
Communicating Multi-Stack Visibly Pushdown Processes

by

Davidson Madudu

A thesis submitted to the

Department of Computer Science

in conformity with the requirements for

the degree of Master of Science

Bishop’s University

Sherbrooke, Quebec, Canada

March 2016

Copyright c© Davidson Madudu, 2016

Abstract

Visibly Pushdown Languages (VPL) were proposed as a formalism to model and verify

complex, concurrent and recursive computing systems. However, the lack of closure under

shuffle for VPL makes it unsuitable for the specification and verification of such complex

systems. Multi-stack Visibly Pushdown Languages (MVPL) appear to give a more realistic

expression of concurrency and recursion in computational systems, but they turn out to have

similar limitations. However, natural modifications of the definition of MVPL operations

result in a formalism that becomes suitable for the specification and verification of complex

computing systems.

With this result in mind, we introduce an MVPL-based process algebra called Com-

municating Multi-stack Visibly Pushdown Processes (CMVP). CMVP defines a superset of

CSP by combining the interesting properties of finite-state algebras (such as CSP) with the

context-free features of MVPL. Unlike any other process algebra, CMVP includes support

for parallel composition but also for the general form of recursion. We present the syntax,

operational semantics, trace semantics, trace specification, and trace verification of CMVP.

In addition to the above, a CMVP trace observer can extract stack and module information

from a trace; as a result one can specify and verify many software properties which cannot

be specified in other existing process algebra. Such properties include the access control of

a module, stack limits, concurrent stack properties, internal property of a module, pre- and

post-conditions of a module, etc. CMVP lays the basis of algebraic conformance testing for

infinite-state processes, such as application software.

i

Acknowledgments

Firstly, it is great gratitude that I acknowledge God’s grace which was clearly at work from

the inception of this dissertation and up until this moment.

I would also like to express my sincere gratitude to my supervisor, Prof. S. Bruda for

his continuous support, patience, motivation and guidance throughout my MSc. program.

His immense knowledge and guidance was of great help all through my degree program and

with the completion of this dissertation.

Besides my supervisor, I would like to acknowledge and thank the members of my thesis

defence committee: Prof. L. Bentabet, Prof. J. Dingel, and Prof. L. Jensen, for letting

my defence be an enjoyable experience and for their insightful suggestions, comments and

encouragement.

I also want acknowledge the support and encouragement of my parents and my sister,

whose actions and words pulled me up when I faced what seemed to be a mountain.

I would also like to thank the Bishop’s University Computer Science department for

providing me with a platform and the necessary support needed for me to attain goals I

had set for myself.

Last but not the least, I duly acknowledge all my friends and course mates who provided

a helping hand when I was in need. To all I say a big thank you.

ii

Contents

1 Introduction 1
1.1 Process Algebra . 2
1.2 Visibly Pushdown Languages . 3
1.3 Multi-Stack Visibly Pushdown Languages 4
1.4 Thesis . 5
1.5 Dissertation Summary . 6

2 Preliminaries 8
2.1 Labelled Transition System . 8
2.2 Communicating Sequential Processes . 9
2.3 Visibly Pushdown Automata . 10
2.4 Multi-stack Visibly Pushdown Automata . 12
2.5 Trace Semantics . 15

2.5.1 Traces . 16
2.5.2 Trace Semantics . 17
2.5.3 Specification with Traces . 18
2.5.4 Verification with Traces . 19

2.6 Previous Work . 20

3 Communicating Multi-Stack Visibly pushdown Processes 23
3.1 The Operational Semantics of CMVP . 25

3.1.1 Prefix Choice . 27
3.1.2 Internal Event . 28
3.1.3 Choice . 28
3.1.4 Recursion . 30
3.1.5 Parallel Composition . 31
3.1.6 Hiding . 33
3.1.7 Abstract . 33
3.1.8 Renaming . 35
3.1.9 Sequential Composition and Interrupt 36

3.2 CMVP Is a Process Algebra . 38

iii

4 A Detailed Example 41
4.1 Prefix Choice . 42
4.2 Internal Event . 42
4.3 Choice . 43
4.4 Recursion . 44
4.5 Parallel Composition . 44
4.6 Hiding . 45
4.7 Abstract . 45
4.8 Renaming . 46
4.9 Sequential Composition and Interrupt . 47

5 CMVP Trace Semantics 48
5.1 Prefix Choice . 48
5.2 External Choice . 49
5.3 Internal Choice . 50
5.4 Parallel Composition . 51
5.5 Hiding . 53
5.6 Renaming . 54
5.7 Sequential Composition . 56
5.8 Interrupt . 56
5.9 Recursion . 58
5.10 Abstract . 59

6 Trace Specification and Verification in CMVP 61
6.1 CMVP Trace Functions . 61

6.1.1 Abstract Function . 61
6.1.2 Stack Extract . 62
6.1.3 Module Extract . 62
6.1.4 Completeness . 62

6.2 CMVP Trace Specification . 63
6.2.1 Access Control . 63
6.2.2 Stack Limit . 63
6.2.3 Concurrent Stack Properties . 63
6.2.4 Internal Properties of a Module . 64
6.2.5 Pre- and Post-Conditions . 64

6.3 CMVP Trace Verification . 65
6.3.1 Prefix Choice . 65
6.3.2 Choice . 65
6.3.3 Parallel Composition . 67
6.3.4 Hiding . 67
6.3.5 Abstract . 68
6.3.6 Renaming . 68
6.3.7 Sequential Composition . 69

iv

6.3.8 Interrupt . 69
6.3.9 Recursion . 69

7 Conclusions 70
7.1 Advantages of CVP over Other Process Algebrae 71
7.2 Future . 72

Bibliography 74

v

List of Figures

2.1 Operational Semantics of CSP [17] . 11

3.1 Prefix choice . 27
3.2 Internal action (a), internal choice (b) . 28
3.3 External choice . 29
3.4 Recursion . 29
3.5 Alphabetized parallel . 31
3.6 Hiding . 33
3.7 Abstract . 34
3.8 Forward renaming . 35
3.9 Backward renaming . 36
3.10 Sequential composition . 36
3.11 Interrupt . 37

4.1 Illustration of the possible transitions of state P5 of process Pε 42
4.2 Illustration of internal choice: P uQ . 43
4.3 A run of the parallel composition between processes Pε and Qε 45
4.4 Illustration of the possible transitions of state P5 \ {c} 46
4.5 An abstracted configuration and an un-abstracted configuration of Pε . . . 46
4.6 A run illustrating a sequential composition between Pε and Qε 47
4.7 A run illustrating an interrupt between Pε and Qε 47

5.1 Laws for external choice . 50
5.2 Law for internal choice . 51
5.3 Laws for alphabetized parallel . 52
5.4 Laws for hiding . 53
5.5 Laws for Renaming . 55
5.6 Laws for sequential composition . 57
5.7 Laws for interrupt . 57

vi

Chapter 1

Introduction

In today’s world, there is a heavy reliance on sophisticated computing systems. For instance,

our financial, transportation, government and medical sectors are all managed by using

various computing infrastructures. Many of these systems perform in real-time and directly

impact individuals. As a result of this heavy dependence, it must be ensured that these

systems comply with their specifications. This is archived by carrying out verification and

validation tests on the computing systems before they are deployed, and by so doing the

chances of failures are minimized. Various tools have been developed for the specification

and verification of computing systems.

Formal methods in particular have been hugely successful in proving the correctness of

computing systems since their introduction over two decades ago. Formal methods are able

to provide a mathematical guarantee of correctness, much needed for any mission-critical

computing system.

This being said, the modelling of recursive and concurrent systems is a major challenge

in the software verification arena. Various non regular properties need to be modelled

to create a specification and to perform verification on these complex systems. Current

standard verification techniques such as model checking [13] or finite state process algebrae

[4] are unable to model regular properties and so are difficult to use for complex application

software. Context-free techniques such as basic process algebra or BPA [6], etc. present a

1

CHAPTER 1. INTRODUCTION 2

number of issues stemming from the lack of closure of context-free languages under several

operations, which in turn limit their compositionality. This has all lead to wide spread

research in formal methods to develop a concurrent process algebra that would easily specify

and verify concurrent and recursive systems.

1.1 Process Algebra

A process algebra is a mathematical framework used to model a computational system in

other to help analyze the behaviour of that system [27]. In carrying out this analysis process

algebras rely on both equational logic and non-equational logic [27]. Pioneering research on

process algebra was carried out by both Milner [22] and Hoare [17].

Today, we have a fairly large number of process algebraic theories developed by various

researcher for modelling various aspects of computational systems. Examples of process

algebras in use today are: Communicating Sequential Processes or CSP [8, 24], Calculus

of Communicating Systems or CCS [22] and Algebra of Communicating Processes or ACP

[5]. In general, process algebra theories are defined by three semantic approaches, namely:

operational semantics, denotational semantics and axiomatic semantics.

Operational semantics models the behaviour of a system as an execution of an abstract

machine consisting only of a set of states and a set of transitions [7, 21]. In comparison

to operational semantics, denotational semantics is a more abstract semantic approach.

It models the behaviour of a system by a function transforming input into output [25].

By using this semantical approach, behavioural equivalences such as refinement ordering

and congruence can be introduced to check equivalence between related systems which

have system behaviours that are indistinguishable to an external observer. Finally, the

axiomatic semantics checks system behaviour by using axiomatic proof methods to validate

the correctness of a system against a proposed specification [14, 16].

Process algebras adopt different kinds of denotational and axiomatic approaches for the

specification and verification of system behaviour. For instance, CCS has been studied

CHAPTER 1. INTRODUCTION 3

under bisimulation and testing semantics [22], CSP under trace and failure semantics (a

variants of testing semantics) [8, 24], and ACP under bisimulation and branching bisim-

ulation semantics [5]. However, in all cases one needs to first establish an operational

semantics.

Generally, systems consist of several levels of sub-systems. Using the congruence and

refinement relations provided by a process algebra one can determine if these various sub-

systems conform to one another. These relations are typically substitutive, meaning that

related sub-systems may be used interchangeably inside a larger system. As a result, com-

positional system verification can be carried out since we are able to carry out specification

and verification on sub-systems in isolation from their parent system.

1.2 Visibly Pushdown Languages

Visibly pushdown languages (VPL) [3] lay in the spectrum between balanced languages and

deterministic context-free languages [3]. They were introduced as a possible basis for formal

verification [3]. VPL share many of the interesting properties that the regular languages

have. Their nondeterministic acceptors are equally as expressive as their deterministic

counterparts. They have closure under union, intersection, complementation, concatena-

tion, Kleene star, prefix, and language homomorphisms; however, they lack closure under

shuffle [11]. Membership, emptiness, language inclusion, and language equivalence are all

decidable for VPL.

VPL are accepted by visibly pushdown automata (vPDA), which are push-down au-

tomata with stack behaviour controlled by the input alphabet. A vPDA operates over an

alphabet that is partitioned into three disjoint sets of call, return, and local symbols. Any

input symbol can change the control state, but only calls and returns can modify the stack

content. While accepting a call symbol a vPDA must push one symbol on the stack, and

while accepting a return symbol it must pop one symbol from the stack (unless the stack is

empty). vPDAs model the execution of a recursive module naturally by using call symbols

CHAPTER 1. INTRODUCTION 4

to represent the invocation of modules, return symbols to represent the returns from mod-

ules, and local symbols for all the other actions. Attempts have then been made to develop

a VPL-based concurrent process algebra [27], however the lack of closure under shuffle has

prevented the said efforts [11].

1.3 Multi-Stack Visibly Pushdown Languages

Multi-stack visibly pushdown languages (MVPL) [19] is a natural extension of VPL. MVPL

lay in the spectrum beyond context-free languages. MVPL share the same interesting

properties that VPL have, however, they also have similar limitations. Just like VPL, they

also lack closure under shuffle [11].

MVPL are accepted by multi-stack visibly pushdown automata (MVPDA), which operate

on n stacks for some n ≥ 1. The input alphabet also control stack behaviour. A MVPDA

operates over an n-stack call-return alphabet partitioned into n + 1 pair-wise disjoint sets

of alphabets (n pairs of call and returns alphabets plus one alphabet of local symbols).

Similarly to VPL, an input symbol can change the control state, but only calls and returns

can modify the content of the stacks. As before, while executing a call symbol associated

to the i-th stack a MVPDA must push one symbol on that stack, and while executing a

return symbol associated to the i-th stack it must pop one symbol from that stack (unless

the i-th stack is empty). MVPDAs naturally capture the properties of recursive modules

by representing the invocation of a module by a call symbol, the return from a module by a

return symbol, and all the other actions by local symbols. This time however the modules

can operate in n separate threads of execution, while each such a thread has one associated

stack.

The original operations over MVPL were very restricted, in the sense that the usual

operations over two MVPL (such as union, concatenation, etc.) are only defined when the

two languages are over exactly the same n-stack call-return alphabet. Such a restriction

was later relaxed [11] to the restriction that two MVPL can be composed iff the sets of call,

CHAPTER 1. INTRODUCTION 5

local, and return symbols of the two languages do not overlap (meaning that a call symbol

in one language is not a return or a local symbol in the other, and so on).

However, this unrestricted MVPL lacks any useful closure property. Such properties were

restored by the introduction of a natural stack renaming process (discussed in section 2.4),

which not only imitate what happens in real life (namely, the concurrent execution of

threads), but also restores all the closure properties of MVPL, with closure under shuffle

on top [11]. Indeed, based on this stack renaming process, one can easily define “disjoint”

variants of all the interesting operators such that MVPL are closed under all of them [11].

This effort paves the way for an MVPL-based compositional specification and verification

of complex systems. Hence, we adopt the model of disjoint operations over the unrestricted

variant of MVPL and thus use MVPL as the underlying model of CMVP.

1.4 Thesis

Classical process algebras such as CCS, ACP and CSP are only able to specify regular

properties, since regular languages are used as their domain languages. Regular languages

are closed under all the operations that are required to create a process algebra namely,

union, Kleene star, intersection, shuffle, hiding, renaming, concatenation, and prefix. Since

regular languages are unable to specify non-regular properties they are however unable to

adequately model recursive and concurrent behaviours in computational systems. Unlike

regular languages, context-free languages are able to capture both regular and non regular

properties of computing systems. However, they lack closure under the critical operation

of intersection.

On the other hand, both VPL and MVPL naturally capture the properties of recursive

and concurrent systems [11]. However, they both have identical limitations; the lack of

closure under shuffle effectively prevents both VPL-based and MVPL-based compositional

approaches to the specification of concurrent and recursive systems [11]. The recent intro-

duction of an unrestricted MVPL variant and a natural stack renaming process (discussed

CHAPTER 1. INTRODUCTION 6

in Section 2.4) allows us to use the defined set of disjoint operation by which they may

be operated on MVPL and effectively creates the potential for an MVPL-based concurrent

process algebra [11].

Our thesis is therefore that a fully compositional concurrent MVPDA-based process

algebra is possible. We are thus presenting a process algebra called Communicating Multi-

stack Visibly Pushdown Process (CMVP). We also present the operational semantics and

the trace model of CMVP, using the semantical approach of CSP.

1.5 Dissertation Summary

This dissertation uses multi-stack pushdown languages (MVPL) [19] to develop a fully com-

positional process algebra that will naturally model recursive properties and concurrency in

computational systems. Chapter 2 begins by presenting preliminary information. Section

2.1 establishes a labelled transition system (LTS) semantics for MVPDA, the underlying

semantic model for all the process algebras. The underlying LTS of a MVPDA-based pro-

cess algebra is an infinite-state machine. Every state of such an LTS is represented by the

combination of a MVPDA state and the current stack content of the stack in operation

associated to that state. Special attention is given to CSP in Section 2.2 since our process

algebra closely follows the semantic approach of CSP. Sections 2.3, 2.4, and 2.5 then in-

troduce formally vPDA, MVPDA, and traces semantics, respectively. Chapter 2 concludes

with a summary of related work.

In Chapter 3 the CMVP syntax is first introduced. We then show how the operators

of a concurrent process algebra along with a new operator abstract can be applied in the

MVPL setting. We apply our technique on the operators of CSP [7, 8, 15, 17, 24] (a

random choice, our formalism works with all the other finite-state process algebras). We

thus introduce a MVPDA-based process algebra called Communicating Multi-stack Visibly

Pushdown Processes (CMVP) as a superset of CSP; when all the input symbols are locals

then CMVP is equivalent to CSP. In Section 3.1 we describe the operational semantics of

CHAPTER 1. INTRODUCTION 7

CMVP. Then Theorem 3.2.1 (Section 3.2) shows that CMVP is indeed an algebra, being

closed under all its operations. In all, we introduce the syntax and the structural operational

semantics of CMVP.

We carry out a detailed example in Chapter 4, that shows in detail the MVPDA model

for the various constructs of CMVP. We provide a clearer illustrations by means of examples

of all the CMVP operations.

A trace model for CMVP in discussed in Chapters 5. The trace semantics for CMVP

is presented first. Then four functions that support our semantical model are defined on

CMVP traces: abstract A, stack extract S, module extract M, and completeness C.

A trace framework for CMVP trace specification and verification is then presented in

Chapter 6. In particular we demonstrate in Section 6.2 that useful properties for software

verification (which context-free or regular process algebras are unable to specify) can be

specified in CMVP. We then proceed to provide the trace proof system for CMVP, used to

verify the properties defined in Section 6.2.

Chapter 7 brings a conclusion to the dissertation by enumerating CMVP’s advantage

over other process algebras and further research that could be done to advance this study.

Chapter 2

Preliminaries

2.1 Labelled Transition System

A labelled transition system (LTS) [9] is a tuple (Θ,Σ,∆, I), where Θ is a set of states ,

Σ is a finite set of actions (not containing the internal action τ), I ∈ Θ is the initial state,

and ∆ is the transition relation such that ∆ ⊆ Θ × (Σ ∪ {τ}) × Θ. If ∆ is unambiguous

and understood from the context, then we often use the following shorthands: P
a−→ Q

whenever (P, a,Q) ∈ ∆, P
a−→ whenever there exists a Q such that P

a−→ Q, and P 6 a−→

whenever P
a−→ does not hold. Some times one assumes a global set of states, a global

set of actions, and a global transition relation for all the labelled transition systems; in

this case, a particular labelled transition system is identified solely by its initial state. We

therefore blur the difference between state and labelled transition systems as long as the set

of states, the set of actions, and the transition relation are all understood from the context.

A run of a labelled transition system M is a sequence q0τq01τ · · · τq0m0a1q1τq11τ · · ·

τq1m1a2q2 · · · akqkτqk1τ · · · τqkmk
such that q0 = I, qj−1i

τ−→ qji for all 1 ≤ i ≤ k, 1 ≤ j ≤

mi, and qi−1mi−1

ai−→ qi for all 1 ≤ i ≤ k. The trace of this run is the sequence a1a2 · · · ak.

The run is maximal whenever there is no x such that qkmk

x−→ . The trace of a maximal

run is called a complete trace. The language traces(M) contains exactly all the traces of

all the possible runs of M . Similarly, ctraces(M) contains exactly all the complete traces

of all the possible maximal runs of M .

8

CHAPTER 2. PRELIMINARIES 9

The weakest notion of equivalence between labelled transition systems is trace equiva-

lence: two labelled transition systems are equivalent if their sets of traces are identical. By

contrast, the largest (or finest) notion of equivalence between labelled transition systems is

the notion of bisimilarity [10]. Two bisimilar transition systems have not only the same set

of traces, but their internal structure is identical: Given a global set of states Θ, a global set

of actions Σ, and a global transition relation→, a binary relation ∼ over labelled transition

systems is a bisimulation if for every pair of states p and q such that p ∼ q and for every

action a ∈ Σ:

1. p
a−→ p′ implies that there is a q′ such that q

a−→ q′ and p′ ∼ q′; and symmetrically

2. q
a−→ q′ implies that there is a p′ such that p

a−→ p′ and p′ ∼ q′.

Several additional equivalence relations between LTS exist. Their power of discrimination

lies between trace equivalence and bisimilarity [10].

2.2 Communicating Sequential Processes

Special attention is given to Communicating Sequential Processes (CSP), because our re-

search uses the semantic approach used in CSP as its model. CSP uses trace and failure

semantics as its denotational and axiomatic semantic [8, 24]. It models a system’s behaviour

or processes using eight major operators: event prefix, choice, recursion, parallel composi-

tion, hiding, renaming, sequential composition, and interrupt [5, 7, 8, 15, 17, 22, 23, 24]. A

prefix or suffix of a process is also regarded as a process, therefore the domain language is

closed under prefix and suffix. CSP uses labelled transition systems (LTS) as its underlying

semantic model.

The syntax of CSP is defined as follows:

S ::= x : A→ S(x) |S � R |S uR |X |SA‖BR |S \A | f(S) | f−1(S) |S;R |S4R

where Σ is the set of (elementary) actions, S and R range over CSP processes, x ranges

over Σ, A and B range over 2Σ, and f ranges over the set {f : Σ → Σ : ∀a ∈ Σ: f−1(a) is

CHAPTER 2. PRELIMINARIES 10

finite ∧ f(a) = X iff a = X} of Σ-transformations. The CSP prefix choice x : A→ S(x) is a

process which may engage any x ∈ A and then its behaviour depends on that choice. S uR

denotes a process which may behave as either S or R independently of its environment.

S � R denotes a process which may behave as either S or R, the choice being influenced

by the environment, provided that such influence is exerted on the first occurrence of an

external event of the composite process. SA‖BR denotes a process which behaves like the

alphabetized parallel composition of S and R, with the following meaning: any external

event performed by the composition must lie in A ∪B; the composition may then perform

an event a only if a ∈ A \B and S may perform a, or a ∈ B \ A and R may perform a, or

a ∈ A ∩B and both S and R may perform (synchronously) a. S;R denotes the sequential

composition of S followed by R and S \ A is the process which behaves like S except that

all the occurrences of a ∈ A are rendered invisible to the environment. The processes f(S)

and f−1(S) derive their behaviour from that of S in that if S may perform the event a then

f(S) may perform f(a) while f−1(S) may engage in any event b such that f(b) = a. S4R

denotes R interrupting the process S: R may begin execution at any point throughout the

execution of S; the performance of the first external event of R is the point at which control

passes from S to R and then S is discarded. A process name X may be used as a component

process in a process definition. It is bound by the definition X = S where S is an arbitrary

process which may include process name X.

The most common underlying semantical model of CSP (like any other process algebra)

is LTS. One way of presenting the operational semantics of CSP using LTS is by using

structural operational semantics rules as shown in Figure 2.1, with AX = A ∪ {X}.

2.3 Visibly Pushdown Automata

In what follows ε is used to denote the empty string and only the empty string.

A visibly pushdown automaton (VPDA) [3] is a tuple M = (Φ,Φin, Σ̃,Γ,Ω,ΦF), where

Φ represents a finite set of states, Φin ⊆ Φ is a set of initial states, ΦF ⊆ Φ is the set of final

CHAPTER 2. PRELIMINARIES 11

P τ−→Q (x : A→ P (x)) a−→P (a)

[
a ∈ A

]

P uQ τ−→P
P µ−→P ′

N µ−→P ′
[
N = P

]

P uQ τ−→Q
P a−→P ′ Q a−→Q′

PA‖BQ a−→P ′A‖BQ′
[
a ∈ AX ∩BX

]
P a−→P ′

P � Q a−→P ′
Q � P a−→P ′

P µ−→P ′

PA‖BQ
µ−→P ′A‖BQ

QB‖AP
µ−→QB‖AP ′

[
µ ∈ A ∪ {τ} \B

]

P τ−→P ′

P � Q τ−→P ′ � Q
Q � P τ−→Q � P ′

P µ−→P ′

P \A µ−→P ′ \A
[
µ /∈ A

]

P X−→P ′

P ;Q τ−→Q
P µ−→P ′

P4Q µ−→P ′4Q
[
µ 6= X

]
P f(a)−→P ′

f−1(P) a−→f−1(P ′)

P a−→P ′

P \A τ−→P ′ \A
[
a ∈ A

]
P X−→P ′

P4Q X−→P ′
P µ−→P ′

f(P) µ−→f(P ′)

[
µ ∈ {τ ∪X}

]
Q τ−→Q′

P4Q τ−→P4Q′
P µ−→P ′

P ;Q µ−→P ′;Q
[
µ 6= X

]
P a−→P ′

f(P)f(a)−→f(P ′)

P µ−→P ′

f−1(P) µ−→f−1(P ′)

[
µ ∈ {τ ∪X}

]
Q a−→Q′

P4Q a−→Q′

Figure 2.1: Operational Semantics of CSP [17]

CHAPTER 2. PRELIMINARIES 12

states, Γ is the (finite) stack alphabet containing a special bottom-of-stack symbol ⊥, and

Ω is the transition relation, Ω ⊆ (Φ×Γ∗)× Σ̃× (Φ×Γ∗). In addition, Σ̃ = {Σl ∪Σc∪Σr} is

a finite set of visibly pushdown input symbols where Σl represents the set of local symbols,

Σc is the set of call symbols and Σr is the set of return symbols. (Σl,Σc,Σr) is a partition

over Σ̃ (meaning that these three sets are mutually disjoint and also that Σ̃ = Σl]Σc]Σr).

Each tuple ((P, γ), a, (Q, δ)) ∈ Ω (also written (P, γ)
a−→ (Q, δ) ∈ Ω) must have the

following form: if a ∈ Σl ∪ {ε} then γ = δ = ε, else if a ∈ Σc then γ = ε and δ = a (where

a is the stack symbol pushed for a), else if a ∈ Σr then if γ = ⊥ then γ = δ (hence visibly

pushdown automata allow unmatched return symbols) else γ = a and δ = ε (where a is the

stack symbol popped for a). In other words, a local symbol is not allowed to modify the

stack, while a call always pushes one symbol on the stack. Similarly, a return symbol always

pops one symbol off the stack, except when the stack is already empty. Note in particular

that ε-transitions (that is, transitions that do not consume any input) are allowed but are

not permitted to modify the stack [3].

The notion of run, acceptance, and language accepted by a visibly pushdown automaton

are defined as usual: A run of a visibly pushdown automaton M on some string w =

a1a2 . . . ak is a sequence of configurations (q0, γ0)(q01, γ0) · · · (q0m0 , γ0)(q1, γ1)(q11, γ1) · · ·

(q1m1 , γ1)(q2, γ2) · · · (qk, γk)(qk1, γk) · · · (qkmk
, γk) such that γ0 = ⊥, q0 ∈ Φin, (qj−1i, ε)

ε−→

(qji, ε) ∈ Ω for all 1 ≤ i ≤ k, 1 ≤ j ≤ mi, and (qi−1mi−1γ
′
i−1)

ai−→ (qi, γ
′
i) ∈ Ω for

every 1 ≤ i ≤ k and for some prefixes γ′i−1 and γ′i of γi−1 and γi, respectively. Whenever

qkmk
∈ ΦF the run is accepting; M accepts w iff there exists an accepting run of M on

w. The visibly pushdown language L(M) accepted by M contains exactly all the strings w

accepted by M

2.4 Multi-stack Visibly Pushdown Automata

In multi-stack visibly pushdown automaton (MVPL) [19], an n-stack call-return alphabet

is a tuple Σ̃n = {(Σi
c,Σ

i
r)1≤i≤n,Σl} of pair-wise disjoint alphabets. Σi

c represents the finite

CHAPTER 2. PRELIMINARIES 13

set of call symbols of stack i, Σi
r represents the finite set of return symbols of stack i,

and Σl represents the finite set of local symbols. We further use the following notations:

Σc =
⋃n
i=1 Σi

c, Σr =
⋃n
i=1 Σi

r, Σ = Σc ∪ Σr ∪ Σl.

A multi-stack visibly pushdown automaton (MVPDA) [19] over the n-stack call-

return alphabet Σ̃n = {(Σi
c,Σ

i
r)1≤i≤n,Σl} is an extension of a VPDA. It is a tuple

M = (Φ,Φin, Σ̃,Γ,Ω,ΦF), and just like the VPDA Φ is a finite set of states, Φin ⊆ Φ

is a set of initial states, ΦF ⊆ Φ is the set of final states, Γ is the (finite) stack alphabet

that contains a special bottom-of-stack symbol ⊥. The transition relation is Ω and every

tuple ((P, γ), a, (Q, δ)) ∈ Ω (also written (P, γ)
a−→ (Q, δ) ∈ Ω) must have the following

form: if a ∈ Σl ∪ {ε} then γ = δ = ε, else if a ∈ Σi
c then γ = ε and δ = a (where a is

the stack symbol pushed for a on the i -th stack), else if a ∈ Σi
r then if γ = ⊥ then γ = δ

(hence like VPDA, MVPDA allows unmatched return symbols) else γ = a and δ = ε (where

a is the stack symbol popped for a on the i -th stack). Note that transitions that do not

consume any input (i.e. ε-transitions) are not allowed to modify the stack. ε-transitions

are not permitted in the original MVPDA construction; however, allowing such transitions

does not change the language accepted by an MVPDA, so they are introduced for the sake

of consistency with the definition of VPDA.

A configuration of M is a tuple (q, γ), where q ∈ Φ and γ = (γ1, . . . , γn) with γl ∈

(Γ\{⊥})∗⊥ for all 1≤ l ≤ n. For a string w = a1a2 . . . am ∈ Σ* a run of an MVPDA over

w is a sequence of configurations (q0, γ0)(q01, γ0) · · · (q0m0 , γ0)(q1, γ1)(q11, γ1) · · · (q1m1 , γ1)

(q2, γ2) · · · (qk, γk)(qk1, γk) . . . (qkmk
, γk) such that γl0 = ⊥ for all 1 ≤ l ≤ n, q0 ∈ Φin,

(qj−1i, ε)
ε−→ (qji, ε) ∈ Ω for all 1 ≤ i ≤ k, 1 ≤ j ≤ mi, whenever ai ∈ Σp

c ∪ Σp
r , γli−1 = γli

for all l 6= p, (qi−1mi−1γ
′
i−1)

ai−→ (qi, γ
′
i) ∈ Ω for every 1 ≤ i ≤ k and for some prefixes

γ′i−1 and γ′i of γpi−1 and γpi , respectively; whenever ai ∈ Σl, (qi−1mi−1γ
′
i−1)

ai−→ (qi, γ
′
i) ∈ Ω

and γi−1 = γi. Whenever qkmk
∈ ΦF the run is accepting; M accepts w iff there exists

an accepting run of M on w. The multi-stack visibly pushdown language (MVPL) L(M)

accepted by M contains exactly all the strings w accepted by M .

CHAPTER 2. PRELIMINARIES 14

Disjoint Operations Over MVPL

In the original definition for both VPL [3] and MVPL [19], their operations (complement,

union, etc.) are defined only when the two languages have identical alphabets. This allows

for closure under most interesting operation, however both languages are not closed under

shuffle [11]. To solve this issue [11] relaxes this condition on operations over MVPLs. The

result is a set of disjoint operations over MVPL. This however leads to the loss of closure

under all the interesting operations [11]. By introducing a natural renaming process as

defined below, one is able to restore closure under all the interesting operations and also

adds closure under shuffle to the group [11]. We show below the renaming process as defined

in [11]:

Let L be an MVPL over the n-stack call-return alphabet Σ̃n = 〈(Σi
c,Σ

i
r)1≤i≤n,Σl〉.

The p-stack renaming Rp(L) of L is an MVPL over the n-stack call-return alphabet Σ̃′n =

〈(Σi
c,Σ

i
r)1≤i≤n,i 6=p, (Σ

n+1
c ,Σn+1

r),Σl〉 such that there exists a bijection f : Σp
c∪Σp

r −→ Σn+1
c ∪

Σn+1
r with f(x) ∈ Σn+1

c iff x ∈ Σp
c and f(x) ∈ Σn+1

r iff x ∈ Σp
r . Specifically, Rp(L) = {r(w) :

w ∈ L}, where r : Σ −→ Σ′ is the function r(x) = x for any x ∈ Σ\(Σp
c∪Σp

r) and r(x) = f(x)

otherwise, extended as usual to strings by r(a1a2 . . . al) = r(a1)r(a2) . . . r(al). By abuse of

notation Rp1,p2,...,pk(L) = Rp1(Rp2(. . .Rpk(L) . . .)). Further abusing the terminology we

will also use the term stack renaming (or just renaming when there is no ambiguity) for

this (composite) renaming.

Some stack renaming Rp1,p2,...,pk(L) of a language L is MVPL iff L is an MVPL. In other

words, symbols associated with one stack in a given language can be renamed to the symbols

associated with another stack with the following restrictions: if we rename one symbol then

we also rename all the other symbols associated with the same stack, no symbol associated

with the new stack will be in the language before renaming, and no symbol associated with

the old stack will be in the language after renaming. The new stack is always new, meaning

that the before-renaming MVPL is not using any symbol from that stack.

CHAPTER 2. PRELIMINARIES 15

2.5 Trace Semantics

Sequences are denoted by listing the elements of the sequence in order of precedence in an-

gled brackets. The set of all the sequences of actions [24] that a process can perform (or that

might possibly be recorded) is the set of traces of the process . Hence the empty sequence

is denoted by 〈〉. If we have that A is a set, then A∗ will be the set of all finite sequences

of elements of A. If we have two sequences, namely; seq1 and seq2, then the concatenation

between these two sequences denoted as seq1.seq2 will be the sequence of elements in seq1

followed by the sequence of elements in seq2. We note that the concatenation operation

on sequences is associative. A sequence denoted seqn describes a concatenation between n

copies of the finite sequence seq, hence seq0 = 〈〉 (the empty sequence).

If a sequence is not empty, we can perform a prefix operation on it. So if seq is a

non-empty sequence then it can be rewritten as a.seq′ where a is the prefix (i.e. the first

element) of seq and seq′ is the suffix (i.e. the remaining elements) of the sequence seq. The

following two function can be defined over a sequence seq = a.seq′ as above: head(seq) = a

and tail(seq) = seq′. If seq = seq′′.b for some symbol b we define init(seq) = seq′′ and

foot(seq) = b. The lenght of a sequence seq denoted by |seq| is the total number of elements

it contains. By abuse of notation a ∈ seq is true iff the symbol a is a member of the sequence

seq. We use σ(seq) to denote the set of all symbols that are in the sequence seq.

Sequences exhibit various natural relationship with each other. For instance, if we have

a sequence seq2 such that seq.seq2 = seq1, then seq is a prefix of seq1, which is denoted as

seq ≤ seq1. Furthermore, seq ≤n seq1 denotes that seq is a prefix of seq1 (i.e. seq ≤ seq1)

and their lengths differ by no more than n. Also if seq 6= seq1 it will mean that seq is

a strict prefix of seq1, which can be denoted as seq < seq1. The notation seq 4 seq1

denotes that seq is a (not necessarily contiguous) sub-sequence of seq1. seq � A denotes

the sub-sequence of all the elements of seq that are in a set A, while the notation seq \ A

denote the sub-sequence of seq whose elements are not in A. If there is a mapping f on the

CHAPTER 2. PRELIMINARIES 16

elements of seq, then f(seq) is the sequence obtained by applying f to the elements of seq

in turn.

2.5.1 Traces

The concept of traces is introduced briefly in Section 2.1 (and further alluded to earlier in

this section); we now present this notion in more detail. Traces are used to analyze the

interface behaviour of a process (or system) exclusively from an external point of view (or

from the view of its environment). A process interact with its environment by performing

events or actions in their interface. We note that the environment has no direct access

to the internal state of the process or to the internal events that it performs. A very

important aspect of process behaviour is the occurrence of events in the right order. The

acceptable sequence of actions is stated in the system specification or requirements. Theses

requirements will describe constraints on when particular events can occur.

The environment cannot know precisely which internal state a process has reached at any

particular point, since it only has access to the projection of the execution onto the interface.

To analyze a process with respect to a set requirement, it is necessary to consider those

sequences of events that can be observed at the interface of the process. These observations

are called traces, and by using traces we can determine equivalence between processes.

Therefore, if there are two processes which are indistinguishable at their interfaces, they

should be equally appropriate to execute the same specifications. We note that the way

both processes are implemented does not have any influence on their respective suitability

for the said specification.

If we have a process P , the set of all possible traces of P is denoted as traces(P).

Traces are a particular class of finite sequences of events drawn from an alphabet which

represents execution. Events in a process’s execution cannot occur after termination so any

termination event X occurring in a trace must appear at the end. The set of all traces is

defined as: TRACE = {tr|σ(tr) ⊆ ΣX ∧ |tr| ∈ N ∧ X /∈ σ(init(tr))}. Since all traces are

CHAPTER 2. PRELIMINARIES 17

sequences, they inherit all of the sequence operators over sequences. However, sequence

concatenation maps traces tr1 and tr2 to a trace tr1.tr2 only if X /∈ σ(tr1). Thus trn will

be a trace only if X /∈ σ(tr). If a function f maps Σ to Σ and f(X) to X, then f(tr) will

always be a trace. The notation P
tr⇒ P ′ means there is a sequence of transitions whose

initial process is P and whose final process is P ′ after executing tr. The notation P
tr⇒ is

shorthand for ∃P ′ : P tr⇒ P ′.

2.5.2 Trace Semantics

Trace semantics defines processes directly in terms of their traces, so that their entire

analysis is lifted to a more abstract level. Operational characterization is too low level for

reasoning about processes, since the level of abstraction remains that of process executions,

with traces being one of the consequences of the execution. Since the traces of a composite

process depend only on the traces of its components, all of the operators of the language

can be understood at this abstract level. This permits a compositional semantic model,

which allows all processes to be considered only in terms of their sets of traces, and at no

point do we considered explicitly the underlying executions of processes.

Trace semantics models each process by associating it with a set of traces. The set of

traces of a process is the set of all possible sequences of events that may be observed during

some execution of the process. Processes are trace equivalent iff they have exactly the same

set of possible traces. This form of equivalence is denoted =T , and its definition is that

P =T Q iff traces(P) = traces(Q). The theory of trace equivalence allows the definition of

algebraic laws for individual operators, and also laws concerning the relationships between

various operators. By applying these laws we can manipulate process descriptions from one

form to another without changing the associated set of traces.

Most of the laws are generally defined with algebraic properties such as associativity

and commutativity of operators (which allows the composition of components in any order),

idempotence, and the identification of units and zeroes for particular operators (which allows

CHAPTER 2. PRELIMINARIES 18

the simplification of process description). Other laws are defined as relationships between

different operators (for instance, the expansion of a parallel composition into a prefix choice

process).

STOP is a process which does not execute any event:

traces(STOP) = {〈〉}

while SKIP can execute a termination X. The only traces SKIP exhibits are the empty

trace and the singleton trace containing X:

traces(SKIP) = {〈〉, 〈X〉}

A vital process for the definition of laws in the traces axiomatic model is RUN . It can

execute any sequence of events:

traces(RUN) = {tr |tr ∈ TRACE}

It is defined recursively as: RUN = (x : Σ → RUN) � SKIP . The process RUNA is

defined to be the process with interface A that can always execte any event in its interface:

traces(RUNA) = {tr|tr ∈ TRACE ∧ σ(tr) ⊆ A}.

2.5.3 Specification with Traces

A system specification is a tool used for the comparison of computational systems to check

for correctness. When a system is developed, it is designed to satisfy particular require-

ments. Using trace semantics to model specifications will allow us to judge a system against

its given specification. In the trace model, a specification of a process [8, 24] is given in terms

of the traces the process may engage in. The model characterizes the traces that a system

or process can or should have and those that should not be performed. A process satisfies

its specification if all of its executions are acceptable. In other words, regardless of the

choices made by the process, it is guaranteed that the process will not violate its specifica-

tion during any of its executions. If S(tr) is a predicate on trace tr, then process P satisfies

CHAPTER 2. PRELIMINARIES 19

(or meets) S(tr) if S(tr) holds for every traces tr of P : P ` S(tr) = ∀tr ∈ traces(P) : S(tr).

The specification S(tr) is said to be a property-oriented specification, because the required

property is captured by S(tr) as a restriction on traces. The predicate S may be expressed

in any notation, although first order logic and elementary set and sequence notations are

generally sufficient.

A process P fails to satisfy a specification S(tr), only because it has some (finite) trace

for which S fails to hold: there is a point in its execution where the performance of a

particular action takes the execution of P outside the specification S(tr). To satisfy a trace

specification, it is necessary to ensure that no violating action occur at any point in an

execution. This kind of specification is referred to as a safety specification. It stipulates

that nothing ‘bad’ should ever happen, and it is precisely this kind of property that is

expressed as specification on traces.

2.5.4 Verification with Traces

Trace semantics [8, 24] have a compositional nature which paves the way for a compositional

proof system that can be applied in describing trace specifications. Hence, the specifica-

tion of a process can be deduced from the specifications of its components, in a way which

reflects the trace semantics of the operators. The proof system is defined as a set of proof

rules for all of the operators. Each rule provides a specification which holds for a composite

process starting from antecedents which describe specifications which hold for the compo-

nent processes. There are three rules whose validity hold for all processes, due to the nature

of the ` specification:

The first rule is that any process satisfies the vacuous specification true(tr), which holds

for all traces tr:

P ` true(tr)

The second rule is that any specification may be weakened:

P ` S(tr)

P ` T (tr)

[
∀ tr : TRACE : S(tr)⇒ T (tr)

]

CHAPTER 2. PRELIMINARIES 20

The final rule states that if S(tr) and T (tr) have been established separately, then the

specification consisting of their conjunction is also established

P ` S(tr)
P ` T (tr)

P ` (S ∧ T)(tr)
.

Process STOP has only one trace: the empty trace. The strongest specification that

process STOP can satisfy is that tr = 〈〉. This is encapsulated in the rule:

STOP ` tr = 〈〉

The rule has no antecedents, corresponding to the fact that STOP has no component

processes. The weak rule given above can be used to show that any specification which is

satisfied by any process must be satisfied by STOP .

Process SKIP does nothing except terminate successfully. There are only two possible

traces, one for the situation before it has terminated successfully, and the other for the

situation where termination occurs. These two traces are 〈〉 and 〈X〉,so the inference rule,

which has no antecedents, is as follows:

SKIP ` tr = 〈〉 ∨ tr = 〈X〉

Process RUN is able to engage in any trace. For it to satisfy a specification, the

specification must allow all possible traces. RUN will therefore satisfy an extremely weak

specification, since it will have to places no restrictions on the traces that are acceptable.

Such a specification can only be equivalent to true:

RUN ` true(tr)
.

2.6 Previous Work

The formal verification field has been enriched by the recent introduction of the class of

multi-stack visibly pushdown languages (MVPL). MVPLs are a natural extension of visibly

CHAPTER 2. PRELIMINARIES 21

pushdown languages (VPL) [19]. Both VPL and MVPL have useful applications in the

modelling of multithreaded recursive systems, although it could be argued that MVPL

models recursive systems in a more expressive and natural manner than the VPL [12, 19].

The MVPL class was first introduced in [19] and is defined using a multi-stack visibly

pushdown automaton whose computation is split into k stages such that only one stack

can be popped in each stage. Intermediate models also exist, such as the 2-stack visibly

pushdown automata (2-VPDA) [12].

Earlier studies [12] showed the 2-VPDA are closed under all Boolean operations and are

determinizable in EXPTime. However it was later shown in [18] that 2-vPDAs are undert-

erminizable and it was instead explained [20] that only the class of languages accepted by

multi-stack pushdown automata with a bounded phase are determinizable. In this context

a multi-stack PDA (MPDA) is defined similarly to a MVPDA except that the input alpha-

bets no longer determine the stack operations [20]. A bounded phase is a restriction on the

computation of class of strings that are accepted by an automaton. For a bounded phase

MPDA, a uniform bound k is fixed and only strings that can reduced into k substrings,

where each substring will have at most one kind of return node are considered to be in the

language accepted by the bounded phase MPDA [20].

Various researchers have also attempted to use VPLs to model and to check equiv-

alence of recursive and concurrent systems. One study [26] examines the equivalence

checking on visibly pushdown automata and showed that the complexity (upper and lower

bound) for simulation, completed simulation, ready simulation, 2-nested simulation pre-

orders/equivalences and bisimulation equivalence are EXP-time complete. Other research

[27] attempted to use VPL to develop a process algebra that would be a superset of CSP,

suitable for modelling recursive and concurrent systems. However, as a result of lack of clo-

sure under shuffle [11], the resulting process algebra proved to be awkward and of limited

use.

Further studies [11] carried out on both VPL and MVPL showed that both languages

CHAPTER 2. PRELIMINARIES 22

were unsuitable for the compositional specification of recursive and concurrent systems

because they both lack closure under shuffle. Furthermore, MVPL operations are expressed

under strict restrictions on their input alphabets, and removing these restriction will lead

to loss of all the interesting closure properties [11, 19].

In the real world concurrent systems execute functions that run in parallel threads

of execution that begin identically but behave differently [11]. The stack behaviour of

theses parallel threads never overlap, for they normally operate on their own stack [11].

The disjoint operations over MVPL were introduced to model this functionality [11]. The

application of disjoint operations on MVPL brings back all the useful closure properties

that are lost by removing the rigid restrictions on the original MVPL construction, except

closure under shuffle [11]. In addition, [11] introduces a natural renaming process which

preserves the closure properties gained from using disjoint operations on MVPLs and also

adds closure under shuffle. The renaming process operates by renaming the stack alphabets

of a given MVPL, with the restrictions that if a symbol in a stack is renamed, the whole

stack is renamed and no symbol associate with the new stack will be in the MVPL after

renaming [11].

Finally, part of this dissertation is motivated by research done in both CARET and

NWTL temporal logics [1, 2]. Both temporal logics have been proposed for the formal veri-

fication of application software as they are able to effectively specify and verify non-regular

properties like partial and total correctness and access control properties of application

software [1, 2]. All of these efforts pave the way for a fully compositional MVPL-based

specification for the verification of recursive and concurrent systems.

Chapter 3

Communicating Multi-Stack
Visibly pushdown Processes

A communicating multi-stack visibly pushdown (or CMVP) process is an agent which in-

teracts with its environment (itself also regarded as a process) by performing certain events

drawn from a multi-stack visibly pushdown n-stack of call, return alphabets and local sym-

bols : Σc =
⋃n
i=1 Σi

c, Σr =
⋃n
i=1 Σi

r, Σ = Σc ∪ Σr ∪ Σl. The semantical approach of CMVP

will model CSP, so the underlying semantics of CMVP consists in labelled transition sys-

tems where states represent CMVP processes. The syntax of CMVP will be based on the

following description:

S ::= x : A→ S(x) |S � R |S uR |X |SA‖BR |S \A |S | f(S) | f−1(S) |S;R |S4R

where S, R and X range over CMVP processes, x over Σ̃, A and B over 2Σ̃, f over the

set {f : Σ̃ → Σ̃ : ∀a ∈ Σ̃: f(a), f−1(a) ∈ Σc [Σl, Σr] iff a ∈ Σc [Σl, Σr] ∧ f−1(a) is finite

∧ f(a) = X iff a = X ∧ f(a) = ⊥ iff a = ⊥} of Σ̃-transformations. All the common

operators between CMVP and CSP have a similar constructions in LTS semantics with

the exception of the parallel composition operator. Indeed, the CMVP parallel composition

operator applies the stack renaming as described Section 2.4 to the processes it operates on,

though this operation is implicit; details are provided in Section 3.1.5. The new operator

”Abstract” · is also introduced; it can be used to hide the sub-modules of a module (further

23

CHAPTER 3. CMVP 24

discussed in Section 3.1.7). The notion of a module is defined naturally using call and return

symbols: A new module is launched once a call c is performed; the execution of that module

lasts until the return matching c. The module may perform local actions but also (possibly

recursive) calls to other modules (sometimes called “sub-modules” of that module).

The process definitions for both STOP and SKIP are the same in CSP and CMVP. Just

like CSP process STOP in CMVP is never prepared to perform any event hence it has no

transitions, while SKIP is a state in a process that represents the successful termination

of that process (the only event it can perform is the termination event X). Every other

CMVP process PΓ is defined as consisting of an MVPDA state P and a finite number of

stacks represented as an n-tuple Γ = (γ1, . . . , γn). A CMVP process will also be called

an LTS state, as opposed to its component P which is a MVPDA state. Pε = P(⊥,⊥,...,⊥)

is defined as a CMVP process P with all its stacks empty. Other than Pε, an LTS state

corresponding to a CMVP process will be represented syntactically as PΓ(i/γ), where P is

the current MVPDA state, i represents the stack currently being operated on, 1 ≤ i ≤ n,

and γ is the current stack prefix of the i-th MVPDA stack. The implicit assumption is that

all the other stacks will be unchanged, whereas the prefix γ of the i-th stack will be altered

as a result of the current operation (though not even the i-th stack will change otherwise).

It should be noted that in our algebra each individual action can only affect a single stack.

Therefore our CMVP syntax is refined as follows:

Pi/γ ::= x : A→ P (x)i/γ |Pi/γ � Qi/δ |P uQ |Ni/γ |Pi/γA‖BQi/δ |P \A

|Pi/γ | f(Pi/γ) | f−1(Pi/γ) |Pi/γ ;Qi/δ |Pi/γ4Qi/δ

where P , Q, N range over MVPDA states, i represents the stack being affected by the

current operation in the set of stacks Γ and γ and δ represent some (necessarily finite)

prefix of the current stack content of the stack in operation i. There is no mention of the

stack in operation and stack content in some of the CMVP operations simply because their

operations over MVPDA states do not affect the set of stacks. Also, in settling the form

CHAPTER 3. CMVP 25

of γ and δ it should be noted that the transitions of a MVPDA (and the associated LTS)

depends at most on the top of the stack currently in operation. Therefore, syntactically only

the top of the stack in operation is mentioned before and after a call or return transition,

while before and after a local transition there is no mention of any of the stacks (since no

stack is modified). We thus reach the final syntax of CMVP:

P ′ ::= x : A→ P (x)′ |P ′ � Q′ |P uQ |N ′ |P ′A‖BQ
′ |P \A

|P ′ | f(P ′) | f−1(P ′) |P ′;Q′ |P ′4Q′

We have that P ′ ::= P |P(i/a) and Q′ ::= Q |Q(i/b), with a and b ranging over Γ∪{ε}. When

an operator executes a local action we do not mention any stack since we do not operate

on any stack. However, if we have have an operation that executes a call or return action

we denote the top of the stack by the putting the subscript i/a next to the process, where

as stated earlier i would represent the current stack in operation among the set of stacks Γ,

and a represents the symbol at the top of the current stack content of the stack in operation

i. After the execution of a call or return action there will always be a change (push or pop)

in the stack content γ with the exception of when a return action is performed on an empty

stack (which will have the symbol ⊥ at the top of its stack to indicate it is empty).

3.1 The Operational Semantics of CMVP

The subscripts l, c and r are used to represent the sets of local, call and return events,

respectively. Hence, any interface A ∈ 2Σ̃ for n stacks will be the union of 2n + 1 sets

Al, (Ac)i, (Ar)i, 1 ≤ i ≤ n. It should be noted that unlike call and return symbols, local

symbols are global to a CMVP process. Hence any call action b that is a member of an

interface A is denoted as b ∈ (Ac)i meaning that b belongs to the call symbols in interface

A and it operates on the i-th stack. Similarly a return action b in an interface A is denoted

b ∈ (Ar)i. A CMVP operation is allowed between CMVP processes only if their stack

CHAPTER 3. CMVP 26

alphabets Σ̃′ and Σ̃′′ do not overlap1 (else the main restriction of our MVPL is violated

[11]). We will guarantee that the stacks of CMVP processes will not overlap by applying

stack renaming to the stacks of one process in the composition of two processes as needed.

The matched calls and returns are established by the specification (which will determine

which return can pop (or match) which call: The matching calls of a return event are defined

at specification time by specifying which stack symbols can be popped by the given return.

Balanced calls and returns on the other hand are determined at run-time: A return balances

a call if it is labelled as a matching return of that call in the specification and also happens

to match that call at run-time. For example, if it is specified that {a, b} ⊆ Σi
c and c ∈ Σi

r

which will pop either a or b in stack i, then c is the matching return of both a and b;

however, during one particular execution is possible that c will only balance a but never b.

It must be noted that unbalanced returns are accepted in CMVP processes whenever they

appear when the respective stack is empty. In the event that there is an unbalanced return,

the (empty) stack content of the CMVP process will remain unchanged.

For ease of presentation we assume without loss of generality that there is a one-to-one

mapping between the set of stack symbols and the set of calls, and so a call event for the

ith stack will be written ai and will push a on the i-th stack of that process. Similarly, a

return event for stack i will be denoted by bi. The one-to-one mapping of calls and stack

symbols is without loss of generality because we can still specify what can and cannot be

popped by a return symbol; the aforementioned one-to-one mapping will thus not limit the

capability of defining matched calls and returns. Superscripts are not used on local events

because local events are considered to be global and there is no stack manipulation during

their execution.

Since CMVP process are able to execute call and return events, CMVP is able to natu-

rally model recursive modules. A module is executed or called by a call event and a return

event will signal the return from a module. A local event is used to model all the other

1Meaning Σ′ ∩ Σ′′ = ∅ for any Σ′ ∈ {Σi
c,Σ

i
r, 1 ≤ i ≤ n} and Σ′′ ∈ {Σk

c ,Σ
k
r , 1 ≤ k ≤ m}.

CHAPTER 3. CMVP 27

(x : A→ P (x))Γ
a−→P (a)Γ

[
a ∈ (Al)

]
(x : A→ P (x))Γ(i/γ)

ai−→P (a)Γ(i/aγ)

[
ai ∈ (Ac)i

]

(x : A→ P (x))Γ(i/aγ)
ai−→P (a)Γ(i/γ)

[
ai ∈ (Ar)i

]

(x : A→ P (x))Γ(i/⊥)
ai−→P (a)Γ(i/⊥)

[
ai ∈ (Ar)i

]
Figure 3.1: Prefix choice

actions in the recursive module. This is general, meaning that a call and its corresponding

return can happen within another module that is, after another call event happened but

before the execution of its balanced return event; this represents a possibly recursive call of

a sub-module. In CMVP one call event cannot be used to call two different modules but

more than one call event can call the same module.

For the reminder of this paper the stack in operation of CMVP processes will grow to the

left, therefore the rightmost place on the stack in operation is reserved for the bottom-of-

stack content denoted as ⊥. As mentioned earlier, given a tuple Γ = (γ1, γ2, . . . , γi, . . . , γn)

we denote the tuple (γ1, γ2, . . . , γi, . . . , γn) by Γ(i/γ). That is, Γ(i/γ) is the tuple Γ with

the i-th component replaced by γ.

3.1.1 Prefix Choice

The semantics of prefix choice is given in Figure 3.1. Six kinds of syntactic rules introduce

the event prefix: P = a → P ′, P = bi → P ′(i/b), P(i/c) = ci → P ′(i/⊥), P(i/⊥) = di → P ′(i/⊥),

P(i/⊥) = STOP and P(i/⊥) = SKIP . From these syntactic rules, it can be determined that a

is local, bi is a call, ci is a balanced return, and di is an unbalanced return. P(i/⊥) = STOP

[P(i/⊥) = SKIP] requires that the process enter the STOP [SKIP] state when the MVPDA

state is P and the top of the stack in operation i is empty (⊥).

Generally, a system can be specified with as well as without an explicit partitioning of

CHAPTER 3. CMVP 28

(a)
PΓ

τ−→QΓ
(b)

PΓ uQΓ
τ−→PΓ PΓ uQΓ

τ−→QΓ

Figure 3.2: Internal action (a), internal choice (b)

its events. However, if an explicit partition is not given, then a process can be represented

as a sequence of actions (similarly with CSP) only when all the actions are local actions.

On the other hand, any finite process (including processes with calls and returns) can be

represented as a sequence (desirable in a large system), provided that we specify a partition

on its events. For instance, let Pε be the following process without an explicit partition:

P = a → P(1/a), P = b → P1, P1 = e → P2(1/e), P2 = d → P3, P3(1/e) = f → P4(1/⊥),

P4(1/a) = c → P4(1/⊥), P4(1/⊥) = STOP . The process can be written with an explicit

partition Al = {b, d}, (Ac)1 = {a1, e1}, (Ar)1 = {c1, f1} as follows: P(1/⊥) = a1 → P(1/a),

P = b → e1 → d → P3(1/ea), P3(1/ea) = f1 → P4(1/a), P4(1/a) = c1 → P4(1/⊥), P4(1/⊥) =

STOP .

3.1.2 Internal Event

A CMVP process can perform actions not noticeable to the environment. These actions are

called internal and are denoted by the symbol τ . Internal actions can change the current

MVPDA state of a process but will not change the stack content of any stack. The behaviour

of the τ transition is described in Figure 3.2(a).

3.1.3 Choice

The semantics of internal and external choice are given in Figures 3.2(b) and 3.3, re-

spectively. The choice operator does not modify the matched calls and returns. The

set of stacks of the composite process in a choice construct is also similar to the set of

stacks of the component processes of the construct. A process that chooses (once!) be-

tween ‘]’ and ‘〉’ as balanced return for ‘[’ can be defined as follows: P = [1→ P(1/[),

P(1/[) =]1 → P1(1/⊥), P(1/[) =〉1 → P2(1/⊥), P1(1/⊥) = STOP , P2(1/⊥) = STOP . Note

CHAPTER 3. CMVP 29

PΓ
τ−→P ′Γ

PΓ � QΓ
τ−→P ′Γ � QΓ

QΓ � PΓ
τ−→QΓ � P ′Γ

PΓ
a−→P ′Γ

PΓ � QΓ
a−→P ′Γ

QΓ � PΓ
a−→P ′Γ

[a ∈ (Al)]

PΓ(i/γ)
ai−→P ′Γ(i/aγ)

PΓ(i/γ) � QΓ
ai−→P ′Γ(i/aγ)

QΓ � PΓ(i/γ)
ai−→P ′Γ(i/aγ)

[ai ∈ (Ac)i]
PΓ(i/aγ)

ai−→P ′Γ(i/γ)

PΓ(i/aγ) � QΓ
ai−→P ′Γ(i/γ)

QΓ � PΓ(i/γ)
ai−→P ′Γ(i/γ)

[ai ∈ (Ar)i]

PΓ(i/⊥)
ai−→P ′Γ(i/⊥)

PΓ(i/⊥) � QΓ(i/⊥)
ai−→P ′Γ(i/⊥)

QΓ(i/⊥) � PΓ(i/⊥)
ai−→P ′Γ(i/⊥)

[ai ∈ (Ar)i]
PΓ

X−→P ′Γ
PΓ � QΓ

X−→P ′Γ
QΓ � PΓ

X−→P ′Γ

Figure 3.3: External choice

PΓ
τ−→P ′Γ

NΓ
τ−→P ′Γ

[
N = P

] PΓ
a−→P ′Γ

NΓ
a−→P ′Γ

[
a ∈ (Al), N = P

]
PΓ(i/γ)

ai−→P ′Γ(i/aγ)

NΓ(i/γ)
ai−→P ′Γ(i/aγ)

[
ai ∈ (Ac)i, N = P

] PΓ(i/aγ)
ai−→P ′Γ(i/γ)

NΓ(i/aγ)
ai−→P ′Γ(i/γ)

[
ai ∈ (Ar)i, N = P

]
PΓ(i/⊥)

ai−→P ′Γ(i/⊥)

NΓ(i/⊥)
ai−→P ′Γ(i/⊥)

[
ai ∈ (Ar)i, N = P

] PΓ
X−→P ′Γ

NΓ
X−→P ′Γ

[
N = P

]

Figure 3.4: Recursion

that ‘]’ and ‘〉’ are both matching returns of ‘[’ (since they both pop it from the stack),

but only one is used as a balanced return, depending on the environment. In contrast, a

process Q defined with the following rules: Q = [1→ Q(1/[), Q = τ → Q1, Q = τ → Q2,

Q1(1/[) =]1 → Q1(1/⊥), Q2(1/[) =〉1 → Q2(1/⊥), Q1(1/⊥) = STOP , Q2(1/⊥) = STOP , makes

an internal choice to transition from a state Q to either states Q1 or Q2 independent of the

environment, and so the decision of whether ‘]’ or ‘〉’ matches ‘[’ does not depend on the

environment anymore.

CHAPTER 3. CMVP 30

3.1.4 Recursion

Recursion in CSP and CMVP are defined similarly, however, a CSP recursive process creates

loops among LTS states while CMVP recursive processes creates loops among MVPDA

states and can perform recursive function calls using call events. A recursive MVPDA state

may perform a sequence of calls and returns in addition to local actions before transitioning

back into itself, so that each recursive loop can change the stack content of the stack in

operation. If the changes made to the stack content of the set of stacks is zero (i.e. if the

executed events are all local events), then the recursive process can be represented by a finite

state machine just like in CSP. The condition for a CMVP process Pε to be called recursive

is that the process definition will contain the MVPDA state P performing a sequence of

events and transitioning to the same state P .

The semantics of recursion is shown in Figure 3.4. Consider as an example the following

CMVP recursive processes, which produces balanced parentheses: P = (1→ P(1/(), P(1/() =

)1 → P(1/⊥), P(1/⊥) = STOP . Pε can produce an infinite number of LTS states and infinitely

many possible traces although we only have one MVPDA state P . A recursive process has

an iteratively increasing part followed by an iteratively decreasing part. The increasing part

may run at infinitum and can produce an unbounded stack. A stack inspection interrupt

process as defined in Section 3.1.9 can be used to manage recursive processes and transfer

the execution of control from one process to another.

Here is how a CMVP process Pε can produce the trace (()()):

Pε = (1→ P((⊥) = (1→ (1→ P(((⊥) = (1→ (1→)1 → P((⊥) = (1→ (1→)1 → (1→ P(((⊥)

= (1→ (1→)1 → (1→)1 → P((⊥) = (1→ (1→)1 → (1→)1 →)1 → P(⊥)

= (1→ (1→)1 → (1→)1 →)1 → STOP

Consider now the process Q = (1→ Q1(1/(), Q1(1/() =)1 → Q(1/⊥), Q(i/⊥) = STOP . It may

have infinitely long traces and can be written as follows: Qε = (1→)1 → Q,Q(1/⊥) = STOP .

An argument can be made that the events “(1” and “)1” are behaving like locals inQε, hence,

CHAPTER 3. CMVP 31

PΓ
a−→P ′Γ QΓ′

a−→Q′Γ′
(PA‖BQ)Γ·Γ′

a−→(P ′A‖BQ′)Γ·Γ′

[
a ∈ Al ∩Bl

]
PΓ

a−→P ′Γ
(PA‖BQ)Γ·Γ′

a−→(P ′A‖BQ)Γ·Γ′
(QB‖AP)Γ′·Γ

a−→(QB‖AP ′)Γ′·Γ

[
a ∈ Al \Bl

]

PΓ(i/γ)
ai−→P ′Γ(i/aγ)

(PA‖BQ)(Γ·Γ′)(i/γ)
ai−→(P ′A‖BQ)(Γ·Γ′)(i/aγ)

(QB‖AP)(Γ′·Γ)(n+i/γ)
an+i−→(QB‖AP ′)(Γ′·Γ)(n+i/aγ)

[
ai ∈ (Ac)i \B
=⇒ an+i ∈ (Ac)n+i \B

]

PΓ(i/aγ)
ai−→P ′Γ(i/γ)

(PA‖BQ)(Γ·Γ′)(i/aγ)
ai−→(P ′A‖BQ)(Γ·Γ′)(i/γ)

(QB‖AP)(Γ′·Γ)(n+i/aγ)
an+i−→(QB‖AP ′)(Γ′·Γ)(n+i/γ)

[
ai ∈ (Ar)i \B
=⇒ an+i ∈ (Ar)n+i \B

]

PΓ(i/⊥)
ai−→P ′Γ(i/⊥)

(PA‖BQ)(Γ·Γ′)(i/⊥)
ai−→(P ′A‖BQ(Γ·Γ′)(i/⊥)

(QB‖AP)(Γ′·Γ)(n+i/⊥)
an+i−→(QB‖AP ′)(Γ′·Γ)(n+i/⊥)

[
ai ∈ (Ar)i \B
=⇒ an+i ∈ (Ar)n+i \B

]

PΓ
τ−→P ′Γ

(PA‖BQ)Γ·Γ′
τ−→(P ′A‖BQ)Γ·Γ′

(QB‖AP)Γ′·Γ
τ−→(QB‖AP ′)Γ′·Γ

PΓ
X−→P ′Γ QΓ′

X−→Q′Γ′
(PA‖BQ)Γ·Γ′ X−→(P ′A‖BQ′)Γ·Γ′

Figure 3.5: Alphabetized parallel

Qε can be represented by a finite state machine. However, in Pε above the event “(” must

be a call and the event “)” must be a return.

3.1.5 Parallel Composition

Figure 3.5 shows the semantics of parallel composition. Since having an overlap in call and

return stack alphabets of MVPDAs violates the restriction of our process algebra, CMVP

processes in a parallel composition can only synchronize over local events. To guarantee

that there will be no stack overlap between the processes being operated on, CMVP parallel

composition is implemented using disjoint operations [11]. To use these disjoint operations

CHAPTER 3. CMVP 32

over CMVP on two processes in a parallel composition construct, a stack renaming must

be applied to one of the two processes. The stack renaming action performed by the

CMVP parallel composition operator allows our process algebra to have the required closure

properties needed to define a parallel composition between CMVP processes. The CMVP

parallel composition is denoted A‖B, with A and B being the respective event interfaces

of the processes on either side of the parallel composition construct. The notation Γ · Γ′

represent the concatenation of the two tuples Γ and Γ′.

Now, recall that every CMVP process has a finite number of stacks Γ which will be rep-

resented as an n-tuple (γ1, . . . , γn). If there is a parallel composition between two processes

PΓ and QΓ′ (where Γ and Γ′ represents the set of stacks of P and Q respectively), the set

of stacks of the second process in the parallel composition must be renamed. Hence we

rename the stacks of process QΓ′ using the concept of stack renaming [11]:

We have that the 1, . . . , n-Stack Renaming R1,...,n(Q) of QΓ′ is an MVPDA over

the n-stack call-return alphabet Σ̃′n+x = {(Σn+i
c ,Σn+i

r)(n+1)≤(n+i)≤(n+x),Σl} where n =

n in PΓ(1,...,n), such that there exists a bijection f : Σi
c ∪ Σi

r −→ Σn+i
c ∪ Σn+i

r where

(n+ 1) ≤ (n+ i) ≤ (n+ x), with f(x) ∈ Σn+i
c iff x ∈ Σi

c and f(x) ∈ Σn+i
r iff x ∈ Σi

r.

With the renaming of the stacks of QΓ′ , the sequence of the stacks become Γ′ =

((n+ 1), . . . , (n+ x)) while the sequence of the stacks of process PΓ remain Γ = (1, . . . , n).

After all the stacks of QΓ′ have been successfully renamed, the parallel composition between

both processes can be executed and the resulting set of stacks will be the concatenation

(Γ · Γ′) of both set of stacks of process PΓ and QΓ′ . We are guaranteed that there will be

no stack overlap and we also have the added advantage of having an organised set of stacks

which will aid us in monitoring the activities of call and return symbols.

In a parallel composition any common local event of the component processes synchro-

nizes during execution. However such a synchronized execution does not change the content

of any stack. The component process perform independently any events (call, return and

unsynchronized local events) which are not common to the parallel composition. Thus every

CHAPTER 3. CMVP 33

PΓ
t−→P ′Γ

PΓ \B t−→P ′Γ \B
[
t ∈ {τ,X}

] PΓ
a−→P ′Γ

PΓ \B τ−→P ′Γ \B
[
a ∈ Al ∩B

]
PΓ

a−→P ′Γ
PΓ \B a−→P ′Γ \B

[
a ∈ Al \B

] PΓ(i/γ)
ai−→P ′Γ(i/aγ)

PΓ(i/γ) \B ai−→P ′Γ(i/aγ) \B
[
ai ∈ (Ac)i

]
PΓ(i/aγ)

ai−→P ′Γ(i/γ)

PΓ(i/aγ) \B ai−→P ′Γ(i/γ) \B
[
ai ∈ (Ar)i

] PΓ(i/⊥)
ai−→P ′Γ(i/⊥)

PΓ(i/⊥) \B ai−→P ′Γ(i/⊥) \B
[
ai ∈ (Ar)i

]

Figure 3.6: Hiding

interleaved call and return event pushes or pops one stack symbol to or from the stack in

operation of the process executing the unsynchronized event.

3.1.6 Hiding

The semantics for hiding is given in Figure 3.6. Hiding does not change the stack content

of the set of stacks of a process because only local symbols can be hidden. If a hidden

local event is executed the process is seen to perform an internal action τ (i.e. the local

action becomes invisible to the environment), and then a change in state occurs. Since this

operation does not affect the stacks of the process, hiding cannot change the balance of a

process or the matched calls and returns in the stacks of a process.

3.1.7 Abstract

The abstract operator hides all the sub-modules of a module. The motivation for this

operator is the abstract path in CARET and NWTL [1, 2]. By executing the abstract

operator sub-modules can be hidden from the environment; it allows for the abstraction

of call and return symbols. This cannot be achieved using the hide operator since only

local symbols can be hidden. The local trace of a module can be defined using the abstract

operator, allowing for the specification of the internal properties of recursive modules. The

semantics of abstract is given in Figure 3.7. When a call symbol is executed, abstract

CHAPTER 3. CMVP 34

PΓ(i/bγ)
ai−→P ′Γ(i/abγ)

PΓ(i/bγ)
ai−→P ′Γ(i/ãbγ)

PΓ(i/b̃γ)
τ−→P ′

Γ(i/ab̃γ)

PΓ(i/bγ)
τ−→P ′

Γ(i/abγ)

[ai ∈ (Ac)i]
PΓ(i/aγ)

b−→P ′Γ(i/aγ)

PΓ(i/aγ)
b−→P ′Γ(i/aγ)

PΓ(i/ãγ)
τ−→P ′Γ(i/ãγ)

PΓ(i/aγ)
τ−→P ′Γ(i/aγ)

[b ∈ (Al)]

PΓ(i/aγ)
ai−→P ′Γ(i/γ)

PΓ(i/aγ)
ai−→P ′Γ(i/γ)

PΓ(i/ãγ)
ai−→P ′Γ(i/γ)

PΓ(i/aγ)
τ−→P ′Γ(i/γ)

[
ai ∈ (Ar)i

] PΓ(i/⊥)
ai−→P ′Γ(i/⊥)

PΓ(i/⊥)
ai−→P ′Γ(i/⊥)

[
ai ∈ (Ar)i

]

PΓ
τ−→P ′Γ

PΓ
τ−→P ′Γ

PΓ
X−→P ′Γ

PΓ
X−→P ′Γ

PΓ(k/γ)
ak−→P ′Γ(k/aγ)

PΓ(i/b̃γ)
ak−→P ′Γ(k/aγ)

PΓ(i/ab̃γ)
ak−→P ′Γ(k/aγ)

PΓ(i/bγ)
ak−→P ′Γ(k/aγ)

[ak ∈ (Ac)k]
PΓ(k/aγ)

ak−→P ′Γ(k/γ)

PΓ(i/b̃γ)
ak−→P ′Γ(k/γ)

PΓ(i/ab̃γ)
ak−→P ′Γ(k/γ)

PΓ(i/bγ)
ak−→P ′Γ(k/γ)

[ak ∈ (Ar)k]

Figure 3.7: Abstract

pushes the corresponding stack symbol to the stack in operation with two special markers:

·̃ denotes the internal call of the main module and · denotes the internal call of a sub-

module. If the top of the stack in operation contains any special marker then every local

event will be hidden; calls and returns are pushed to/popped off the stack in operation but

are otherwise hidden as well (except for top-level calls and returns in the module). If a

return symbol is executed, and the top of the stack in operation is not marked, then the

process goes out of abstraction.

Let B (with call bi and return f i), and C (with call di and return ei) be two mod-

ules. The top-level process P calls B and B calls C: P = a → Q, Q = bi → R(i/b),

R = c → S, S = di → T(i/d), T = c → U , U(i/d) = ei → V(i/⊥), V(i/b) = f i → W(i/⊥), and

W = c → STOP . The sub-modules of B can be hidden by using abstract: P(γ1,...,γn) =

CHAPTER 3. CMVP 35

PΓ(i/γ)
ai−→P ′Γ(i/aγ)

f(P)Γ(i/γ)
f(a)i−→f(P ′)Γ(i/f(a)γ)

[ai ∈ (Ac)i]
PΓ

τ−→P ′Γ
f(P)Γ

τ−→f(P ′)Γ

PΓ(i/aγ)
ai−→P ′Γ(i/γ)

f(P)Γ(i/f(a)γ)
f(a)i−→f(P ′)Γ(i/γ)

[ai ∈ (Ar)i]
PΓ

a−→P ′Γ
f(P)Γ

f(a)−→f(P ′)Γ
[a ∈ (Al)]

PΓ(i/⊥)
ai−→P ′Γ(i/⊥)

f(P)Γ(i/⊥)
f(a)i−→f(P ′)Γ(i/⊥)

[ai ∈ (Ar)i]
PΓ

X−→P ′Γ
f(P)Γ

X−→f(P ′)Γ

Figure 3.8: Forward renaming

a → Q(γ1,...,γn) → bi → R(γ1,...,γi−1,b̃⊥,γi+1,...,γn) → c → S(γ1,...,γi−1,b̃⊥,γi+1,...,γn) = di →

T(γ1,...,γi−1,db̃⊥,γi+1,...,γn) → c → U(γ1,...,γi−1,db̃⊥,γi+1,...,γn) → ei → V(γ1,...,γi−1,b̃⊥,γi+1,...,γn) →

f i → W(γ1,...,γi−1,⊥,γi+1,...,γn) → c → STOP . We actually hide sub-module C in this par-

ticular example. A run of P without the abstract operator will be as follows: P(γ1,...,γn) =

a → Q(γ1,...,γn) → bi → R(γ1,...,γi−1,b⊥,γi+1,...,γn) → c → S(γ1,...,γi−1,b⊥,γi+1,...,γn) → di →

T(γ1,...,γi−1,db⊥,γi+1,...,γn) → c → U(γ1,...,γi−1,db⊥,γi+1,...,γn) → ei → V(γ1,...,γi−1,b⊥,γi+1,...γn) →

f i →W(γ1,...,γi−1,⊥,γi+1,...,γi+1n) → c→ STOP .

3.1.8 Renaming

The semantics of forward and backward renaming are given in Figures 3.8 and 3.9, respec-

tively. Renaming can change the matched calls and returns of a CMVP process, however it

cannot modify the MVPL partition. For instance, if we have a call event ai with a matching

return event bi, if ai is renamed f(a)i, then bi will be the matching return event for f(a)i.

There might be no “reverse” renaming that retrieves the original process or set of matched

call-returns: Suppose that a renaming f is applied to the return event 〉 in process Pε in

our previous example illustrating choice (in Section 3.1.3) such that f(〉) =]. We then get

a process whose traces define the language [n]n; no renaming can give back the original.

CHAPTER 3. CMVP 36

PΓ(i/γ)
f(a)i−→P ′Γ(i/f(a)γ)

f−1(P)Γ(i/γ)
ai−→f−1(P ′)Γ(i/aγ)

[ai ∈ (Ac)i]
PΓ

τ−→P ′Γ
f−1(P)Γ

τ−→f−1(P ′)Γ

PΓ(i/f(a)γ)
f(a)i−→P ′Γ(i/γ)

f−1(P)Γ(i/aγ)
ai−→f−1(P ′)Γ(i/γ)

[ai ∈ (Ar)i]
PΓ

f(a)−→P ′Γ
f−1(P)Γ

a−→f−1(P ′)Γ
[a ∈ (Al)]

PΓ(i/⊥)
f(a)i−→P ′Γ(i/⊥)

f−1(P)Γ(i/⊥)
ai−→f−1(P ′)Γ(i/⊥)

[ai ∈ (Ar)i]
PΓ

X−→P ′Γ
f−1(P)Γ

X−→f−1(P ′)Γ

Figure 3.9: Backward renaming

PΓ(i/γ)
ai−→P ′Γ(i/aγ)

PΓ(i/γ);QΓ′
ai−→P ′Γ(i/aγ);QΓ′

[ai ∈ (Ac)i]
PΓ

τ−→P ′Γ
PΓ;QΓ′

τ−→P ′Γ;QΓ′

PΓ(i/aγ)
ai−→P ′Γ(i/γ)

PΓ(i/aγ);QΓ′
ai−→P ′Γ(i/γ);QΓ′

[ai ∈ (Ar)i]
PΓ

a−→P ′Γ
PΓ;QΓ′

a−→P ′Γ;QΓ′
[a ∈ (Al)]

PΓ(i/⊥)
ai−→P ′Γ(i/⊥)

PΓ(i/⊥);QΓ′
ai−→P ′Γ(i/⊥);QΓ′

[ai ∈ (Ar)i]
PΓ

X−→P ′Γ
PΓ;QΓ′

τ−→QΓ′

Figure 3.10: Sequential composition

3.1.9 Sequential Composition and Interrupt

A CMVP process can continue to execute indefinitely, retaining control over execution

throughout. By applying sequential composition or interrupt, the control of execution can

be passed from one CMVP process to a second CMVP process, either because the first

process reaches a particular point in its execution (i.e. termination) where it is prepared

to release control (in the case of sequential composition), or because the second process

demands it (in the case of interrupt).

A sequential composition PΓ;QΓ′ allows the first process PΓ to execute till the point of

termination and then it gives the the control of execution to the second process QΓ′ in the

sequential composition construct. When the first process terminates, its termination event

CHAPTER 3. CMVP 37

PΓ
τ−→P ′Γ

PΓ4QΓ′
τ−→P ′Γ4QΓ′

PΓ
a−→P ′Γ

PΓ4QΓ′
a−→P ′Γ4QΓ′

[a ∈ (Al)]

PΓ(i/γ)
ai−→P ′Γ(i/aγ)

PΓ(i/γ)4QΓ′
ai−→P ′Γ(i/aγ)4QΓ′

[a ∈ (Ac)i]
PΓ(i/aγ)

ai−→P ′Γ(i/γ)

PΓ(i/aγ)4QΓ′
ai−→P ′Γ(i/γ)4QΓ′

[a ∈ (Ar)i]

PΓ(i/⊥)
ai−→P ′Γ(i/⊥)

PΓ(i/⊥)4QΓ′
ai−→P ′Γ(i/⊥)4QΓ′

[a ∈ (Ar)i]
PΓ

X−→P ′Γ
PΓ4QΓ′

X−→P ′Γ

QΓ′
τ−→Q′Γ′

PΓ4QΓ′
τ−→Q′Γ′

QΓ′(j/γ)
aj−→Q′Γ′(j/aγ)

PΓ4QΓ′(j/γ)
aj−→Q′Γ′(j/aγ)

[a ∈ (Ac)j]

QΓ′
a−→Q′Γ′

PΓ4QΓ′
a−→Q′Γ′

[a ∈ (Al)]
QΓ′(j/aγ)

aj−→Q′Γ′(j/γ)

PΓ4QΓ′(j/aγ)
aj−→Q′Γ′(j/γ)

[a ∈ (Ar)j]

QΓ′(j/⊥)
aj−→Q′Γ′(j/⊥)

PΓ4QΓ′(j/⊥)
aj−→Q′Γ′(j/⊥)

[a ∈ (Ar)j]

Figure 3.11: Interrupt

becomes internal to the composition, since PΓ;QΓ′ should not indicate that it has finished

until QΓ′ finally terminates.

On the other hand, an interrupt PΓ4QΓ′ , allows QΓ′ to take control from PΓ at any point

in its execution. The interrupting process QΓ′ may begin execution at any point throughout

the execution of PΓ : the performance of QΓ′ ’s first event is the point at which control passes,

and the first process PΓ is discarded. Figures 3.10 and 3.11 show the semantics of sequential

composition and interrupt, respectively.

Unlike parallel composition, neither the sequential composition nor the interrupt opera-

tors use the stack renaming feature explicitly. We argue that the set of stacks of processes in

a sequential composition and interrupt construct will never overlap, since in both operators

once control of execution is passed onto the second process the first process can no longer

perform any actions. Hence once the control of execution is passed on to the second process

CHAPTER 3. CMVP 38

of the constructs the set of stacks of the first process in the construct do not change (and

therefore can be discarded).

3.2 CMVP Is a Process Algebra

Theorem 3.2.1 CMVP is an algebra; that is, CMVP is closed under all its operators. The

underlying semantics of any CMVP process is a MVPDA (or an equivalent LTS).

Proof. We proceed by structural induction. STOP , SKIP are defined as CMVP processes

similarly to their definition in CSP. Also, CMVP’s closure under prefix choice, external

choice, internal choice, recursion, renaming, hiding and abstract are all immediate. Prefix

choice follows the definition of a transition in the associated MVPDA. External choice

is simply a prefix choice with more than one alternative (i.e. this allows more than one

transition out of one state). The internal choice construct is connection between two LTS

to a common start state via τ transitions (this does not change the stack contents of the set

of stacks). Recursion is simply a loop from some MVPDA state P back into the same state

P . The set of stacks of the MVPDA are manipulated according to the MVPDA semantics

introduced by the other transitions and this does not introduce infinite MVPDA states.

Renaming cannot changed the MVPL partition. Closure under hiding is straightforward

since only local symbols can be hidden; τ transitions replace hidden local symbols while a

change in state occurs in the LTS. When an abstract operation is applied on an MVPDA,

the MVPDA transitions are hidden (that is, replaced with τ) after the first stack symbol is

pushed into the stack in operation. The MVPDA comes out of the abstracted state after

the first stack symbol which was pushed to the stack in operation is popped. Hence, the

abstract construct replaces whole portions of the LTS with τ transitions.

Let now P and Q be two CMVP processes whose semantics are given by the MVPDAs

L′ and L′′, respectively. Let L′ and L′′ have initial states I ′ and I ′′ and final states H ′ and

H ′′, respectively.

CHAPTER 3. CMVP 39

Consider now the sequential composition of P and Q. An MVPDA L corresponding to

this sequential composition can be constructed as follows: In a sequential composition L′

will run to completion, followed by a run of L′′ (which is only possible when L′ has reached

termination, case in which there is no further computation relying on the set of stacks of

L′). We then take the disjoint union of the stacks of L′ and L′′ and call the results the set

of stacks of L. The transitions of L will then be the union of the transition relations of

L′ and L′′ (the latter suitably modified by the disjoint union operation), plus ε-transitions

from all the states in H ′ to I ′′. The initial state of L is I ′ and the final states are exactly

all the states from H ′′. That the resulting MVPDA is the semantic model of the sequential

composition is immediate: The automaton L′ runs until it reaches its final state. Once this

happens, the control is given to the state I ′′, in effect launching L′′. The disjoint union

ensures that the stacks of L′ are never used from this point on, and that the stacks of L′′ are

empty when the control is given to this automaton (since no transitions from L′ operates

on them), as desired.

Closure under interrupt is shown by a similar construction, with the exception that the

control can be passed from P to Q or equivalently from L′ to L′′ at any time, hence in

addition to the union of the transitions of L′ and L′′ (as for the sequential composition)

we add one ε-transition from every state of L′ to I ′′ (instead of ε-transition from the states

in H ′ to I ′′ only). As above, once the control passes to L′′ the stacks of L′ are not longer

needed, and at that moment the stacks of L′′ are all empty, as desired.

The construction of the parallel composition L of L′ and L′′ is given as follows: the

Cartesian product of the MVPDA states in L′ and L′′ is the set of MVPDA states in L,

with the initial state of L′ and the final states of L′′ being the initial and final states of

L, respectively. The set of stacks of L will be the disjoint union of the set of stacks of L′

and L′′. Recall that CMVP parallel composition makes use of stack renaming [11] which

implements such a disjoint union. Hence we are guaranteed that there will be no stack

overlap between L′ and L′′ and so the restriction on CMVP processes is not violated. The

CHAPTER 3. CMVP 40

transition relation of L is defined as follows:

• For synchronized local symbols l we have the transition (P ′, ε) l−→(Q′, ε) in L′ and the

transition (P ′′, ε) l−→(Q′′, ε) in L′′ by the inductive hypothesis. In this case we add

to L the transition ((P ′, P ′′), ε) l−→((Q′, Q′′), ε). For unsynchronized local symbols

that have the transition (P ′, ε) l−→(Q′, ε) in L′ [the transition (P ′′, ε) l−→(Q′′, ε) in

L′′] we add to L the transitions ((P ′, X), ε) l−→((Q′, X), ε) for all the states X of

L′′ [((X,P ′′), ε) l−→((X,Q′′), ε) for all the states X of L′]. The correctness of this

construction is immediate from the fact that there is no change in the content of any

stack for local symbols, while the transitions above ensures that the two components

of the state of L change according to the semantics of L′ and L′′, respectively.

• All the calls ci of L′ and cn+i of L′′ (after the stack renaming) and return symbols ri

in L′ and rn+i in L′′ (again after the stack renaming) are unsynchronized. These are

integrated in L as follows:

For every set of rules (P ′, ε) ci−→(Q′, a), (P ′′, ε)cn+i−→(Q′′, b), (R′, a) ri−→(S′, ε), and

(R′′, b)rn+i−→(S′′, ε) we add the following rules, respectively: ((P ′, X), ε) ci−→((Q′, X), a),

((Y, P ′′), ε)cn+i−→((Y,Q′′), b), ((R′, X), a) ri−→((S′, X), ε), and ((Y,R′′), b)rn+i−→((Y, S′′), ε)

for all states X of L′′ and Y of L′. Once more the correctness of the construction

follows from the fact that the sets of stacks of L′ and L′′ do not overlap now that the

stacks of L′′ have been renamed.

• No other transitions are included in the transition relation of L.

Chapter 4

A Detailed Example

In this section we illustrate the use of CMVP in the specification and analysis of a concurrent

and recursive system. MVPDAs are used to model the concurrent and recursive systems.

We explain how each CMVP operations can be used to describe and analyze concurrent

and recursive systems.

Let P and Q be two recursive systems that run concurrently (i.e. on independent sets of

stacks). We represent P and Q as CMVP rocessess with the same name (Pε and Qε). Both

Pε and Qε have two stacks each named 1 and 2. They also have the same local symbols (i.e.

a, c, e), call symbols (i.e. b1, f2) and return symbols (d1, g2). In both CMVP proceses, the

call b1 pushes b to stack 1 and the return d1 pops b, while the call f2 pushes f to stack 2

and the return g1 pops f .

The differences between both processes are their states and their transition relations.

Process Pε has the states P , P2, P3, P4, P5, P6, P7 and P8. The following is the CMVP

definition of the process: (P = a → P2), (P2 = c → P4), (P21/⊥ = b1 → P31/f), (P3 =

e → P), (P42/⊥ = f2 → P2/f), (P42/f = g2 → P62/⊥), (P42/⊥ = g2 → P62/⊥), (P21/b =

d1 → P51/⊥), (P21/⊥ = d1 → P51/⊥), (P51/b = d1 → P51/⊥), (P51/⊥ = d1 → P51/⊥),

(P5 = c → P6), (P51/b = d1 → P71/⊥), (P51/⊥ = d1 → P71/⊥), (P62/f = g2 → P62/⊥),

(P62/⊥ = g2 → P62/⊥), (P62/f = g2 → P82/⊥), (P62/⊥ = g2 → P82/⊥), (P7 = a→ P8).

On the other hand, the processQε features the statesQ, Q2, Q3, Q4, Q5, Q6, Q7 andQ8.

41

CHAPTER 4. A DETAILED EXAMPLE 42

The following is the definition of Qε: (Q = a→ Q2), (Q2 = c→ Q3), (Q31/⊥ = b1 → Q1/b),

(Q31/b = d1 → Q51/⊥), (Q31/⊥ = d1 → Q51/⊥), (Q3 = e → Q4), (Q42/⊥ = f2 → Q22/f),

(Q42/f = g2 → Q62/⊥), (Q42/⊥ = g2 → Q62/⊥), (Q51/b = d1 → Q51/⊥), (Q51/⊥ = d1 →

Q51/⊥), (Q5 = c → Q6), (Q51/b = d1 → Q71/⊥), (Q51/⊥ = d1 → Q71/⊥), (Q62/f =

g2 → Q62/⊥), (Q62/⊥ = g2 → Q62/⊥), (Q62/f = g2 → Q82/⊥), (Q62/⊥ = g2 → Q82/⊥),

(Q7 = a→ Q8).

4.1 Prefix Choice

All states except P8 and Q8 in the process P and Q respectively are defined using the

prefix choice operator. Take state P5 in Figure 4.1 as an example; we have that state P5

can execute a return action d1 that returns the symbol b if it is at the top of the stack 1 of

P , else it performs an empty return. It can then transition to the state P5 or transition to

the state P7. Also state P5 can execute a local action c and transitions to a state P6.

P5

P6 P7

c

d1

d1

Figure 4.1: Illustration of the possible transitions of state P5 of process Pε

4.2 Internal Event

An internal event is an action that is executed by a system but that is not noticeable to

the environment. In CMVP internal actions can change the state of a process in a system

but they cannot affect the stack content of the system. Since CMVP can specify processes

in a compositional manner, systems can be broken down into smaller components. Let us

CHAPTER 4. A DETAILED EXAMPLE 43

assume now that both process Pε and Qε are components of a larger process H. If process H

makes an internal choice between state P of Pε and state Q of Qε as illustrated in Figure 4.2,

then H = τ → P and H = τ → Q.

H

P1 Q1

τ
τ

Figure 4.2: Illustration of internal choice: P uQ

4.3 Choice

There are numerous examples of states using the external choice operator in both process

Pε and Qε based on their transition rules. Recall that the external choice operator allows

states to make transitions between two or more states depending on the execution of a

external event (i.e local, call or return action).

Figure 4.1 illustrates that state P5 can make an external choice between three states:

state P5 if it performs the return event d1 by using the transition rules (P51/⊥ = d1 →

P51/⊥) or (P51/b = d1 → P51/⊥), state P6 if it performs the local event c by using the

transition rule (P5 = c→ P6) and state P7 if it performs the return event d1 by using the

transition rules (P51/⊥ = d1 → P71/⊥) or (P51/b = d1 → P71/⊥). Therefore, we have that

state P5 makes an external choice to transition in either states P5, P6, or P7 depending

on the event being performed.

In Figure 4.2, state H makes an internal choice between events two states P and Q by

executing an internal event τ .

CHAPTER 4. A DETAILED EXAMPLE 44

4.4 Recursion

An instance of recursion can be seen in Figure 4.1. State P5 of process P can perform the

return event d1 and remain in the same state by using the transition rules (P51/⊥ = d1 →

P51/⊥) or (P51/b = d1 → P51/⊥).

Other examples of recursive states in Pε and Qε based on their transition rules are

P6, Q5 and Q6. All theses states perform actions that allow them to transition back into

themselves. Recursive states can also execute call events (which pushes symbols to the

stack) and return events (which pops symbols from the stack).

4.5 Parallel Composition

A CMVP parallel composition between Pε and Qε, Pε‖Qε will have the CMVP operator

rename the set of stacks of Q (the second process in the parallel composition construct).

Both processes have two stacks each named 1 and 2. The sets of stacks of Qε are renamed as

follows: the 1, 2-Stack Renaming R1,2(Q) of QΓ is an MVPDA over the 2-stack call-return

alphabet Σ̃′2+x = {(Σ2+i
c ,Σ2+i

r)(2+1)≤(2+i)≤(2+x),Σl} such that there exists a bijection f :

Σi
c ∪Σi

r −→ Σ2+i
c ∪Σ2+i

r where (2 + 1) ≤ (2 + i) ≤ (2 + x), with f(x) ∈ Σ2+i
c iff x ∈ Σi

c and

f(x) ∈ Σ2+i
r iff x ∈ Σi

r. Therefore we have stack 1 of QΓ becoming stack 2+1 = 3 and stack 2

of QΓ becoming stack 2+2 = 4. The parallel composition operator renamed the set of stacks

of process Q and so the transitions of Q are implicitly modified as follows: (Q = a→ Q2),

(Q2 = c → Q3), (Q33/⊥ = b3 → Q3/b), (Q33/b = d3 → Q53/⊥), (Q33/⊥ = d3 → Q53/⊥),

(Q3 = e → Q4), (Q44/⊥ = f4 → Q24/f), (Q44/f = g4 → Q64/⊥), (Q44/⊥ = g4 → Q64/⊥),

(Q53/b = d3 → Q53/⊥), (Q53/⊥ = d3 → Q53/⊥), (Q5 = c → Q6), (Q53/b = d3 → Q73/⊥),

(Q53/⊥ = d3 → Q73/⊥), (Q64/f = g4 → Q64/⊥), (Q64/⊥ = g4 → Q64/⊥), (Q64/f = g4 →

Q84/⊥), (Q64/⊥ = g4 → Q84/⊥), (Q7 = a→ Q8).

Once stack renaming is done, the parallel composition operator concatenates the set of

stacks of both processes. Figure 4.3 shows a a run of the parallel composition of P and Q.

CHAPTER 4. A DETAILED EXAMPLE 45

(P‖Q)(⊥,⊥,⊥,⊥)
a−→(P2‖Q2)(⊥,⊥,⊥,⊥)

c−→(P4‖Q3)(⊥,⊥,⊥,⊥)
f2−→(P‖Q3)(⊥,f⊥,⊥,⊥)

b3−→
(P‖Q)(⊥,f⊥,b⊥,⊥)

a−→(P2‖Q2)(⊥,f⊥,b⊥,⊥)
b1−→(P3‖Q2)(b⊥,f⊥,b⊥,⊥)

c−→
(P3‖Q3)(b⊥,f⊥,b⊥,⊥)

e−→(P‖Q4)(b⊥,f⊥,b⊥,⊥)
f4−→(P‖Q2)(b⊥,f⊥,b⊥,f⊥)

a−→
(P2‖Q2)(b⊥,f⊥,b⊥,f⊥)

c−→(P4‖Q3)(b⊥,f⊥,b⊥,f⊥)
f2−→(P‖Q3)(b⊥,ff⊥,b⊥,f⊥)

b3−→
(P‖Q)(b⊥,ff⊥,bb⊥,f⊥)

a−→(P2‖Q2)(b⊥,ff⊥,bb⊥,f⊥)
c−→(P4‖Q3)(b⊥,ff⊥,bb⊥,f⊥)

g2−→
(P6‖Q3)(b⊥,f⊥,bb⊥,f⊥)

d3−→(P6‖Q5)(b⊥,f⊥,b⊥,f⊥)
g2−→(P6‖Q5)(b⊥,⊥,b⊥,f⊥)

d3−→
(P6‖Q5)(b⊥,⊥,⊥,f⊥)

g2−→(P8‖Q5)(b⊥,⊥,⊥,f⊥)
d3−→(P8‖Q7)(b⊥,⊥,⊥,f⊥)

Figure 4.3: A run of the parallel composition between processes Pε and Qε

As shown in Figure 4.3, both P and Q synchronize on the local symbols a, c and e.

However, there is no synchronization when P or Q execute call or return actions. It can

also be noticed in Figure 4.3 that P and Q do not execute some local actions at the same

time. This only occurs because of the current states that both processes are at during the

execution of the local actions. There is an interleaving execution of the local actions only

because one of the processes cannot execute the local action that is being offered to the

parallel composition construct at its current state. As far as both processes P and Q are

in a states that can perform the local action being offered, synchronization will occur.

4.6 Hiding

Recall that only local symbols can be hidden using the hiding operator in CMVP. Hence the

hiding operator does not affect the stack content of a process. When the hiding operator

is applied on a process, the hidden action behaves like an internal action τ thus becoming

invisible to the environment. Figure 4.4 illustrates the possible initial transitions of P5\{c}.

4.7 Abstract

The run in Figure 4.5 demonstrates the use of the abstract operator in a run of P in

comparison to an un-abstracted run. By using the abstract operator local, call and return

CHAPTER 4. A DETAILED EXAMPLE 46

P5 \ {c}

P6 P7

τ

d1

d1

Figure 4.4: Illustration of the possible transitions of state P5 \ {c}

symbols can hidden (or abstracted). As shown in Figure 4.5 a process will get out of

abstraction only when a return action is executed and the stack symbol with the ·̃ symbol

has been popped from the stack.

P1(⊥,⊥)
a−→P2(⊥,⊥)

b1−→P3(b̃⊥,⊥)
τ−→P1(b̃⊥,⊥)

τ−→P2(b̃⊥,⊥)
τ−→P3(bb̃⊥,⊥)

τ−→

P1(bb̃⊥,⊥)
τ−→P2(bb̃⊥,⊥)

τ−→P5(b̃⊥,⊥)
d1−→P5(⊥,⊥)

d1−→P7(⊥,⊥)

(a) Abstracted configuration

P1(⊥,⊥)
a−→P2(⊥,⊥)

b1−→P3(b⊥,⊥)
e−→P1(b⊥,⊥)

a−→P2(b⊥,⊥)
b1−→

P3(bb⊥,⊥)
e−→P1(bb⊥,⊥)

a−→P2(bb⊥,⊥)
d1−→P5(b⊥,⊥)

d1−→P5(⊥,⊥)
d1−→P7(⊥,⊥)

(b) Un-abstracted configuration

Figure 4.5: An abstracted configuration and an un-abstracted configuration of Pε

4.8 Renaming

Recall that the renaming operator is able to change the matched call-return when it is

applied. If renaming is applied to the call action b1 in process P it will changed the

matched call-return (recall that b1 pushes b to stack 1, while d1 pops b off stack 1), leading

to a modification of the transitions of P . After the renaming operator is applied to the call

CHAPTER 4. A DETAILED EXAMPLE 47

action b1 in process P , f(b1) pushes f(b) to stack 1 while d1 pops f(b) off stack 1.

4.9 Sequential Composition and Interrupt

A run of the sequential composition between P and Q is illustrated in Figure 4.6. As soon

as P finishes executing the control of execution is passed on to Q. That is, when P reaches

its final state control is passed to Q through an internal action τ as illustrated in the figure.

P ;Q does not signal termination until Q reaches termination.

P(⊥,⊥);Q(⊥,⊥)
a−→P2(⊥,⊥);Q(⊥,⊥)

b1−→P3(b⊥,⊥);Q(⊥,⊥)
e−→P(b⊥,⊥);Q(⊥,⊥)

a−→
P2(b⊥,⊥);Q(⊥,⊥)

d1−→P5(⊥,⊥);Q(⊥,⊥)
d1−→P7(⊥,⊥);Q(⊥,⊥)

τ−→P7(⊥,⊥);Q(⊥,⊥)
a−→

P7(⊥,⊥);Q2(⊥,⊥)
c−→P7(⊥,⊥);Q3(⊥,⊥)

b3−→P7(⊥,⊥);Q(b⊥,⊥)
a−→P7(⊥,⊥);Q2(b⊥,⊥)

c−→
P7(⊥,⊥);Q3(b⊥,⊥)

d3−→P7(⊥,⊥);Q5(⊥,⊥)
d3−→P7(⊥,⊥);Q7(⊥,⊥)

Figure 4.6: A run illustrating a sequential composition between Pε and Qε

The interrupt operator on the other hand allows control of execution to be passed from

one process to another at an arbitrary point of an execution. Figure 4.7 illustrates a possible

run of an interrupt between P and Q.

P(⊥,⊥)4Q(⊥,⊥)
a−→P2(⊥,⊥)4Q(⊥,⊥)

b1−→P3(b⊥,⊥)4Q(⊥,⊥)
e−→P(b⊥,⊥)4Q(⊥,⊥)

a−→
P2(b⊥,⊥)4Q(⊥,⊥)

a−→P2(b⊥,⊥)4Q2(⊥,⊥)
c−→P2(b⊥,⊥)4Q3(⊥,⊥)

b1−→P2(b⊥,⊥)4Q(b⊥,⊥)
a−→

P2(b⊥,⊥)4Q2(b⊥,⊥)
c−→P2(b⊥,⊥)4Q3(b⊥,⊥)

d1−→P2(b⊥,⊥)4Q5(⊥,⊥)
d1−→P2(b⊥,⊥)4Q7(⊥,⊥)

Figure 4.7: A run illustrating an interrupt between Pε and Qε

Process P does not need to reach a final state before it passes control to process Q. As

illustrated in the figure, control is passed from process P to process Q when Q interrupts

P at state P2 by executing the event a. As soon as Q executes the event a, no further

computation is done on the set of stacks of P . The interrupt operator allows control of

execution to be passes from one process to the other at any point in its execution.

Chapter 5

CMVP Trace Semantics

CMVP trace semantics generates the set of traces of a CMVP process: if PΓ is CMVP

process then traces(PΓ) is the set of traces it can produce. The process definitions for

STOP and SKIP , are the same in CSP and CMVP. RUN however cannot be defined as a

CMVP process that can be combined with other processes (and thus be useful in establishing

laws and other properties), since having an overlap in call and return stack alphabets of

MVPDAs violates the restriction of our process algebra. So instead, we define a CMVP

process (RUN Σl
) equivalent to the CSP process RUN in CMVP.

RUN Σl
is defined to be the process with an interface Σl that can always perform any

local event at any given time. Furthermore RUN Σl
cannot execute any call or return action

and so its stacks will always be empty. We therefore do not mention explicitly its set of

stacks. We then have:

traces(RUN Σl
) = {tr|tr ∈ TRACE ∧ σ(tr) ⊆ Σl}

5.1 Prefix Choice

There are only two possibilities when observing the process ((x : A → P (x))Γ(i/γ): either

no event has executed, or an event a ∈ A has executed, making its subsequent behaviour

that of the corresponding process P (a)Γ(i/γ′). If a ∈ Al then γ′ = γ:

traces((x : A→ P (x))Γ) = {〈〉} ∪ {〈a〉.tr |a ∈ Al ∧ tr ∈ traces(P (a))Γ}

48

CHAPTER 5. CMVP TRACE SEMANTICS 49

If a ∈ (Ac)i then a = ai and γ′ = aγ:

traces((x : A→ P (x))Γ(i/γ)) = {〈〉} ∪ {〈a〉.tr |a ∈ Ac ∧ tr ∈ traces(P (a)Γ(i/aγ))}

If a ∈ (Ar)i and γ = aδ then a = ai and γ′ = δ:

traces((x : A→ P (x))Γ(i/aδ)) = {〈〉} ∪ {〈a〉.tr |a ∈ Ar ∧ tr ∈ traces(P (a)Γ(i/δ))}

If a ∈ (Ar)i and γ = ⊥ then then a = ai and γ′ = γ:

traces((x : A→ P (x))Γ(i/⊥)) = {〈〉} ∪ {〈a〉.tr |a ∈ Ar ∧ tr ∈ traces(P (a)Γ(i/⊥))}

In considering a general notation for the above rules we note that (x : A →

P (x))Γ(i/γ)
a ∈ A−→P (a)Γ(i/γ′), meaning that after the event x ∈ A is executed the stack in

operation will be γ′, where γ′ will depend on the type of x (call, return, local) in the usual

manner described earlier. Hence the above four rules can be written as the single rule as

follows:

traces((x : A→ P (x))Γ(i/γ)) = {〈〉} ∪ {〈a〉.tr |a ∈ A ∧

(x : A→ P (x))Γ(i/γ)
a ∈ A−→P (a)Γ(i/γ′)

∧tr ∈ traces(P (a)Γ(i/γ′))}

If P(aa⊥) and P(a⊥) are CMVP processes having the same process definition: where

P(1/a) = a → P(1/⊥), P(1/⊥) = STOP . The traces(P(aa⊥)) = {〈〉, 〈a〉, 〈a, a〉} and

traces(P(a⊥)) = {〈〉, 〈a〉}. It is clear that they are not equivalent processes since

traces(P(aa⊥)) 6= traces(P(a⊥)).

5.2 External Choice

When observing the choice construct PΓ � QΓ′ , there are only two possibilities: either an

execution of PΓ will occur or an execution of QΓ′ will occur. The choice operator when

applied will split a process into alternative processes, allowing the parent process to choose

CHAPTER 5. CMVP TRACE SEMANTICS 50

once between one of the alternative processes. The alternative processes operate on the

same set of stacks as the parent process.

traces(PΓ � QΓ′) = traces(PΓ) ∪ traces(QΓ′)

Figure 5.1 enumerates the laws of external choice. The first three laws are derived from

the properties of the disjoint union operator. Law � − unit states that any process PΓ

will always be given precedence over STOP when there is a choice construct between both

processes. In algebraic terms, STOP is a unit of external choice.

PΓ � PΓ = PΓ �− idem

PΓ � (QΓ′ � RΓ′′) = (PΓ � QΓ′) � RΓ′′ �− assoc

PΓ � QΓ′ = QΓ′ � PΓ �− sym

PΓ � STOP = PΓ �− unit

Figure 5.1: Laws for external choice

5.3 Internal Choice

The internal choice construct PΓ u QΓ′ will behaves either as PΓ or as QΓ′ . It performs

a hidden action (τ) thereby preventing its environment from exercising control over its

behaviour. The traces of internal choice are as follows:

traces(PΓ uQΓ′) = traces(PΓ) ∪ traces(QΓ′)

Figure 5.2 enumerates the law of internal choice. Unlike the external choice construct

PΓ � QΓ′ , the environment of an internal choice construct plays no part in its outcome.

As a result, both constructs have different executions in resolving a choice. However, the

major concern of a trace observer is identifying the sequence of possible actions of the choice

outcomes. Therefore the Law choice− equiv states that the sequence of possible actions of

CHAPTER 5. CMVP TRACE SEMANTICS 51

an internal choice construct and an external choice construct with the same set of CMVP

processes are equal.

PΓ � QΓ′ = PΓ uQΓ′ choice− equiv

Figure 5.2: Law for internal choice

5.4 Parallel Composition

A parallel composition (PA‖BQ)Γ.Γ′ consists of PΓ executing events in an interface A, and

QΓ′ executing events in an interface B (recall that a stack renaming occurs on one of the two

processes in a parallel composition). The processes PΓ and QΓ′ synchronize only on events

in Al ∩ Bl (i.e. they synchronize on local event common to both A and B), and execute

other events in their respective interfaces independently. Any execution of the parallel

composition projected onto interface A must be an event that PΓ can execute. Similarly,

any execution projected onto interface B must be an event that QΓ′ can execute. Therefore,

the traces of (PA‖BQ)Γ.Γ′ are those sequences of events that PΓ and QΓ′ can execute which

are in interface A and interface B, and also termination. Hence, the set of events in the

trace (σ(tr)), must be contained in (A ∪B)X.

traces(PA‖BQ)Γ.Γ′ = {tr ∈ TRACE | tr � AX ∈ traces(PΓ) ∧ tr � BX ∈ traces(QΓ′)

∧σ(tr) ⊆ (A ∪B)X}

Figure 5.3 enumerates the laws of alphabetized parallel. In both Law ‖ − step and Law

‖ − term 2, γ and γ′ represent the stack content of stack i (and n+ i) before and after an

execution (or transition): if a local or an empty return event is executed then γ′ = γ, else

if a call or an un-empty return event is executed them γ′ 6= γ (in the execution of a call a

symbol is pushed to the stack and with a return a symbol is popped from the stack). Law

‖ − assoc is a form of association derived from the disjoint union operator. The outcome

of the parallel composition construct in Law ‖− assoc is independent of the order in which

CHAPTER 5. CMVP TRACE SEMANTICS 52

(PA‖B ∪ C(QB‖CR))Γ.Γ′.Γ′′ = ((PA‖BQ)A ∪B‖CR)Γ.Γ′.Γ′′ ‖ − assoc

(PA‖BQ)Γ.Γ′ = (QB‖AP)Γ′.Γ ‖ − sym

C ⊆ A ∧D ⊆ B ⇒ ((x : C → P (x)A‖B(y : D → Q(y))Γ.Γ′

= z : ((C \B) ∪ (D \A) ∪ (C ∩D))→ R(z)(Γ(1,...,n)′).(Γ′(n+1,...,x)′)

where R(z)(Γ(1,...,n)′)∪(Γ′(n+1,...,x)′)

= (P (c)A‖B(y : D → Q(y))Γ.Γ′(i/γ′)) if c ∈ C \B
= ((x : C → P (x))A‖BQ(c))Γ.Γ′(n+i/γ′) if c ∈ D \A
= (P (c)A‖BQ(c))Γ.Γ′ if c ∈ Cl ∩Dl ‖ − step

SKIPA‖BSKIP = SKIP ‖ − term 1

((x : C → P (x))A‖BSKIP)Γ(i/γ) = ((x : C → P (x))A‖BSKIP)Γ(i/γ′)

= x : C ∩ (A \B)→ (P (x)A‖BSKIP)Γ(i/γ′) ‖ − term 2

(PA‖A(RUN Σl
))Γ = PΓ ‖ − unit

Figure 5.3: Laws for alphabetized parallel

components of the parallel composition construct are composed together. Law ‖ − unit

describes a unit for the parallel composition construct: process RUN Σl
is always ready to

execute any local event in the common interface, hence there are no restriction on PΓ’s

execution of those events. Law ‖− step breaks down parallel composition into prefix choice

(i.e. all the possible actions that a parallel composition can execute). It also shows that

CMVP processes can only have synchronization over local events, and explains how the

set of stacks in the parallel composition construct are manipulated. Laws ‖ − term 1 and

‖− term 2 explain the termination of a parallel composition construct. Termination occurs

only when all processes in the parallel composition construct are ready to terminate.

It should be noted that since synchronization only occurs over local events, the parallel

composition construct in CMVP does not have a zero (as opposed to the process STOP be-

ing a zero for parallel composition in CSP). Indeed, if a process P is in a parallel composition

with STOP , synchronization over local symbols will occur as before, and given that STOP

CHAPTER 5. CMVP TRACE SEMANTICS 53

(PΓ \A) \B = PΓ \ (A ∪B) hide− combine

STOP \A = STOP hide− STOP

(x : C → P (x))Γ(i/γ) \A = (x : C → P (x)Γ(i/γ′)) \A
= (x : C → (P (x)Γ(i/γ′) \A)) if A ∩ C = ∅ hide− step 1

(x : C → P (x))Γ(i/γ) \A = (x : C → P (x)Γ(i/γ′)) \A
= ux∈C(P (x)Γ(i/γ′) \A) if C ⊆ A hide− step 2

SKIP \A = SKIP hide− term

Figure 5.4: Laws for hiding

does not offer any action no local actions will be performed by the composition, as is the

case in CSP. However, in CMVP process P can still execute interleaving call and/or return

actions on its interface (independent on STOP) and so the parallel composition between P

and STOP is not equivalent to STOP anymore. Consider for instance P = a1 → P(1/a),

P(1/a) = b1 → P(1/⊥), and P(1/⊥) = STOP . We have traces(Pε‖STOP) 6= ∅; indeed,

a1b1 ∈ traces(Pε‖STOP). In fact in this example (Pε‖STOP) = Pε!

5.5 Hiding

Process PΓ and PΓ \ A (where A ⊆ Σ̃) will both perform the same events, the exception

being that whenever PΓ executes any event a in interface A then PΓ \ A will execute an

internal action (τ). Hence, any event that is in the interface A cannot be picked up in the

sequence of events of the trace, since it is hidden from the observer.

traces(PΓ \A) = {tr \A|tr ∈ traces(PΓ)}

Figure 5.4 enumerates the laws of hiding. In hide−step 1 and hide−step 2, γ and γ′ both

represents the stack content of the i-th stack before and after an execution (or transition):

CHAPTER 5. CMVP TRACE SEMANTICS 54

if a local or an empty return event is executed then γ′ = γ, else if a call or a non-empty

return event is executed them γ′ 6= γ (in the execution of a call a symbol is pushed to the

stack and with a return a symbol is popped from the stack), etc. Law hide−combine states

that interfaces hidden in succession and interfaces hidden at the same time (using the union

operation) will always return the same outcome. Law hide − STOP states that if there is

no event and the hiding construct is applied, then nothing is hidden. Laws hide − step 1

and hide − step 2 describe instances of using the hiding construct over a prefix choice. In

law hide − step 1 none of the choice events belong to the hidden interface A, since there

is no common event between interfaces A and C. As a result the same choice of events

being offered. In law hide− step 2 all of the choice events belong to the hidden interface A

since interface C is a subset of A, resulting in the choice between the subsequent processes.

Finally, law hide− term states that hiding has no effect on the termination of a process.

5.6 Renaming

A process PΓ and a forward renamed process f(P)Γ will behaves the same way, with the

exception that f(P)Γ performs f(a) whenever PΓ would have performed a. The traces of

process f(P)Γ are the same with process PΓ with every event mapped through f .

traces(f(PΓ)) = {f(tr)|tr ∈ traces(PΓ)}

The backward renaming construct f−1(PΓ) also behaves like process PΓ, with the exception

that any event a that is executed by f−1(PΓ) corresponds to an event f(a) executed by PΓ.

Hence, a trace tr of f−1(PΓ), when mapped through the function f , will result in a trace

f(tr) of PΓ.

traces(f−1(PΓ)) = {tr |f(tr) ∈ traces(PΓ)}

Figure 5.5 enumerates the laws of renaming. In f(.) − step 1, f(.) − step 2, and Law

f−1(.)−step, γ and γ′ both represents the stack content of the ith -stack before and after an

CHAPTER 5. CMVP TRACE SEMANTICS 55

f(x : C → P (x))Γ(i/γ) = f(x : C → P (x)Γ(i/γ′)) =

y : f(C)→ f(P (f−1(y)))Γ(i/γ′) if f is 1-1 f(.)− step 1

f(x : C → P (x))Γ(i/γ) = f(x : C → P (x)Γ(i/γ′))

= y : f(C)→ ux|f(x)=yf(P (x))Γ(i/γ′) f(.)− step 2

f(SKIP) = SKIP f(.)− term

f−1(x : C → P (x))Γ(i/γ) = f−1(x : C → P (x)Γ(i/γ′))

= y : f−1(C)→ f−1(P (f(y)))Γ(i/γ′) f−1(.)− step

f−1(SKIP) = SKIP f−1(.)− term

Figure 5.5: Laws for Renaming

execution: if a local or an empty return event is executed then γ′ = γ, else if a call or a non-

empty return event is executed them γ′ 6= γ (in the execution of a call a symbol is pushed

to the stack and with a return a symbol is popped from the stack). Law f(.)−step 1 states

that if the mapping f is one-to-one then the renaming construct relates in an intuitive

manner with prefix choice: a choice of events from interface C translates to a choice of

events from f(C) = {f(c)|c ∈ C}. Function f is injective, hence any event y chosen will be

mapped to exactly one event x(= f−1(y)) from the original choice of events from interface

C, so the subsequent actions are that of P (x)Γ transformed through the function f . Law

f(.)−step 2 states that if a process is initially ready to execute any event from an interface

C, then the initial choice for its renamed process is the set of events in interface f(C).

Unlike law f(.) − step 1, the mapping of function f is not one-to-one. Hence, any event y

chosen will result in the execution of any of the processes which follow an event mapping

to y: let a and b both appear in interface C, if function f has a mapping for both event a

and c to an event c, then the renamed process executes the event c in two different ways,

once resulting from an event a and once resulting from an event b. Finally, Both term laws

state that both forward and backward renaming have no effect on the ability of a process

CHAPTER 5. CMVP TRACE SEMANTICS 56

to terminate.

5.7 Sequential Composition

The sequential composition construct PΓ;QΓ′ acts as process PΓ until PΓ successfully ter-

minates, at which point control is then given to process QΓ′ to execute. The termination

of process PΓ does not mean the termination of the entire construct, instead process PΓ’s

X event occurs as an internal event τ . The traces of a sequential composition construct

PΓ;QΓ′ can be broken down into two parts: the traces of PΓ before termination with its

terminating trace, and the traces of QΓ′ .

traces(PΓ;QΓ′) = { tr |tr ∈ traces(PΓ) ∧X /∈ σ(tr)} ∪ {tr1.tr2|tr1〈X〉
∈ traces(PΓ) ∧ tr2 ∈ traces(QΓ′)}

Sequential composition satisfies all the laws stated in Figure 5.6. In Law ;-step, γ and

γ′ both represents the stack content of the i-th stack before and after an execution (or

transition), as explained earlier. Law ;−assoc which is derived from the disjoint union

operator states that a sequential composition construct is associative. The ;−unit laws

provide a unit for the sequential composition construct. It states that if there is a sequential

composition between SKIP (either as the left or right process) and another process PΓ, the

outcome will always be PΓ. Law ;−step simply states that a prefix choice in a sequential

composition construct is equal to a prefix choice of sequentially composed processes. Law

;−zero − l simply states that a sequential composition between process STOP (being the

process on the left of the construct) and any other process, will always result in the process

STOP since no events are initially offered and termination does not occur.

5.8 Interrupt

The interrupt construct PΓ4QΓ′ acts as PΓ, but at any stage in its execution control can

be passed to process QΓ′ . Therefore the traces of the interrupt construct PΓ4QΓ′ can be

broken down into two parts: the traces of PΓ or else the non necessarily terminating traces

CHAPTER 5. CMVP TRACE SEMANTICS 57

PΓ; (QΓ′ ;RΓ′′) = (PΓ;QΓ′);RΓ′′ ;−assoc

SKIP ;PΓ = PΓ ;−unit− l

PΓ; SKIP = PΓ ;−unit− r

(x : C → P (x))Γ(i/γ);QΓ′ = (x : C → P (x)Γ(i/γ′));QΓ′

= x : C → (P (x)Γ(i/γ′);QΓ′) ;−step

STOP ;PΓ = STOP ;−zero− l

Figure 5.6: Laws for sequential composition

of PΓ concatenated with the traces of process QΓ′ .

traces(PΓ4QΓ′) = traces(PΓ) ∪ {tr1.tr2|tr1 ∈ traces(PΓ) ∧X /∈ σ(tr1) ∧ tr2 ∈ traces(QΓ′)}

PΓ4(QΓ′4RΓ′′) = (PΓ4QΓ′)4RΓ′′ 4− assoc

STOP4PΓ = PΓ 4− unit− l

PΓ4STOP = PΓ 4− unit− r

(x : C → P (x))Γ(i/γ)4QΓ′ = (x : C → P (x)Γ(i/γ′))4QΓ′

= QΓ′ � (x : C → (P (x)Γ(i/γ′)4QΓ′)) 4− step

SKIP4PΓ = SKIP � PΓ 4− term

Figure 5.7: Laws for interrupt

There are a number of laws appropriate for the Interrupt construct as given in Figure 5.7,

governing its interaction with the choice construct and with termination. In 4 − step, γ

and γ′ both represents the stack content of the i-th stack before and after an execution,

as above. Law 4 − assoc which is derived from the disjoint union operator states that

the interrupt construct is associative. Law 4 − step gives a description of how a prefix

CHAPTER 5. CMVP TRACE SEMANTICS 58

choice interrupted by a process QΓ′ behaves: it either acts as the process QΓ′ instantly, or

it executes an event in the prefix choice. If the latter is the case, the resulting process will

also have to make the choice as mentioned above. The 4−unit laws provide a unit for the

interrupt construct. It states that if there is an interrupt between STOP (either as the left

or right process) and another process PΓ, the outcome will always be PΓ. Finally, 4− term

simply states that if termination occurs in the component process on the left side of the

interrupt construct, then the interrupting process is discarded.

5.9 Recursion

In CSP and other finite-state process algebras a recursive process is simply described as a

process that creates a loop from one state back to the same state and it is defined by a

relation of form P = F (P). If a CMVP recursive process is reasoned about in the same

manner, so a CMVP recursive process will be defined by the relation PΓ = F (PΓ). This

however restrict the recursion construct in CMVP to a regular recursion construct. In the

general sense (i.e. self-embedding recursion), the relation that defines a CMVP recursive

process remains P = F (P)! We also note that a CMVP recursive process defines a loop from

one MVPDA state back to the same MVPDA state; however, the content of the stack in

operation is not required to be the same in the two instances where the MVPDA state is the

same, but its behaviour should be decided instead by the executions that occur according

to the recursive function F .

We therefore consider the recursive definition P = F (P) within its proper place (as

a CMVP process) i.e., (P = F (P))Γ, or equivalently PΓ = F (P)Γ, where Γ is the set of

stacks of the process in execution. Thus, the MVPDA state P with the set of stacks Γ

behaves the same as the MVPDA state F (P) with the same set of stacks. Hence, the

traces(PΓ) = traces(F (P)Γ). This recursive definition defines an equation which must be

satisfied by the set traces(PΓ). More precisely, traces(PΓ) becomes a fixed point of the

function on trace sets represented by the CMVP expression F ; when the function is applied

CHAPTER 5. CMVP TRACE SEMANTICS 59

to traces(PΓ) to obtain traces(F (P)Γ), the result will again be traces(PΓ).

Every CMVP process has the empty trace as one of its possible traces, hence 〈〉 ∈

traces(PΓ); which means that, traces(STOPΓ) ⊆ traces(PΓ) ⇒ traces(F (STOP)Γ) ⊆

traces(F (P)Γ) = traces(PΓ). This is established as a result of the monotonic na-

ture of CMVP operators are in relation to ⊆: hence, if traces(PΓ) ⊆ traces(QΓ), the

traces(F (P)Γ) ⊆ traces(F (Q)Γ) for any function F constructed out of CMVP operators and

terms. Using standard induction it can be ascertained that for any n traces(Fn(STOP)Γ) ⊆

traces(F (P)Γ) = traces(PΓ) which points to the fact that all of the traces obtained by un-

winding the definition (P = F (P))Γ n times are still traces of recursive process PΓ. All of

the Fn(STOP)Γ processes amounts to the finite unwinding of the recursive definition, so

between them they account for all the possible traces of (P = F (P))Γ. Hence

traces((P = F (P))Γ) =
⋃
n∈N

traces(Fn(STOP)Γ)

.

5.10 Abstract

A CMVP process can contain several modules. The abstract construct extracts from a

CMVP process only the internal trace of its first module, but then follows the rest of the

original traces of the process. Only sub-modules that return to their parent modules are

considered as complete sub-modules. Hence, unbalanced calls or returns cannot be in the

trace of a complete sub-module since all complete traces of every complete sub-module are

always balanced. An incomplete sub-module can happen at the end of a trace of a module,

however it cannot have unbalanced returns in its trace. After the first module finishes its

execution the abstract operator stops working, hence the rest of the traces of the process

will not change:

traces(PΓ) = {A(tr)|tr ∈ traces(PΓ)}

CHAPTER 5. CMVP TRACE SEMANTICS 60

where A(tr) is a function which extracts the trace tr′ where tr′ is the trace of PΓ, and tr is

the trace of PΓ. A definition for A is given in Section 6.1.1.

Chapter 6

Trace Specification and
Verification in CMVP

We assume that the visible partitions of events are always known by a CMVP trace observer.

Hence, a CMVP trace observer can recognize when a system (MVPDA) executes a call or

return event. This assumption enables the definition of four crucial functions in CMVP:

abstract, stack extract, module extract, and completeness. These four functions allow

our process algebra to specify certain properties that are useful in the system verification

process. The abstract function is used to specify local properties of a module in a system.

Stack limits, access control, and concurrent stack properties are specified using the stack

extract function. The module extract function enables the specification of properties that

are specific to one module of a system, while the completeness function is used to specify

partial and total correctness of a system.

6.1 CMVP Trace Functions

6.1.1 Abstract Function

The abstract function or A(tr) obtains the trace tr′ of PΓ. Recall that for every trace

tr′ of PΓ there is a trace tr of PΓ. The definition of the abstract function is as follows:

A(tr) = {l0.c1
i.r1

i.l1.c2
i.r2

i.l2 . . . ck
i.rk

i.lk.w|∀i : 1 ≤ i ≤ n ∧ tr = l0.t1.t2 . . . tk.w ∧ l0 ∈

Σ∗l ∧ ∀x : 1 ≤ x ≤ k ∧ tx ∈ {cxi.sx.rxi.lx, 〈〉} ∧ (sx = 〈〉 ∨ ∀s′ < sx : (s′ = 〈〉 ∨ |s′|
Σ̃i

c
≥

61

CHAPTER 6. TRACE SPECIFICATION AND VERIFICATION IN CMVP 62

|s′|(Ar)i)∧ |sx|Σ̃i
c

= |sx|Σ̃i
r
)∧ cxi ∈ Σ̃i

c ∧ rxi ∈ Σ̃i
r ∧ lx ∈ Σ∗l ∧ (w = 〈〉 ∨head(w) ∈ Σ̃Xr ∨∀w′ <

w : (w′ = 〈〉∨ |w′|
Σ̃i

c
≥ |w′|

Σ̃i
r
))}. The use of abstract function is illustrated in Section 6.2.4.

6.1.2 Stack Extract

In a CMVP trace the number of call events on a stack i in the set of stacks Γ, is equal to

the number of stack symbols pushed onto the stack i, while the number of balanced return

events in i is equal to the number of stack symbols popped off stack i. Hence, we define

a function stack extract of a stack i or Si(tr) which will extract the stack content γ for a

stack i in the set of stacks Γ from the CMVP trace tr.

Si(tr) of a process P(γ1,...,γi,...,γn) is defined as follows (with R(tr) denoting the reversal

of the trace tr): Si(tr) = {ci+j i.ci+j−1
i . . . ci+2

i.ci+1
i.⊥|tr′ = tr \ Σ̃Xl ∧sq = R(tr′).⊥∧sq =

si+j+1.ci+j
i.si+j .ci+j−1

i . . . si+2.ci+1
i.si+1.ri

i.si.ri−1
i . . . s3.r2

i.s2.r1
i.s1.⊥ ∧ ∀x : 1 ≤ x ≤

i ∧ rxi ∈ {Σi
r ∪ 〈〉} ∧ ∀y : 1 ≤ y ≤ j ∧ ci+yi ∈ {Σi

c ∪ 〈〉} ∧ ∀z : 1 ≤ z ≤ i + j + 1 ∧ sz ∈

S∗ ∧ S = {s|∀s′ < s : (s′ = 〈〉 ∨ |s′|Σi
r
≥ |s′|Σi

c
) ∧ |s|Σi

r
= |s|Σi

c
}}. The use of stack extract is

illustrated in Sections 6.2.1 and 6.2.2.

6.1.3 Module Extract

Module extract or M(tr, ai) extracts from the trace tr the trace tr′ of the module which

starts with the call event ai. M(tr) extracts the trace tr′ of the first module from the

trace tr: M(tr) = {tr′|tr = tr′.tr′′ ∧ ∀t < tr′ : (t = 〈〉 ∨ |t|Σ1
c
≥ |t|Σ1

r
) ∧ (tr′′ = 〈〉 ∨ tr′′ =

〈X〉 ∨ (head(tr′′) ∈ Σ̃r ∧ |tr′|Σ̃c
= |tr′|

Σ̃r
))} and M(tr, ai) = {tr′|tr = tr′′.ai.tr′′′ ∧ |tr′′|ai =

0∧tr′ = M(tr′′′)}. The use of module extract is illustrated and made clearer in Section 6.2.4

and in Section 6.2.5.

6.1.4 Completeness

Completeness or C(tr, ai) is a function which verifies that a trace tr contains the complete

trace of a sub-module. Hence, if a sub-module is invoked by call event ai, then tr must

include the call event ai and its balanced return. It will return the desired trace if it is

CHAPTER 6. TRACE SPECIFICATION AND VERIFICATION IN CMVP 63

in tr, else it will return the empty trace: C(tr, ai) = {tr′|(tr = tr′′.tr′.tr′′′ ∧ head(tr′) =

ai∧ foot(tr′) ∈ Σ̃i
r∧ t < tr′ : (t = 〈〉∨|t|

Σ̃i
c
≥ |t|

Σ̃i
r
)∧|tr′|

Σ̃i
c

= |tr′|
Σ̃i

r
∧|tr′′|ai = 0)∨ tr′ = 〈〉}.

The use of completeness will be illustrated in Section 6.2.5.

6.2 CMVP Trace Specification

CMVP encompasses CSP and it behaves exactly like CSP when all the executing events are

locals. Hence, CMVP can specify any property of a system that CSP can. CMVP can also

specifies various crucial properties for software verification that regular or a context-free

process algebra are unable to specify as outlined below:

6.2.1 Access Control

Unlike any regular or a context-free process algebra, CMVP can specify the access control

properties of a module. It can specify that a module can be invoked if a certain property

holds. For instance, a specification might require that a procedure A (called by a call event

ai) can be invoked only if another procedure B (called by a call event bi) is on the stack

i in the set of stacks Γ. In CMVP, this property is expressed as S(tr) = |Si(tr)|bi 6= 0 ⇒

|Si(tr)|ai 6= 0.

6.2.2 Stack Limit

CMVP can specify that a property holds, whenever the size of the i-th stack of a CMVP

process is bound by a given constant. For instance, a specification might require that there

will be no occurrence of an event a in the trace, if the size of the i-th stack is less than 7.

In CMVP, this predicate can be expressed as S(tr) = |Si(tr)| < 7⇒ |tr|a = 0.

6.2.3 Concurrent Stack Properties

In a parallel composition construct a concurrent stack property is a requirement that a

property holds in some stack i of a process P(1,...,n) and another property holds in some

stack n+ i of a concurrent process Q(n+1,...,n+n). Unlike any regular or context-free process

CHAPTER 6. TRACE SPECIFICATION AND VERIFICATION IN CMVP 64

algebra, CMVP is able to specify this predicate. From the trace of PΓA‖BQΓ′ one can

specify that if one stack property p holds in P(γ1,...,γn), then another stack property q holds

in Q(γn+1,...γn+m). If tr is the trace of PΓA‖BQΓ′ , then tr � AX is the trace of PΓ and tr � BX

is the trace of QΓ′ . Indeed, one can use the fact that (Si(tr) � AX) is the stack i of PΓ

and (S(n+i)(tr) � BX) is the stack n+ i of QΓ. For instance, a specification might require

that if the stack size is less than 7 in stack i of process P(γ1,...,γn), then there will be no

invocation for module A (called by a call event an+i) in QΓ′ . In CMVP, this property can

be expressed as S(tr) = |(Si(tr) � AX)| < 7⇒ |(S(n+i)(tr) � BX)|an+i = 0, where tr is the

trace of PΓA‖BQΓ′ .

6.2.4 Internal Properties of a Module

CMVP allows the internal trace of a (possibly recursive) module to be extracted from a

CMVP trace and any trace properties can then be specified on the extracted trace. Let A

be a recursive module (which is called by call event ai) in process P(γ1,...,γn). The trace of

module A is extracted using M(tr, ai), where tr is the trace of P(γ1,...,γn). Using the abstract

function, the internal trace can be further extracted: A(M(tr, ai)) is the internal trace of

module A. For instance, a specification might require that the number of b events is always

larger or equal than the number of c events in the local execution of A. this property can

be expressed as S(tr) = |A(M(tr, ai))|b ≥ |A(M(tr, ai))|c.

6.2.5 Pre- and Post-Conditions

CMVP can accommodate the specification of the pre- and post-conditions of a module.

Hence, partial and total correctness can be specified in CMVP. The partial correctness of

a procedure A specifies that if the pre-condition p holds when the procedure A is called,

then if the procedure terminates the post-condition q is satisfied upon the return of A. Let

module A be called by ai. During the invocation of A, if some event b always precedes

another event c, if A returns, then the number of b events will be smaller than the number

of c events in module A. This predicate is specified as: S(tr) = (tr = tr1.a
i.tr2) ∧ (tr1 �

CHAPTER 6. TRACE SPECIFICATION AND VERIFICATION IN CMVP 65

b = 〈〉 ⇒ tr1 � c = 〈〉) ⇒ C(ai.tr2, ai) = 〈〉 ∨ (C(ai.tr2, ai) 6= 〈〉 ∧ |M(tr2)|b < |M(tr2)|c).

Similarly, the total correctness of a procedure A specifies that if the pre-condition p holds

when the procedure is called, then the procedure must terminate and the post-condition q

must be satisfied upon the return of the procedure A. For instance, a specification might

require that during the invocation of A, if some event b always precede another event c,

then A returns and the number of b events will be smaller than the number of c events in

module A. The property can be specified as: S(tr) = (tr = tr1.a
i.tr2) ∧ (tr1 � b = 〈〉 ⇒

tr1 � c = 〈〉)⇒ C(ai.tr2, ai) = 〈〉 ∧ (C(ai.tr2, ai) 6= 〈〉 ∧ |M(tr2)|b < |M(tr2)|c).

6.3 CMVP Trace Verification

Using CMVP various non-regular specification properties can be verified, including the

properties stated in Section 6.2. CMVP verification shares many features of CSP verifica-

tion. The major difference between CMVP and CSP verification rules is the presence of a

set of stacks in a CMVP process. Since CMVP processes are MVPDAs, CMVP verification

rules are applied over a visible alphabet, whereas the CSP verification rules are applied over

a local alphabet.

6.3.1 Prefix Choice

The CMVP prefix choice construct contains a number of component processes. It is always

prepared to execute any one of the menu of events offered. The antecedent to the rule

assumes a family of specifications Sa(tr), one for each of the components P (a)Γ(i/γ′) where

(x : A→ P (x))Γ(i/γ) = x : A→ P (x)Γ(i/γ′). The proof rule is:

∀a ∈ A : P (a)Γ(i/γ′) ` Sa(tr)

(x : A→ P (x))Γ(i/γ) ` tr = 〈〉 ∨ ∃a ∈ A : head(tr) = a ∧ Sa(tail(tr))

6.3.2 Choice

The choice constructs PΓ � QΓ′ or PΓ uQΓ′ acts either as PΓ or as QΓ′ . If PΓ ` S(tr) and

QΓ′ ` T (tr), then the choice construct PΓ � QΓ′ or PΓ u QΓ′ satisfies the disjunction of

CHAPTER 6. TRACE SPECIFICATION AND VERIFICATION IN CMVP 66

these two specifications:
PΓ ` S(tr)
QΓ′ ` T (tr)

PΓ � QΓ′ ` S(tr) ∨ T (tr)

and
PΓ ` S(tr)
QΓ′ ` T (tr)

PΓ uQΓ′ ` S(tr) ∨ T (tr)
.

Let Pε and Qε be two CMVP processes. Let A be a module which can execute only

event d, called by ci and returned by ei. Let B be a module which after executing an

event b executes its sub-module A. C is another module which first executes its sub-module

A then executes an event h. Process Pε calls module B and ends its execution when B

returns, while Qε calls module C and ends its execution when C returns: P = ai → P1(i/a),

P1 = b → P2, P2 = ci → P3(i/ca), P3 = d → P4, P4(i/ca) = ei → P5(i/a), P5(i/a) =

f i → P6(i/⊥), P6 = STOP , and Q = gj → Q1(j/g), Q1 = cj → Q2(j/c), Q2 = d → Q3,

Q3(j/cg) = ej → Q4(j/g), Q4 = h→ Q5, Q5(j/g) = ij → Q6(j/⊥), Q6 = STOP .

So traces(Pε) = {〈〉, 〈ai〉, 〈ai, b〉, 〈ai, b, ci〉, 〈ai, b, ci, d〉, 〈ai, b, ci, d, ei〉, 〈ai, b, ci, d, ei, f i〉},

traces(Qε) = {〈〉, 〈gj〉, 〈gj , cj〉, 〈gj , cj , d〉, 〈gj , cj , d, ej〉, 〈gj , cj , d, ej , h〉, 〈gj , cj , d, ej , h, ij〉},

and traces(Pε � Qε) = traces(Pε uQε) = {〈〉, 〈ai〉, 〈gj〉, 〈ai, b〉, 〈gj , cj〉, 〈ai, b, ci〉, 〈gj , cj , d〉,

〈ai, b, ci, d〉, 〈gj , cj , d, ej〉, 〈ai, b, ci, d, ei〉, 〈gj , cj , d, ej , h〉, 〈ai, b, ci, d, ei, f i〉, 〈gj , cj , d, ej , h, ij〉}.

Pε satisfies the following non-regular property: module A can be called only if a is on its

i-th stack, while Qε satisfies another non-regular property: module A can be called only if

g is on its j-th stack:

Pε ` S(tr) = (|Si(tr)|ai = 0⇒ |Si(tr)|ci = 0)

Qε ` T (tr) = (|Sj(tr)|gj = 0⇒ |Sj(tr)|cj = 0)

Then Pε � Qε or Pε uQε meets the specification

(|Si(tr)|ai = 0⇒ |Si(tr)|ci = 0) ∨ (|Sj(tr)|gj = 0⇒ |Sj(tr)|cj = 0)

CHAPTER 6. TRACE SPECIFICATION AND VERIFICATION IN CMVP 67

6.3.3 Parallel Composition

A trace tr of the a parallel composition construct (PA‖BQ)Γ·Γ′ will execute events from

PΓ and execute events from QΓ′ , contained within the alphabets AX and BX, respectively.

Hence, if PΓ ` S(tr), then S(tr) � AX must hold. Also, if QΓ′ ` T (tr), then T (tr) � BX

must hold. Finally, only events in AX or BX can be executed the parallel composition,

hence σ(tr) ⊆ (A ∪B)X. The proof rule is as follows:

PΓ ` S(tr)
QΓ′ ` T (tr)

(PA‖BQ)Γ.Γ′ ` S(tr � AX) ∧ T (tr � BX) ∧ σ(tr) ⊆ (A ∪B)X
.

Intuitively, parallel composition corresponds to conjunction: both the constraints S and T

hold in the parallel composition (on their respective interfaces).

The parallel composition (P {ai, b, ci, d, ei, f i}‖{gn+i, cn+i, d, en+i, h, in+i}Q)((γ1,...,γn)·(γn+1,...,γn+m))

between the two processes Pε and Qε from the Section 6.3.2 will satisfy

S(tr � {ai, b, ci, d, ei, f i}X) ∧ T (tr � {gn+i, cn+i, d, en+i, h, in+i}X)
∧σ(tr) ⊆ {ai, b, ci, d, ei, f i, gn+i, cn+i, en+i, h, in+i}X

which reduces to

|S(tr)(i/γ)|ai ∧ |S(tr)(n+i/δ)|gn+i = 0

⇒ |S(tr)(i/γ)|ci = 0 ∧ σ(tr) ⊆ {ai, b, ci, d, ei, f i, gn+i, cn+i, en+i, h, in+i}X

6.3.4 Hiding

A trace of the process PΓ \ A is simply a trace of PΓ less all the events in the interface A.

Therefore, for every trace of PΓ \ A there is a corresponding trace of PΓ. The following is

the inference rule:
PΓ ` S(tr)

PΓ \A ` ∃tr1 : tr1 \A = tr ∧ S(tr1)
.

The process Pε of Section 6.3.2 meets the non-regular specification that there will be no

occurrence of event d in the internal trace of the module which is invoked by call event ai

Pε ` S(tr) = (tr = tr′.ai.tr′′ ⇒ |A(tr′′)|d = 0)

CHAPTER 6. TRACE SPECIFICATION AND VERIFICATION IN CMVP 68

Hence, the process Pε \ {ci} meets the following specification:

S′(tr) = (∃tr1 : tr1 \ {ci} = tr ∧ (tr1 = tr′.ai.tr′′ ⇒ |A(tr′′)|d = 0))

6.3.5 Abstract

A trace of the abstract construct PΓ is obtained from the trace of PΓ by removing all the

traces of the sub-modules of the top level module. Hence, the inference rule is as follows:

PΓ ` S(tr)

PΓ ` ∃tr1 : A(tr1) = tr ∧ S(tr1)

.

The process Pε of Section 6.3.2 satisfies the partial correctness property that if b is in

the trace when a module is called, if the module returns then there will be a d in the trace:

Pε ` S(tr) = ((tr = tr′.ai.tr′′∧|tr′|b 6= 0∧ai ∈ Σ̃i
c)⇒ (C(ai.tr′′, ai) = 〈〉∨tr1.|M(tr′′)|d 6= 0))

so Pε will satisfy

S′(tr) = ∃tr1 : A(tr1) = tr ∧ ((tr = tr′.ai.tr′′ ∧ |tr′|b 6= 0 ∧ ai ∈ Σ̃i
c)

⇒ (C(ai.tr′′, ai) = 〈〉 ∨ tr1.|M(tr′′)|d 6= 0))

6.3.6 Renaming

The trace tr of a renamed process f(PΓ) will correspond to a renamed trace f(tr1) for some

tr1 of PΓ. The inference rule for translating specifications through a forward renaming is

as follows:
PΓ ` S(tr)

f(PΓ) ` ∃tr1 : S(tr1) ∧ f(tr1) = tr

A particular specification S can be translated through the renaming function f to a speci-

fication R. This will hold if R(tr) can be shown to translate to S correctly: ∀tr : (S(tr)⇒

R(f(tr))). If tr is a trace of f−1(PΓ), then f(tr) is a trace of PΓ, so it must satisfy whatever

specification PΓ is known to satisfy. The inference rule is as follows:

PΓ ` S(tr)

f−1(PΓ) ` S(f(tr))

CHAPTER 6. TRACE SPECIFICATION AND VERIFICATION IN CMVP 69

6.3.7 Sequential Composition

The sequential composition construct PΓ;QΓ′ acts as PΓ until PΓ eventually terminates,

after which it acts as QΓ′ . Any given trace of process PΓ;QΓ′ will have one of the two

alternatives: it is either a trace of PΓ that has yet to perform termination, else it is a trace

of PΓ then followed by a trace of QΓ′ . The proof rule is as follows:

PΓ ` S(tr)
QΓ′ ` T (tr)

PΓ;QΓ′ ` ¬term(tr) ∧ S(tr) ∨ ∃tr1, tr2 : tr = tr1tr2 ∧ S(tr1〈X〉) ∧ T (tr2)

where term(tr) = X ∈ σ(tr) denotes that the trace corresponds to a terminating execution.

6.3.8 Interrupt

Any given trace of the interrupt construct PΓ4QΓ′ is either a trace of PΓ (which has

successfully terminated) or it is a non-terminated trace of PΓ followed by a trace of QΓ′ .

The inference rule is as follows:

PΓ ` S(tr)
QΓ′ ` T (tr)

PΓ4QΓ′ ` S(tr) ∨ ∃tr1, tr2 : tr = tr1tr2 ∧ ¬term(tr1) ∧ S(tr1) ∧ T (tr2)
.

6.3.9 Recursion

A recursive process NΓ is recursively defined by the equation (N = P)Γ or equivalently

(N = F (N))Γ. Hence a rule which is sufficient to define that NΓ ` S(tr) is as follows:

∀YΓ : (YΓ ` S(tr)⇒ F (Y)Γ ` S(tr))

NΓ ` S(tr)

[
S(〈〉)

]
This rule covers all the aspects necessary for defining by induction that NΓ ` S(tr), hence

it is valid . The traces of NΓ are those of
⋃
i∈N traces((F i(STOP))Γ), and all the finite

unwindings of (F (Y))Γ begin from the process STOP . The inductive hypothesis is that

(F i(STOP))Γ ` S(tr). The side conditions S(〈〉) corresponds to the base case, since it is

equivalent to STOP ` S(tr), which is equivalent to (F 0(STOP))Γ ` S(tr).

Chapter 7

Conclusions

CMVP defines a superset of CSP by merging the interesting properties of finite-state al-

gebras (provided by CSP) with the context-free features of MVPL. MVPDA on its own

cannot work in this context, but by using two extra constructions (disjoint operations over

MVPDA and stack renaming) over the original definition closure under interesting opera-

tions is attained. The closure of MVPDA under these operations has paved the way for

an MVPDA-based process algebra that can be used to specify and verify concurrent and

recursive systems. Since LTS semantics serve as the underlying semantic model for any

process algebra, LTS semantics corresponding to an MVPDA has also been provided to

further strengthen the definition of CMVP.

Although CSP and other finite-state process algebras have proven useful for the spec-

ification and verification of hardware, communication protocols, and drivers, they are not

able to adequately specify and verify more complex application software. Indeed, applica-

tion software has a large number of distinct finite states, and so finite-state mechanisms

are no longer practical in this context. CMVP therefore opens up a new domain in for-

mal methods (and more specifically algebraic methods such as model-based testing) for the

specification and verification of application software. Since it is an infinite-state process

algebra, its context-free features prove adequate for specifying and verifying these complex

systems. We thus present CMVP, the first fully compositional multi-stack visibly pushdown

70

CHAPTER 7. CONCLUSIONS 71

process algebra, as a superset of CSP. The definition of the semantics of MVPDA in terms

of labelled transition systems establishes MVPL as the domain language for CMVP. Also,

the operational and trace semantics for CMVP are derived from the semantics of MVPDA.

Evidently, the closure of CMVP under all its operators offers prove that it is a process

algebra.

We also define functions on CMVP traces that extract stack and module information

from CMVP traces. Using these functions, useful properties for software verification such as

the access control of a module, stack limits, concurrent stack properties, internal properties

of a module, and pre-/post-conditions of a module, which context-free or regular process

algebras are unable to specify can be specified in CMVP. This dissertation has thus put

down the foundation that will enable MVPDA (rather than finite automata) to be the basis

of concurrent process algebraic tools and theories, hence allowing for the formal specification

and verification of application software.

7.1 Advantages of CVP over Other Process Algebrae

The domain language of CMVP (MVPL) encompasses the spectrum of regular languages

and dives into the context-free spectrum. Therefore, unlike finite-state process algebra

CMVP naturally models recursive modules. Also CMVP combines regular language features

with context-free features, hence it can model multi-threaded modules just as effectively as

finite-state process algebra. It has the advantage of being able to represent both recursive

and multi-threaded modules compositionally, unlike any other process algebra.

Another advantage of CMVP over other process algebras is that CMVP processes op-

erate over visible symbols, hence the stack content of a process can easily be identified by

observing the process. Therefore, the specification and verification of (concurrent) stack

properties is possible. An instance of this is a specification that requires that a module A

can execute only after a module B has executed, with no interleaving call to an overriding

module C [2]. Unlike other context free process algebra, CMVP is able to offer this feature

CHAPTER 7. CONCLUSIONS 72

as a result of the visible nature of its domain language (MVPL).

The environment of a CMVP process is also aware when a module executes (by per-

forming a call event) and when the executed module terminates (by performing a return

action) since its domain language uses visible alphabets. Hence, the specification and ver-

ification of both pre-conditions and post-conditions of recursive modules is also possible.

The pre-conditions of a module can be verified at the beginning of its execution, while its

post-conditions is verified at the end point.

Another benefit of CMVP over other process algebras is the use of the newly introduced

abstract operator that allows for the abstraction of modules from the process environment.

Variants of the CMVP abstract operator can be easily defined; for instance a variant that

terminates a process when the abstracted module terminates or a variant that hides only a

specific sub-module can be created.

Finally, the CMVP module extract function gives CMVP an edge over other process

algebras. It allow the trace of a module to be easily extracted from the trace of a process.

By combining the module extract and abstract function of CMVP the internal trace of

a module can be identified. Hence with CMVP the specification and verification of the

internal properties of modules is possible, giving it an edge over other process algebras.

7.2 Future

This dissertation has laid out the basis for MVPDA-based axiomatic verification. As would

be required for any process algebra, a preliminary proof system based on the trace model has

been defined. MVPDA-base failures, divergences and infinite (FDI) traces model, pre-order

relations, equivalence testing are all areas that are open for future research. CMVP opens

up a whole new realm that allows for the specification and verification of real-time and

concurrent systems using MVPDA-based axiomatic verification. It also offers important

features that other process algebras cannot as enumerated in Section 7.1. This leads us to

conclude that the future will be dominated by our MVPDA-based process algebra rather

CHAPTER 7. CONCLUSIONS 73

than context free and regular process algebras.

Bibliography

[1] R. Alur, M. Arenas, P. Barcelo, K. Etessami, N. Immerman, and L. Libkin. First-order

and temporal logics for nested words. In Proceedings of the 22nd IEEE Symposium on

Logic in Computer Science, pages 151–160. IEEE Computer Society, 2007.

[2] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and returns.

In Proceedings of the 10th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS 04), volume 2988 of Lecture Notes in

Computer Science, pages 467–481. Springer, 2004.

[3] R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the 36th

Annual ACM Symposium on Theory of Computing (STOC 04), pages 202–211. ACM

Press, 2004.

[4] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge University Press,

1990.

[5] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstraction.

Theoretical Computer Science, 37(1):77–121, 1985.

[6] J. A. Bergstra and J. W. Klop. Process theory based on bisimulation semantics. In

J. W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, Linear Time, Branching

Time and Partial Order in Logics and Models for Concurrency, volume 354 of Lecture

Notes in Computer Science, pages 50–122. Springer, 1988.

74

BIBLIOGRAPHY 75

[7] S. D. Brookes, A. W. Roscoe, and D. J. Walker. An operational semantics for CSP.

Technical Report, 1988.

[8] S.D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential

processes. Journal of the ACM, 31(3):560–599, 1984.

[9] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, editors. Model-

Based Testing of Reactive Systems: Advanced Lectures, volume 3472 of Lecture Notes

in Computer Science. Springer, 2005.

[10] S. D. Bruda. Preorder relations. In Broy et al. [9], pages 117–149.

[11] Stefan D Bruda and Md Tawhid Bin Waez. Unrestricted and disjoint operations over

multi-stack visibly pushdown languages. In Proceedings of the 6th International Con-

ference on Software and Data Technologies (ICSOFT 2011), pages 98–103, Seville,

Spain, July 2011.

[12] Dario Carotenuto, Aniello Murano, and Adriano Peron. 2-visibly pushdown automata.

In Developments in Language Theory, pages 132–144. Springer, 2007.

[13] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.

[14] R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor, Mathematical

Aspects of Computer Science, Proceedings of Symposia in Applied Mathematics 19,

pages 19–32, Providence, 1967. American Mathematical Society.

[15] A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1988.

[16] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of

the ACM, pages 576–580, 1969.

[17] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677,

1978.

BIBLIOGRAPHY 76

[18] S La Torre, P Madhusudan, and G Parlato. 2-vpas are not determinizable.

http://www.cs.uiuc.edu/ madhu/vpa/wrong-proof-CMP07.html, 2007.

[19] Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. A robust class

of context-sensitive languages. In Logic in Computer Science, 2007. LICS 2007. 22nd

Annual IEEE Symposium on, pages 161–170. IEEE, 2007.

[20] Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. The language

theory of bounded context-switching. In LATIN 2010: Theoretical Informatics, pages

96–107. Springer, 2010.

[21] J. Mccarthy. A basis for a mathematical theory of computation. In Computer Pro-

gramming and Formal Systems, pages 33–70. North-Holland, 1963.

[22] A. J. R. G. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes

in Computer Science. Springer, 1980.

[23] R. Milner. A complete inference system for a class of regular behaviours. Journal of

Computer and System Sciences, 28:439–466, 1984.

[24] S. Schneider. Concurrent and Real Time Systems: The CSP Approach. John Wiley &

Sons, Inc., New York, NY, USA, 1999.

[25] D. Scott and C. Strachey. Towards a mathematical semantics for computer languages.

In J. Fox, editor, Computers and Automata, pages 19–46. John Wiley, 1972.

[26] Jǐŕı Srba. Beyond language equivalence on visibly pushdown automata. arXiv preprint

arXiv:0901.2068, 2009.

[27] Md Tawhid Bin Waez. Communicating visibly pushdown processes. Master’s thesis,

Bishop’s University, 2008.

	Introduction
	Process Algebra
	Visibly Pushdown Languages
	Multi-Stack Visibly Pushdown Languages
	Thesis
	Dissertation Summary

	Preliminaries
	Labelled Transition System
	Communicating Sequential Processes
	Visibly Pushdown Automata
	Multi-stack Visibly Pushdown Automata
	Trace Semantics
	Traces
	Trace Semantics
	Specification with Traces
	Verification with Traces

	Previous Work

	Communicating Multi-Stack Visibly pushdown Processes
	The Operational Semantics of CMVP
	Prefix Choice
	Internal Event
	Choice
	Recursion
	Parallel Composition
	Hiding
	Abstract
	Renaming
	Sequential Composition and Interrupt

	CMVP Is a Process Algebra

	A Detailed Example
	Prefix Choice
	Internal Event
	Choice
	Recursion
	Parallel Composition
	Hiding
	Abstract
	Renaming
	Sequential Composition and Interrupt

	CMVP Trace Semantics
	Prefix Choice
	External Choice
	Internal Choice
	Parallel Composition
	Hiding
	Renaming
	Sequential Composition
	Interrupt
	Recursion
	Abstract

	Trace Specification and Verification in CMVP
	CMVP Trace Functions
	Abstract Function
	Stack Extract
	Module Extract
	Completeness

	CMVP Trace Specification
	Access Control
	Stack Limit
	Concurrent Stack Properties
	Internal Properties of a Module
	Pre- and Post-Conditions

	CMVP Trace Verification
	Prefix Choice
	Choice
	Parallel Composition
	Hiding
	Abstract
	Renaming
	Sequential Composition
	Interrupt
	Recursion

	Conclusions
	Advantages of CVP over Other Process Algebrae
	Future

	Bibliography

