PCGS is generally more powerful than a single grammar compo-
nent and the more communications a system has the more powerful the system is
[17]:

CPCn(REG) ⊊ PCn(REG), n > 1.

The idea also holds for PCGS with context-free components as following: [7]:

CPC∗(CF) ⊆ PC∗(CF).

However, the system may not be necessarily made more powerful only by increasing
communication in this case.

Generally speaking, the centralized variant is a special case of a non-centralized
PCGS. Indeed, the centralized qualifier limits the communication initiation to the
first grammar in the system. Therefore, any languages generated by a centralized
PCGS of any type can be generated by a non-centralized PCGS of the same type:

CPCn(X) ⊆ PCn(X), n ≥ 1.

This indicates that the introduction of increasingly more powerful communication
facilities is largely the reason why the generative power of a PCGS is greater than a
single grammar component. Once these facilities are limited, the generative power
is also limited.

CHAPTER 3. PREVIOUS WORK 14

The following two results further demonstrate that the generative power of PCGS
is limited. When we have only two regular components, the languages generated by
centralized or non-centralized PCGS are all context-free.

• CPC2(REG) ⊊ CF .

• PC2(REG) ⊆ CF .
They has been proved in [3].

Another way to increase the generative power of a system is to increase the
number of components in the system. We already mentioned that the generative
capacity in the recursively enumerable case will not be changed and to some degree
the same is true for the context-sensitive case. However if we investigate the classes
lower in the hierarchy we can see that an increase in the number of components
generally increases the generative capacity of the system [3]:

1. There exists a language generated by a PCGS with 2 or more regular compo-
nents that cannot be generated by a linear grammar:

Yn(REG) \ LIN ̸= ∅,

for n ≥ 2, Y ∈ {PC, CPC, NPC, NCPC}.

2. There exists a language generated by a PCGS with 3 or more regular compo-
nents that cannot be generated by a context-free grammar:

Yn(REG) \ CF ̸= ∅,

for n ≥ 3, Y ∈ {PC, CPC, NPC, NCPC} (and n ≥ 2 for non-returning
PCGS).

3. There exists a language generated by a PCGS with 2 or more linear compo-
nents that cannot be generated by a context-free grammar:

Yn(REG) \ CF ̸= ∅,

for n ≥ 2, Y ∈ {PC, CPC, NPC, NCPC}.

4. There exists a language generated by a non-returning PCGS with 2 or more
regular components that cannot be generated by a context-free grammar:

Yn(REG) \ CF ̸= ∅,

for n ≥ 2, Y ∈ {NPC, NCPC}.
Clearly if the power of the components increases, then the power of the a PCGS

will generally increase. This applies strictly to the centralized case for regular, linear
and context-free components [3]:

CPCn(REG) ⊊ CPCn(LIN) ⊊ CPCn(CF), n ≥ 1.

For the non-centralized case, the same relationship would hold as well, but this
needs to be investigated.

CHAPTER 3. PREVIOUS WORK 15

3.1 PCGS with Context-Free Components

We already mentioned the number of components as an important factor in the
generative power of PCGS. It therefore makes sense to consider the hierarchies
generated by this factor. Some of these hierarchies are in fact infinite, namely
CPCn(REG) and CPCn(LIN), n ≥ 1 [3]. Some other hierarchies however do col-
lapse. A very notable example is the case of PCGS with context-free components,
which was investigated in a series of papers, some times also related to size complex-
ity. Collapsed to the class of recursively enumerable languages have been observed
in all the synchronized, non-centralized cases.

It was also shown [6] that the set of recursively enumerable languages can be
generated by non-returning PCGS with 6 context-free components through simulat-
ing a 2-counter machine. Further research on Turing completeness of non-returning
PCGS with context-free components also exists [12]. Since the non-returning sys-
tems can be simulated by returning systems using grammars holding intermediate
strings [8], the results mentioned above [6, 12] also work for returning systems,
though not necessarily with the same maximum number of components.

Returning systems have also been considered directly. A well known result is that
the non-centralized CF-PCGS hierarchy collapses at 11 components more specifi-
cally, RE = PC11CF = PC∗CF [4]. The PCGS developed in this paper is able
to simulate an arbitrary 2-counter machine. It is shown in Figure 3.2. This up-
per bound on the number of components has subsequently been improved to 5 [5].
These bounds are substantially tighter that the ones that can be established using
a non-returning to returning simulation [8].

However, all the results regarding the Turing completeness of returning context-
free PCGS assumed what was later called a broadcast communication model [18]. In
such a model a component that is being queried retains its original string throughout
the communication step, that is, until all components requesting that string have
received copies of it; only then is that component reset to its axiom. The original
definition of a communication step (Definition 2.2) is to some degree ambiguous in
this respect, but it appears nonetheless to imply a slightly different behaviour, that
was named one-step communication. Under one-step communication the queried
component returns to the axiom immediately after being communicated, regardless
of the number of components that will subsequently request a copy of its string. The
original results [4, 5] do not holds under the one-step communication model. It was
shown however that the hierarchy still collapses, though not necessarily at such as
low number of components as 11 or 5. In fact the Turing complete returning PCGS
that was developed for the one-step communication model features 95 components
[18]. It was developed as a direct simulation of the original, 11-component system
used in the broadcast communication model [4]. It is possible (but not yet known)
that a direct construction will reduce the number of components.

Regarding size complexity, we note that any recursively enumerable language

CHAPTER 3. PREVIOUS WORK 16

can be generated by returning PCGS with context-free components if the number
of nonterminals in the system is less than or equal to the natural number k [2].

3.2 Unsynchronized PCGS

As already mentioned earlier, little attention has been dedicated to unsynchronized
PCGS. It is quite obvious that the family of languages generated by a PCGS family
in unsynchronized mode is (not necessarily strictly) included in the family of lan-
guages generated by the same PCGS family in synchronized mode. Indeed, recall
that any unsynchronized PCGS can be converted into an equivalent synchronized
PCGS by the simple expedient of adding the set {A → A : A ∈ N} to the set of
rewriting rules of each component. In other words, every unsynchronized PCGS can
be simulated by a synchronized PCGS with components form the same grammar
family.

Once the unsynchronized PCGS have been found weaker, they have been ef-
fectively ignored. Results on this matter are scarce and include the following [3]:
The centralized case is very weak in some circumstances: L(UCPC∗REG) = REG,
L(UCPC∗LIN) = LIN . On the other hand, L(UNCPC2REG) contains non-
semilinear languages. It is also the case that L(UPC2REG) \ L(REG) ̸= ∅, but
that L(UPC2REG) ⊆ L(CF), L(UPC2LIN) \ L(CF) ̸= ∅, and L(UCPC2CF) \
L(CF) ̸= 0.

Note that all the results mentioned above are very punctual and have not been
extended in almost 20 years. Further note that to the best of our knowledge no
results regarding non-centralized unsynchronized context-free PCGS exist.

CHAPTER 3. PREVIOUS WORK 17

Pm = {S → [I], [I] → C, C → Qa1 } ∪
{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2, +1) ∈ R, x, y ∈ Σ} ∪
{< x, q, c′

1, c′
2, e′

1, e′
2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q′, e1, e2, 0) ∈ R,

x ∈ Σ, c′
1, c′

2 ∈ {Z, B}, e′
1, e′

2 ∈ {−1, 0, +1}} ∪
{< x, q, c′

1, c′
2, e′

1, e′
2 >→ x[y, q′, c1, c2, e1, e2], < x, qF , c′

1, c′
2, e′

1, e′
2 >→ x|

(x, q, c1, c2, q′, e1, e2, +1) ∈ R, c′
1, c′

2 ∈ {Z, B},

e′
1, e′

2 ∈ {−1, 0, +1}, x, y ∈ Σ},

P c1
1 = {S1 → Qm, S1 → Qc1

4 , C → Qm} ∪
{[x, q, c1, c2, e1, e2] → [e1]′, [+1]′ → AAC, [0]′ → AC, [−1]′ → C|
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0, +1}} ∪
{[I] → [I]′, [I]′ → AC},

P c1
2 = {S2 → Qm, S2 → Qc1

4 , C → Qm, A → A} ∪
{[x, q, Z, c2, e1, e2] → [x, q, Z, c2, e1, e2], [I] → [I]|x ∈ Σ, q ∈ E,

c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0, +1}}
P c1

3 = {S3 → Qm, S3 → Qc1
4 , C → Qm} ∪

{[x, q, Z, c2, e1, e2] → a, [x, q, B, c2, e1, e2] → [x, q, B, c2, e1, e2]
[I] → [I]|x ∈ Σ, q ∈ E, c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0, +1}}

P c1
4 = {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 , S

(2)
4 → Qc1

1 , A → a}
P c2

1 = {S1 → Qm, S1 → Qc2
4 , C → Qm} ∪

{[x, q, c1, c2, e1, e2] → [e2]′, [+1]′ → AAC, [0] → AC, [−1] → C|
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0, +1}} ∪
{[I] → [I]′, [I]′ → AC}

P c2
2 = {S2 → Qm, S2 → Qc2

4 , C → Qm, A → A} ∪
{[x, q, c1, Z, e1, e2] → a, [x, q, c1, B, e1, e2] → [x, q, c1, B, e1, e2],
[I] → [I]|x ∈ Σ, q ∈ E,

c1 ∈ {Z, B}, e1, e2 ∈ {−1, 0, +1}}
P c2

3 = {S3 → Qm, S3 → QC2
4 , C → Qm} ∪

{[x, q, c1, Z, e1, e2] → a, [x, q, c1, B, e1, e2] → [x, q, c1, B, e1, e2]
[I] → [I]|x ∈ Σ, q ∈ E, c1 ∈ {Z, B}, e1, e2 ∈ {−1, 0, +1}}

P c2
4 = {S4 → S

(1)
4 , S

(1)
4 → S

(2)
4 , S

(2)
4 → Qc2

1 , A → a}
Pa1 = {S → Qm, [I] →< I >, [x, q, c1, c2, e1, e2] →< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >, , I >→< I >, |x ∈ Σ,

q ∈ E, c1, c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0, +1}}

Pa2 = {S → S3, S(1) → S(2), S(2) → S(3), , S(3) → S(4),

S(4) → Qc1
2 Qc1

3 Qc2
2 Qc2

3 S(1)}.

Figure 3.2: A CF-PCGS that simulate a 2-counter machine

Chapter 4

All Languages Generated by
Unsynchronized Context-Free
PCGS Are Context Sensitive

In this chapter, we will study the computational complexity of unsynchronized
context-free PCGS. We first show that in the absence of ε-rules (that is, rewrit-
ing rules of the form A → ε) languages generated by unsynchronized context-free
PCGS can be recognized by nondeterministic Turing machines using O(|w|) tape
cells for each input instance w. We adapt for this purpose an earlier construction
used (unsuccessfully) for synchronized non-returning PCGS [1]. Later in the chapter
we adapt this proof to handle ε-rules.

4.1 Unsynchronized PCGS with no ε-rules

Throughout this section we allow no ε-rules in any of our PCGS. We will let this
kind of rules back in in the next section.

Definition 4.1. NON-DIRECT-SIGNIFICANT COMPONENTS: During a deriva-
tion process in PCGS, a component xi of the current configuration is called non-
direct-significant for the generation of the string w if either:

(i) i ̸= 1 and the respective component is not queried, or

(ii) i = 1 and the derivation from x1 to w in G1 cannot end successfully unless x1
is reduced to the axiom sometime in the future, or

(iii) i ̸= 1 and xi is queried by xj, j ̸= i, and then xj become non-direct-significant.

All the others components are called direct-significant. Any component which
is reduced to the axiom becomes direct-significant even if it was not so before.

18

CHAPTER 4. UNSYNCHRONIZED CF-PCGS ARE CONTEXT SENSITIVE 19

In other words, a non-direct-significant component of a PCGS cannot directly
participate at a successful derivation. It can only produce lateral effects (by queries
which can modify other components) or block the derivation (by circular queries or
by featuring nonterminals for which there are no applicable rewriting rules). Note
however that none of these blocking scenarios apply to unsynchronized systems.
Indeed, in unsynchronized systems each grammar can choose to either rewrite or wait
in any step which is not a communication step. For example, if one grammar has
no rules that can be used in a configuration, then this grammar can choose to wait
and the overall derivation can still proceed successfully. Similarly, if a component
introduces a query symbol that would generate a circular query (in conjunction
with other query symbols in other components), then that component can equally
choose not to apply the rule that introduces the problematic query symbol, so that
no circular query happens.

Definition 4.1 introduces a class of components for which the structure is irrel-
evant for the derivation. Therefore, these components can be removed as long as
the information relevant for lateral effects is kept. Note that in a returning system
a non-direct-significant component may become direct-significant in the future, but
that can only happen when the respective component is reduced to the axiom, which
is done with no regard of the structure of that component.

Lemma 4.1. Let Γ = (N, K, T, G1, . . . , Gn) be an unsynchronized returning
context-free PCGS without ε-rules, and let w be a string. Let also (x1, . . . , xn) be
a configuration of the system. Then, if the length of a component xi becomes greater
than |w|, that component becomes non-direct-significant for the generation of w.

Proof. We consider two situations:

(i) For i = 1. If |x1|K = 0, x1 will be rewrited using the rules of G1. In addition,
since these are context-free rules and there are no ε-rules, the length of x1 does
not decrease. If |x1|K ̸= 0, a communication step will be performed. Since
there are not empty components to be queried (there are no ε-rules to generate
them), the communication step does not reduce the length of the component.
In all, the length of x1 cannot decrease and therefore can never become w.
The only way for x1 to become w is for the first component to be queried and
so reduced to the axiom. Therefore x1 is non-direct-significant according to
the Definition 4.1.

(ii) For i ≥ 2 we have three situations:

(a) The component xi is never queried, therefore it is non-direct-significant.
(b) xi is queried by the first component, case in which the length of x1 be-

comes greater than |w|. Then x1 becomes non-direct-significant (accord-
ing to point (i) above), and so xi is non-direct-significant.

CHAPTER 4. UNSYNCHRONIZED CF-PCGS ARE CONTEXT SENSITIVE 20

(c) xi is queried by another component xj , j ̸= i, j ̸= 1, which become in
that way longer than w and also can not decrease unless it is reduced to
the axiom.

Corollary 4.2. Let Γ = (N, K, T, G1, . . . , Gn) be an unsynchronized non-
returning context-free PCGS without ε-rules, and let w be a string. Let (x1, . . . , xn)
be a configuration of the system. Then, if the length of a component xi becomes
greater than |w|, that component becomes non-direct-significant for the generation
of w.

Proof. The same considerations as in the proof of Lemma 4.1 apply. The only
difference is that no component is ever reduced to the axiom (since the system is
non-returning). Removing any reference to the operation of returning a component
to its axiom from the previous proof therefore results trivially in a valid proof for
the non-returning case.

Theorem 4.3. Let Γ be an unsynchronized (returning or non-returning) PCGS with
n context-free components (n ≥ 1) and no ε-rules. Then there is a Turing machine
M that recognizes the language L(Γ) using at most O(|w|) amount of work tape space
for each input instance w.

Proof. Let Γ = (N, K, T, G1, . . . , Gn) be an unsynchronized returning PCGS,
where Gi = (N ∪ K, T, Pi, Si), 1 ≤ i ≤ n, are context-free grammars without
ε-rules. We will construct a nondeterministic Turing machine M which recognizes
L(Γ).

M will be a standard Turing machine, with a work tape equipped with a
read/write-head. Given an input string w ∈ T ∗, M will simulate step by step the
derivation of Γ that produces w. The alphabet of the tape of M is N ∪ K ∪ T ∪ {@},
where @ /∈ N ∪ K ∪ T .

In what follows we will refer to Lemma 4.1, and thus establish the proof for the
returning case. This will also establish the proof for the non-returning case as long
as all the references to Lemma 4.1 are replaced to references to Corollary 4.2.

According to the Definition 2.2, there are two types of derivation steps to sim-
ulate: the component-wise rewriting and the communication. M will keep on its
tape the current configuration (x1, x2, . . . , xn) and will work on it as follows:

(i) If |xi|K = 0 for all i, 1 ≤ i ≤ n, M simulate rewriting for each component
xi, 1 ≤ i ≤ n. If |xi|N > 0, M can choose to either leave xi unchanged or
rewrite xi by using a rule selected from the rule set Pi. If there is some i for
which |xi|N = 0 or no suitable rule exists to rewrite xi, then that component
remains unchanged.

CHAPTER 4. UNSYNCHRONIZED CF-PCGS ARE CONTEXT SENSITIVE 21

If |xi| > |w| then, according with Lemma 4.1, xi become non-direct-significant.
Therefore its structure is irrelevant and it will be replaced by the string

@N1 . . . NjQ1 . . . Qk, (4.1)

where @ is a special symbol (@ /∈ N ∪ T ∪ K), N1, . . . , Nj are exactly all the
distinct nonterminals in xi and Q1, . . . , Qk are exactly all (not necessarily
distinct) query symbols in xi.
Rewriting strings of form (4.1) works as follows: Let k = 0 (no query symbols
in the string) and the rewriting rule to be applied be

A → α1A1α2A2 . . . αmAmαm+1,

where A ∈ N, A1, . . . , Am ∈ N ∪ K and α1, . . . , αm+1 ∈ T ∗. Then, there
is Nr = A, for some 1 ≤ r ≤ j (otherwise the rule is not applicable). For
each k, 1 ≤ k ≤ j, if Ak does not already exists in xi then it is added to
xi. Since this is an unsynchronized system, each grammar can choose to wait
for an arbitrary amount of time. In fact, the only addition to unsynchronized
systems over a synchronized system is the possibility of waiting. Therefore,
we can assume that each nonterminal appears infinitely many times without
modifying the overall language generated by the system. A detailed argument
on this matter can be found below.

(ii) If there are query symbols in the current configuration, then M simulates
communication steps. If there are circular queries, M rejects the input and
halts. Otherwise, M nondeterministicaly selects a component xi for which
Qj , 1 ≤ j ≤ q, are all the query symbols and |xj |K = 0, 1 ≤ j ≤ q. M
sequentially replaces Qj by xj . If either the current xj is of the form (4.1)
or xi becomes longer than |w| after replacement, then xi becomes non-direct-
significant, so it will be replaced by a string of the form (4.1).
The same mechanism also applies to non-direct-significant components, with
the addition that after the completion of the communication step all terminals
are removed, all duplicate nonterminals are also removed, and the nonterminals
and query symbols are re-ordered so that the form (4.1) is maintained.
This communication step is repeatedly performed until there are no query
symbols in the current configuration. The components that have been com-
municated are reduced to their respective axiom whenever applicable (that is,
whenever the system is returning).

M repeats steps (i) and (ii) as applicable until w and x1 are identical, case in which
M accepts the input and halts.

In the case of a returning system when a component xi is queried, M has to
simulate the returning of xi to the axiom. This is done by replacing xi by the axiom

CHAPTER 4. UNSYNCHRONIZED CF-PCGS ARE CONTEXT SENSITIVE 22

of its grammar (Si). Note that this replacement dose not depend of the form of xi

so the processing of non-direct-significant components is correct (note however that
those components become direct-significant and so are no longer stored in the form
(4.1)). Obviously this discussion does not apply to non-returning systems, where a
non-direct-significant component can never become direct-significant again.

Note that nonterminal symbols are never removed from a non-direct-significant
component. This might appear to pose problems in the following circumstances:
The continuation of derivation from a nonterminal A being rewritten into another
nonterminal B would be different from the derivation from A (such as by B blocking
further rewriting if contrast with A that would allow the derivation to continue).
In a direct-significant component, the occurrence of A is replaced by B and A
disappears, but in non-direct-significant component, A and B will both remain in
the string after the occurrence of A was “replaced” by B.

We argue that the continuing presence of A does not affect the possible deriva-
tions given that in an unsynchronized system A is not required to rewrite itself into
B at any fixed time; we can just not apply the respective rule for an arbitrary num-
ber of rewriting steps. Additionally, the nature of the component grammars (that
are all context free) ensures that there is no possible rewriting of A and B together
that is not a combination of rewriting A and B individually. True, the derivation
in the corresponding component would block if A were not present. However this
does not have any influence in the overall derivation, since in this case the blocked
component can also just wait as much as necessary for the other components to
perform their derivations. In other words, the presence of a blocking nonterminal in
a component does not cause blocking in the overall derivation. Therefore, the fact
that A is still present is irrelevant. Overall, in non-direct-significant components,
two nonterminals appearing sequentially one after the other has the same effect as
the two nonterminals appearing simultaneously.

Now let us count the amount of work space used by M during the derivation.
Each component is either direct-significant (case in which we need O(|w|) space to
store it), or it is not. We have a fixed, finite number t of nonterminals for any given
PCGS and exactly n query symbols. Any query symbol that is introduced in a
component must be immediately eliminated by performing a communication step,
and so the maximum number of query symbols that can appear simultaneously in
a string is again fixed for a given PCGS and is no larger than the size m of the
longest rewriting rule in that PCGS. Therefore the length of a non-direct-significant
component is independent of |w| and is less than 1 + (t + m).

A communication step may use temporarily an amount of tape space double than
the space used by a single component temporarily. For example, a string of length
|w| is queried by another string of length |w|; before the reduction to form (4.1) we
have to use 2|w| tape cells. Therefore, the number of cells used by a component is
less than 2 × max (|w|, 1 + (t + m)). We also need some extra space on the tape
to keep the rules and possibly other information about the PCGS being simulated,

CHAPTER 4. UNSYNCHRONIZED CF-PCGS ARE CONTEXT SENSITIVE 23

whose size we denote by ρ. In all, the space used by M is upper-bounded by
2 × n max (|w|, 1 + (t + m)) + ρ. However, neither of t, m, or ρ are |w|-dependent,
so the overall space used is linear in |w|, as desired.

Corollary 4.4. All languages generated by unsynchronized (returning or non-re-
turning) PCGS with context-free components and no ε-rules are context sensitive.

Proof. This result follows directly from Theorem 4.3 given that all context-sensitive
languages can be accepted in linear space [16].

4.2 Handling ε-rules

Handling ε-rules in the same space constraints is easy once the following observation
is made: Let G be a context-free grammar and let n be a positive integer. Suppose
that we have a derivation in G that goes from a string of linear length to a string
of a superlinear length and then back to linear length. Then there always exists an
alternate derivation in G (starting and ending with the same string as the original
derivation) that does not use any intermediate string of superlinear length. Formally:

Lemma 4.5. Let G be context-free grammar and let n ≥ 0. Suppose that there
exists a derivation xs ⇒∗

G xb ⇒∗
G xd, where |xs| = O(n), |xb| is superlinear in n,

and |xd| = O(n). Then there always exists an alternate derivation xs ⇒∗
G xd such

that the length of all string in that derivation is O(n).

Proof. For convenience we use “nonterminal” and “terminal” to denote not just the
symbol itself but also an occurrence of that symbol (which is which should be clear
from the context).

The string xb is superlinear, because it contains either a superlinear number of
terminals or a superlinear number of nonterminals (or both). In the former case the
length of the string can never become sublinear later and then xd does not exist, so
the claim is vacuously true. Thus it must be the case that the number of terminals
in xb is linear (and so the number of nonterminals is superlinear).

Let then |xb|T = f(n) and |xb|N = g(n) with f(n) = O(n) and g(n) a superlinear
function. The terminals are introduced by at most g(n) rewritings (applications of
some rewriting rule), which necessarily introduces O(g(n)) nonterminals. It follows
that a superlinear number f(n) − g(n) of nonterminals are introduced by rules that
only introduce nonterminals. A superlinear number of these nonterminals are then
erased (using ε-rules), so they do not play any role in the generation of xd. If so,
then we can simply not apply those rules (which in the end do not have any effect
anyway). Omitting these rules results in a derivation that produces the same string
(in a possibly lower number of steps) and never encounters any intermediate string
of superlinear size.

CHAPTER 4. UNSYNCHRONIZED CF-PCGS ARE CONTEXT SENSITIVE 24

Obviously Lemma 4.5 is equally applicable to any component-wise derivation in
some component of an unsynchronized context-free PCGS. The fact that the PCGS
is unsynchronized allows the replacement of any derivation with any equivalent
derivation without changing the overall string that is eventually generated by that
PCGS.
Theorem 4.6. Let Γ be an unsynchronized (returning or non-returning) PCGS with
n context-free components (n ≥ 1) possibly featuring ε-rules. Then there is a Turing
machine M that recognized the language L(Γ) using at most O(|w|) amount of work
tape space for each input instance w.

Proof. As before let Γ = (N, K, T, G1, . . . , Gn) be an unsynchronized non-
returning PCGS, where Gi = (N ∪ K, T, Pi, Si), 1 ≤ i ≤ n, are context-free
grammars.

M is once more a standard Turing machine, with a work tape equipped with
a read/write-head. Given an input string w, M will simulate step by step the
derivation of w by Γ. The alphabet of the tape of M is N ∪ K ∪ T ∪ {@}, where
@ ̸∈ N ∪ K ∪ T .

We essentially reproduce the proof of Theorem 4.3, with all the changes that are
needed to handle ε-rules (which is basically just a matter of using Lemma 4.5 in
all the appropriated places). In particular, we continue to refer to Lemma 4.1 and
thus establish the proof for the returning case, which will also establish the proof
for the non-returning case as long as all the references to Lemma 4.1 are replaced to
references to Corollary 4.2. For completeness, we reproduce the whole proof, though
is an abbreviated manner.

The machine M keeps on its work tape the current configuration (x1, . . . , xn) of
Γ and keeps changing it as before:

(i) If |xi|K = 0 for all i, 1 ≤ i ≤ n, M simulate rewriting for each component
xi, 1 ≤ i ≤ n. If |xi|N > 0, M can choose to either remains unchanged or
rewrite xi by using a rule selected from the rule set Pi. If there are some
i for which |xi|N = 0 or a suitable rule does not exist, then M will remain
unchanged. So far we have not placed any limitation on the use of ε-rules;
they can be applied as desired (or needed).
If |xi| > |w| then, according with Lemma 4.5, xi become non-direct-significant
and so its representation will be replaced with a string of the form (4.1) as
shown on page 21.
The rewriting of the strings of form (4.1) proceeds as in the previous proof.
Specifically, suppose we apply the rule

A → α1A1α2A2 . . . αmAmαm+1

where A ∈ N, A1, . . . , Am ∈ N ∪ K and α1, . . . , αm+1 ∈ T ∗. Then, there is
Nr = A, 1 ≤ r ≤ j, (if not, the rule is not applicable). For all 1 ≤ k ≤ j, if
Ak does not already exists in xi, then it is added to xi.

CHAPTER 4. UNSYNCHRONIZED CF-PCGS ARE CONTEXT SENSITIVE 25

We note again that no nonterminal is ever removed from the representation
of form (4.1). Ignoring (for the moment) ε-rules the same argument as of why
this does not affect the overall result of the derivation applies.
Now it is time to consider ε-rules. We still have not restricted their use,
but interestingly enough it is easy to see that these rules do not have any
effect on a non-direct-significant component. Indeed, no nonterminal is ever
removed from a string represented in form (4.1), which is actually the only
thing an ε-rule ever does. Note that keeping all the nonterminals in a non-
direct-significant component does not affect the overall derivation as argued on
page 22 in the proof of Theorem 4.3. Thus it continues to be the case that the
only way for a non-direct-significant component to become direct-significant
is by its reduction to axiom as a consequence of a query (see below).
We are able to argue however that (effectively) not using ε-rules in non-direct-
significant components does not affect the overall derivation as follows: Using
or not using these rules can only be meaningful when their use transforms a
non-direct-significant component back into a direct-significant one. Indeed,
the other use of these rules can be explained away by the argument that
we refereed to in the paragraph above (that not eliminating a nonterminal
in a non-direct-significant component does not affect the overall derivation,
see page 22). According to Lemma 4.5 however, it is never necessary to go
from a non-direct-significant back to a direct-significant component. Indeed,
any derivation that originally goes this route can according to the lemma be
replaced by an equivalent derivation that never encounters any non-direct-
significant (that is, superlinear) form of the respective component. We can
therefore let this derivation continue in the superlinear territory and never
come back (and presumably fail), since the nondeterministic nature of M
ensure that the alternate derivation guaranteed by Lemma 4.5 will also be
explored (and possibly succeed). That is, we ignore ε-rules in components
of form (4.1) without loss of generality, since alternate derivations are always
guaranteed by Lemma 4.5.

(ii) If there are query symbols in the current configuration, then M simulates
communication steps. If there are circular queries, M rejects the input and
halts. Otherwise, M nondeterministicaly selects a component xi for which
Qj , 1 ≤ j ≤ q, are all the query symbols and |xj |K = 0, 1 ≤ j ≤ q. M
sequentially replaces Qj by xj . If either the current xj is of the form (4.1)
or xi becomes longer than |w| after replacement, then xi becomes non-direct-
significant, so it will be replaced by a string of the form (4.1). This commu-
nication step is repeatedly performed until there are no query symbols in the
current configuration. The queried components are reduced to their respective
axiom as applicable (that is, if Γ is returning).

M repeats steps (i) and (ii) until w and x1 are identical, case in which M accepts

CHAPTER 4. UNSYNCHRONIZED CF-PCGS ARE CONTEXT SENSITIVE 26

the input and halts.
It is immediate that our machine works in exactly the same manner as the

machine used in the proof of Theorem 4.3. It follows that the space requirements are
identical and so upper bounded by 2 × n max (|w|, 1 + (t + m)) + ρ, where neither
of t, n, or ρ are |w|-dependent. That is, the overall space used is again linear in |w|,
as desired.

Corollary 4.7. All languages generated by unsynchronized (returning or non-returning)
PCGS with context-free components in the present of ε-rules are context sensitive.

Proof. Again this result follows directly from Theorem 4.6 given that all context-
sensitive languages can be accepted in linear space [16].

Chapter 5

Conclusion

PCGS introduces an inherently concurrent model in the discipline of formal lan-
guages. Due to this inherent parallelism, to exploit this model in general (and
context-free PCGS in particular) in formal methods is one of our longer-term in-
terest. It is necessary to address several formal language questions before applying
it into our studies, the generative power of context-free PCGS being one of them.
Indeed, this is a particularly important question that affects many aspects of any
PCGS-based specification formalism including expressiveness and also algorithm
complexity.

From the previous results on PCGS we know the expressiveness of synchronized
context-free PCGS, which all turn out to be Turing complete [4, 18]. However, there
are no discussions about the unsynchronized context-free PCGS. We attempted here
to remedy this oversight.

First, we gave a proof that the language generated by unsynchronized context-
free PCGS in the absence of ε-rules are context sensitive, being recognizable by
nondeterministic Turing machines using O(|w|) tape cells for each input instance w
(Theorem 4.3 and Corollary 4.4). We adapted for this purpose an earlier construc-
tion [1]. The earlier use of this construction failed because the non-direct-significant
components can affect the derivation through various side effects including nonter-
minals that cannot be overwritten and thus block the derivation, as well as nonter-
minals that introduce circular queries. Neither of these side effects can happen in
an unsynchronized system, simply because each grammar has the liberty of choos-
ing at any step that is not a communication step to either rewrite or wait. In
other words, if a component contains nonterminals that cannot be rewritten, it can
choose to wait to let other grammars rewrite, and so the derivation will no longer be
blocked. Therefore, the construction that failed in the synchronized case succeeds
in the unsynchronized case. We are thus able to base our proof on representing long
(non-direct-significant) components in a compact manner that reduces the overall
space requires to simulate the system to linear without affecting the overall result.

We were then able to handle ε-rules in our simulation with virtually no change in

27

CHAPTER 5. CONCLUSION 28

the representation and algorithm (Theorem 4.6 and Corollary 4.7). We continue to
use the same concept of non-direct-significant components together with the same
representation of these components. The only potential problem is that some com-
ponent can become non-direct-significant and then direct-significant again through
rewriting. This is a problem because the conversion from direct-significant to our
compact representation of non-direct-significant components necessarily looses infor-
mation, so that the conversion the other way around is no longer possible. However,
we show that such a transition (from non-direct-significant to direct-significant) is
actually unnecessary by showing that any such a derivation has an equivalent deriva-
tion that never touches the non-direct-significant territory (Lemma 4.5, the crux of
handling ε-rules).

In all, we showed in this paper that the languages generated by all the families
of unsynchronized PCGS with context-free components can be accepted in linear
space and so they are all context sensitive:

Theorem 5.1. Any language generated by an unsynchronized PCGS with context-
free components can be accepted by a linear space-bounded Truing machine. There-
fore all languages generated by unsynchronized PCGS with context-free components
are context-sensitive.

Proof. Immediate from Theorem 4.3, Corollary 4.4, Theorem 4.6, and Corollary 4.7.

Bibliography

[1] S. D. BRUDA AND M. S. R. WILKIN, Limitations of coverability trees for
context-free parallel communicating grammar systems and why these grammar
systems are not linear space, Parallel Processing Letters, 26 (2016), p. 1650012.

[2] E. CSUHAJ-VARJÚ, On size complexity of context-free returning parallel com-
municating grammar systems, in Where Mathematics, Computer Science, Lin-
guistics and Biology Meet, C. Martin-Vide and V. Mitrana, eds., Springer, 2001,
pp. 37–49.

[3] E. CSUHAJ-VARJÚ, J. DASSOW, J. KELEMEN, AND G. PAUN, Grammar
systems: a Grammatical Approach to Distribution and Cooperation, Gordon and
Breach Science Publishers S.A., 1994.

[4] E. CSUHAJ-VARJÚ AND G. VASZIL, On the computational completeness of
context-free parallel communicating grammar systems, Theoretical Computer
Science, 215 (1999), pp. 349–358.

[5] E. CSUHAJ-VARJÚ, G. PAUN, AND G. Vaszil, PC Grammar Systems with
five Context-Free Components Generate all Recursively enumerable Languages,
Theoretical Computer Science, 299 (2003), pp. 785–794.

[6] E. CSUHAJ-VARJÚ AND G. VASZIL, On the size complexity of non-returning
context-free PC grammar systems, in 11th International Workshop on Descrip-
tional Complexity of Formal Systems (DCFS 2009), 2009, pp. 91–100.

[7] J. DASSOW, G. PAUN, AND G. ROZENBERG, Grammar systems, in Hand-
book of Formal Languages – Volume 2: Linear Modeling: Background and Ap-
plications, Springer, 1997, pp. 155–213.

[8] S. DUMITRESCU, Non-returning PC grammar systems can be simulated by
returning systems, Theoretical Computer Science, 165 (1996), pp. 463–474.

[9] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability A Guide
to the Theory of NP-Completeness, Macmillan Higher Education, 1979.

29

BIBLIOGRAPHY 30

[10] G. KATSIRELOS, S. MANETH, N. NARODYTSKA, AND T. WALSH, Re-
stricted global grammar constraints, in Principles and Practice of Constraint
Programming (CP 2009), vol. 5732 of Lecture Notes in Computer Science, 2009,
pp. 501–508.

[11] H. R. LEWIS AND C. H. PAPADIMITRIOU, Elements of the Theory of Com-
putation, Prentice Hall, 2nd ed., 1998.

[12] N. MANDACHE, On the computational power of context-free PCGS, Theoret-
ical Computer Science, 237 (2000), pp. 135–148.

[13] V. MIHALACHE, On the generative capacity of parallel communicating gram-
mar systems with regular components, tech. rep., Turku Centre for Computer
Science, Turku, Finland, 1996.

[14] D. PARDUBSKA AND M. PLATEK, Parallel communicating grammar sys-
tems and analysis by reduction by restarting automata, tech. rep., Department
of Computer Science, Comenius University, Bratislava, Slovakia, 2008.

[15] G. PAUN AND L. SANTEAN, Parallel communicating grammar systems: the
regular case, Analele Universitatii din Bucuresti, Seria Matematica-Informatica,
2 (1989), pp. 55–63.

[16] J. ROTHE, Complexity theory and cryptology, Texts in Theoretical Computer
Science, An EATCS Series, Springer, 2005.

[17] L. SANTEAN, Parallel communicating grammar systems, Bulletin of the
EATCS (Formal Language Theory Column), 1 (1990).

[18] M. S. R. WILKIN AND S. D. BRUDA, Parallel communicating grammar sys-
tems with context-free components are Turing complete for any communication
model, Acta Universitatis Sapientiae, Informatica, 8:2 (2016), pp. 113–170.

	Introduction
	Preliminaries
	Grammars
	Parallel Communicating Grammar Systems
	Examples

	Previous Work
	PCGS with Context-Free Components
	Unsynchronized PCGS

	All Languages Generated by Unsynchronized Context-Free PCGS Are Context Sensitive
	Unsynchronized PCGS with no -rules
	Handling -rules

	Conclusion
	Bibliography

