
PARSE TREES, INTERFERENCE, AND MIXED NODES FOR

CONTEXT-FREE PARALLEL COMMUNICATING GRAMMAR SYSTEMS

by

MEHRDAD NASERDOUST

A thesis submitted to the

Department of Computer Science

in conformity with the requirements for

the degree of Master of Science

Bishop’s University

Canada

April 2020

Copyright c©Mehrdad Naserdoust, 2020

Abstract

Parallel Communicating Grammar Systems (PCGS) were introduced for a better understanding of

concurrent systems on a language-theoretic level. Some research has been done regarding rela-

tionship between PCGS and practical computing systems, though this has not received sustained

attention. In another more practical attempt, parse trees for PCGS have been investigated. It is rela-

tively straightforward to construct a parse tree for every PCGS derivation, but going the other way

around (reconstructing a derivation for every PCGS parse tree) is not always possible. The possibil-

ity of doing this has been found to depend on the property of interference in a PCGS. We refine this

result, showing that there is one extra property that needs to be taken into account. We show that

even in the absence of interference there exist parse trees that cannot correspond to any derivation

when strings containing nonterminals are communicated between PCGS components. This reduces

the utility of PCGS parse trees even further than previously thought.

Acknowledgments

I would like to thank the Computer Science department at Bishop’s University for giving me the

opportunity to pursue a Master’s degree. I would like to underline the support, patience and guidance

received from Dr. Stefan D. Bruda, without him none of this would have been possible. The door to

Dr. Bruda’s office was always open whenever I ran into a trouble spot or had a question about my

research or writing. He consistently allowed this paper to be my own work, but steered me in the

right the direction whenever he thought I needed it.

I also want to express my gratitude to my family and friends for their continued support and

encouragement, supporting me emotionally throughout my studies.

i

Contents

1 Introduction 1

2 Preliminaries 4

2.1 Context-Free Grammars . 4

2.2 Parallel Communicating Grammar Systems . 5

3 Previous Work 8

3.1 PCGS Parse Trees . 11

4 Meta-Trees and Mixed Meta-Nodes 15

5 Complete Characterization of PCGS Derivations by Parse Trees 19

6 Conclusions 25

Bibliography 27

ii

List of Figures

3.1 Parse trees for context-free grammars (a,b,c,d); supplementary parse trees for CF-

PCGS (e, f). 12

4.1 Meta-nodes M1,M2 and M3 (a), a parse tree T (b), and the associated meta-tree (c) . 17

5.1 Possible parse trees for the first and second component of a PCGS. 21

5.2 A parse tree that cannot correspond to any derivation in the respective PCGS. . . . 22

iii

Chapter 1

Introduction

Parallel Communicating Grammar Systems (PCGS) have been introduced as a language-theoretic

treatment of concurrent (or more generaly, multi-agent) systems [7, 20]. A PCGS contains differ-

ent component grammars that work in parallel on separate strings. Components may or may not

synchronize with each other, but they also cooperate by communicating with each other. More pre-

cisely, components may request strings generated by others. Synchronization and communication

facilities of PCGS whose components are of a certain type are generally more powerful than a single

grammar of the same type [5, 7, 10, 20, 21].

Specifically, PCGS whose components are context-free grammars (or just CF-PCGS for short)

appear to be capable of offering convenient models for the control flow of the concurrent execution

of several threads running complex, possibly recursive code. Recursion in particular generates an

infinite state space when classical verification techniques such as model checking or model-based

testing are used. Therefore, the analysis of such complex, concurrent and recursive processes need

to be considered on a more abstract, non-regular level. A straight move to the context-free level

however will not solve the problem completely. Indeed, context-free process algebrae such as the

basic process algebra or BPA [2] can specify such context-free properties, but their ability to model

concurrency is limited by the basic fact that context-free languages are not closed under intersection

[17]. This limitation has generated an investigation into visibly pushdown languages [1], culmi-

nating with multi-stack visibly pushdown languages [3, 16] and eventually a process algebra [18].

1

CHAPTER 1. INTRODUCTION 2

This approach however is on the automata side and therefore they are inherently inconvenient for

specifying systems. Because of all these reasons PCGS with context-free components appear to be

an excellent basis for developping a model for the specification of recursive, concurrent systems.

The motivation of PCGS is claimed to be the study of concurrent systems. Relatively recently

some links with practice have been attempted [15, 4]. Parse trees in particular are one of the most

important tool for context-free languages; they are used for important proofs such as the pumping

lemma, but most importantly they form the basis of programming language compilers. Parse trees

have the potential to have similar importance for PCGS with context-free components. This is

supported by the fact that they continue to exist in the context of context-free PGCS derivations;

indeed, any context-free PCGS derivation has an associated parse tree [4].

Going the other way around and offering a full characterization of context-free PCGS deriva-

tions using parse trees turns out to depend on the two particular notions of “interference” [4] and

“mixed meta-nodes” (Chapter 4). The notion of interference has already been investigated, but the

notion of mixed meta-nodes was overlooked. We therefore focus now on the mixed meta-nodes

and we find that they impose further limitations for characterizations of derivations by parse trees.

Existence of mixed meta-node in a PCGS can cause a parse tree to grow in such a way that we

cannot find the corresponding derivation for it.

In all, it turns out that a complete characterization of derivations in CF-PCGS is even more

limited than previously thought. Indeed, such a full characterization is only possible if the notion

of interference and mixed meta-nodes are both absent. Such a property thus only holds for one

very restricted context-free PCGS variant (Chapter 5). One consequence of the existence of such a

characterization is in the realm of generative power, namely that this variant of context-free PCGS

is the weakest of them all.

Parse trees are a powerful tool for having a better understanding of context-free PCGS. Our

results regarding the relationship between these two notions is useful in a more abstract way in a

possible quest toward grammatical approaches to formal verification of concurrent and recursive

systems. Some of these results [4] suggest that synchronized context-free PCGS are unnecessarily

CHAPTER 1. INTRODUCTION 3

powerful for our purpose. It would appear that the unsynchronized variant has all the ingredients

needed for modeling such systems and at the same time it is less complex. In light of our results

combined with on earlier attempt [4], further restrictions on the PCGS being used as a model for a

possible process algebra might be contemplated.

The rest of this thesis is organized as follows. We start by summarizing the necessary prelim-

inaries in Chapter 2. The parse trees for context-free PCGS were introduced and analyzed earlier

[4], there the notions of meta-tree and meta-node were also introduced; we summarize these results

in Chapter 3. We also introduce here the notion of interference and its consequences on the rela-

tion between parse trees and derivations in synchronized as well as non-returning CF-PCGS. Our

contribution starts in Chapter 4, where we show that the original definition of meta-nodes is too

restricted and so we relax it. We also introduce the notion of mixed meta-nodes here. In Chapter 5

we show how the existence of mixed meta-nodes cause the existence of parse trees that do not cor-

respond to any derivation. We are thus able to identify the class of CF-PCGS for which a complete

characterization of derivations using parse trees is possible. We conclude in Chapter 6.

Chapter 2

Preliminaries

In this section we briefly recall some basic notions regarding parallel communicating grammar

systems which are necessary to follow the paper. We assume that the reader is familiar with formal

language theory, so we only specify some notations. For further details consult [17].

For some alphabet (i.e., finite set) V , some word x ∈V ∗, and a set U ⊆V , we denote the number

of occurrences of elements from U in x by |x|U . By abuse of notation we write |x|a instead of |x|{a}

for singleton sets U = {a}. The symbol ε will be used to denote the empty string, and only the

empty string.

2.1 Context-Free Grammars

A grammar [17] is a tuple G = (N,Σ,R,S) where N describes a finite set of nonterminals. Σ de-

scribes a finite set of terminals. S ∈ N is the axiom or start symbol, and R⊆ ((N∪Σ)∗N(N∪Σ)∗)×

(N ∪Σ)∗ describes a finite set of productions or (rewriting) rules where each rule maps a nontermi-

nal to a string S ∈ (N ∪Σ)∗. A rewriting rule (σ ,σ ′) is customarily written σ → σ ′. A rewriting

step replaces a string w = uσv with w′ = uσ ′v whenever σ → σ ′ ∈ R (written w⇒G w′, though we

often omit the subscript G whenever the grammar is understood from the context). A grammar G

generates the language L (G) of exactly all the strings that can be derived from the axiom S, i.e.,

L (G) = {w ∈ Σ∗ : S⇒∗G w}, where⇒∗G is the reflexive and transitive closure of⇒G and is called

a derivation. A context-free grammar, in particular, is a grammar with R⊆ N× (N∪Σ)∗.

4

CHAPTER 2. PRELIMINARIES 5

Definition 1 ([17]). A parse tree for a context-free grammar G = (N,Σ,R,S) is a tree whose nodes

are labelled with symbols from the set N ∪Σ. It is defined inductively as follows (based on Fig-

ure 3.1(a–d) on page 12): For every a ∈ N∪Σ the tree depicted in Figure 3.1(a) is a parse tree with

yield a; for every A→ ε ∈ R the tree from Figure 3.1(b) is a parse tree with yield ε . Suppose that

the n trees from Figure 3.1(c) are parse trees with yields y1, y2, . . . , yn and that A→ A1A2 . . .An ∈ R;

then the tree shown in Figure 3.1(d) is a parse tree with yield y1y2 . . .yn.

Note that the yield of a parse tree is the sequence of leaf labels as obtained by an inorder traversal

of the tree. For every parse tree with root S and yield w there exists a derivation S⇒∗ w (and the

other way around) in a natural way [17].

2.2 Parallel Communicating Grammar Systems

The idea behind parallel communicating grammar systems (PCGS) is the notion of multiple gram-

mars that work together in parallel, communicate with each other, and generate strings. This concept

allows us to investigate properties of parallel systems.

Definition 2 ([7]). A PCGS is an (n+ 3) tuple Γ = (N,K,Σ,G1, . . . ,Gn) for some n ≥ 1, where N

is nonterminal alphabet, K is the set of query symbols, K = {Q1,Q2, . . . ,Qn}, and Σ is a terminal

alphabet. The sets N, Σ, and K are mutually disjoint. Gi =(N∪K,Σ,Ri,Si), 1≤ i≤ n are grammars;

they represent the components of the system. The indices 1, . . . ,n of the symbols in K point to

G1, . . . ,Gn, respectively.

A derivation in PCGS consists of applying a series of rewriting rules in each component and

reacting to communication requests between components. Communication happens as a result of

introducing query symbols during the rewriting process, and has always priority over rewriting. In

other words no rewriting can happen in a configuration featuring query symbols (meaning, commu-

nication requests that are not yet satisfied).

Definition 3 ([7]). Let Γ = (N,K,T,G1, · · · ,Gn) be a PCGS as above, and (x1,x2, . . . ,xn) and

(y1,y2, . . . ,yn) be two n-tuples with xi,yi ∈ (N∪T ∪K)∗,for every 1≤ i≤ n. We write (x1, . . . ,xn)⇒

CHAPTER 2. PRELIMINARIES 6

(y1, . . . ,yn) iff one of the following two cases holds:

1. |xi|K = 0 f orevery1 ≤ i ≤ n, and for each 1≤ i ≤ n, we have xi⇒Gi yi (in the grammar Gi),

or xi ∈ T ∗ and xi = yi.

2. There exists 1 ≤ i ≤ n, such that |xi|K > 0. Then, for each such i, we write xi =

z1Qi1z2Qi2 . . .ztQit zt+1, t ≥ 1, for z j ∈ (N ∪T ∪K)∗, |z j|K = 0, 1 ≤ j ≤ t + 1. If |xi j |K = 0,

1≤ j≤ t, then yi = z1xi1z2xi2 . . .ztxit zt+1 [and yi j = Si j ,1≤ j≤ t]. When, for some j,1≤ j≤ t,

|xi j |K 6= 0, then yi = xi. For all i,1≤ i≤ n, for which yi is not specified above, we have yi = xi.

In other words, an n-tuple (x1, . . . ,xn) yields (y1, . . . ,yn) if:

1. There is no query symbol in x1,. . . ,xn, then we have a component-wise derivation (xi ⇒Gi

yi,for every 1 ≤ i ≤ n, which means that one rule is used per component Gi), unless xi is all

terminals (xi ∈ T ∗) in which case it remains unchanged (yi = xi).

2. We have query symbols and so a communication step is required. When this occurs each

query symbol Q j in xi is replaced by x j if and only if x j does not contain query symbols.

In other words, a communication step involves the query symbol Q j being replaced by the

string x j; the result of this replacement is referred to as Q j being satisfied (by x j). Once

the communication step is complete the grammar G j continues processing from its axiom,

unless the system is non-returning. Communication steps always have priority over rewriting

steps; if not all query symbols are satisfied during a communication step, they will be satisfied

during the next communication step (as long as the replacement strings do not contain query

symbols).

For both component-wise and communication steps we use⇒, but we may use Λ⇒ for commu-

nication steps whenever we want to emphasize that a communication takes place. A sequence of

interleaved rewriting and communication steps will be denoted by⇒∗, the reflexive and transitive

closure of⇒.

Definition 4 ([7]). The language generated by a PCGS Γ is

CHAPTER 2. PRELIMINARIES 7

L (Γ) = {w ∈ T ∗ : (S1,S2, ...,Sn)⇒∗ (w,σ2, ...,σn),σi ∈ (N∪T ∪K)∗,2≤ i≤ n}.

We start from the tuple of axioms (S1,S2, ...,Sn) in each component. We proceed by rewriting

and/or communication steps until G1 produces a terminal string. We do not restrict the form of, or

indeed care about the rest of the components of the final configuration. In other words they might

contain nonterminals or query symbols.

As with any model certain behaviors have been defined in semantic terms to simplify their

description. The following terms will be used frequently in what follows.

Definition 5 ([22]). We call a PCGS Γ centralized if query symbols are only introduced in the

first component grammar G1 which means only G1 can control the communications. If component

grammar Gi, i 6= 1 can coordinate communications steps, meaning any component grammar can

introduce communication symbols, then the system is non-centralized.

We call a PCGS a returning system if the components return to their axiom after they are queried

by other component. If those component continue to process the current string and are not reset to

their axiom, then the system will be considered non-returning.

A PCGS system is considered synchronized whenever a component grammar uses exactly one

rewriting rule per derivation step (unless the component grammar is holding a terminal string, case

in which it is allowed to stay put). If the components are allowed to wait instead of proceeding with

a rewriting rule then that system is non-synchronized.

The family of languages generated by a non-centralized, returning PCGS with n components

of type X (where X is an element of the Chomsky hierarchy) will be denoted by PCn(X) [7]. The

language families generated by centralized PCGS will be represented by CPCn(X). The fact that

the PCGS is non-returning will be indicated by the addition of an N, thus obtaining the classes

NPCn(X) and NCPCn(X). Let M be a class of PCGS, M ∈ (PC,CPC,NPC,NCPC); then we define:

M(X) = M∗(X) =
⋃
n≥1

Mn(X)

Chapter 3

Previous Work

Our result is in the area of generative power of PCGS so we start by summarizing here the existing

results in this area. It should be noted that not all structural variations have been studied in this

respect. Most of the existing results are about centralized systems, and even then not all of the

centralized variants have been studied thoroughly. We then proceed with our main focus namely,

the introduction of meta-trees (Definition 8) and the associated results which mainly refer to context-

free non-returning systems (synchronized and unsynchronized).

In the following we refer in the usual way to the various classes in the Chomsky hierarchy as

follows: RE, CS, CF, LIN, and REG are the classes of recursively enumerable, context-sensitive,

context-free, linear, and regular languages, respectively.

As already mentioned, PCGS are generally more powerful than grammars of the same type.

This is not however always the case, especially at the top of the Chomsky hierarchy. Specifically,

CS and RE are the two most powerful PCGS and grammar types; surprisingly their behavior is

quite similar. We start with the immediate finding that a RE grammar is just as powerful as a

PCGS with RE components. Due to this the PCGS of this type with n > 1 components are not

very interesting since they are just as powerful as a PCGS with one component. In other words a

PCGS with unrestricted components are Turing equivalent and are just as powerful as RE grammars:

RE = Yn(RE) = Y∗(RE), n≥ 1, for all Y ∈ {PC,CPC,NPC,NCPC} [8].

8

CHAPTER 3. PREVIOUS WORK 9

A bit more interesting is the fact that the same holds to some degree for PCGS with context-

sensitive components versus context-sensitive languages: CS = Yn(CS) = Y∗(CS), n ≥ 1, for Y ∈

{CPC,NCPC} [8]. Note that this result describes the centralized case; we would expect that the

non-centralized case to be more powerful.

Context-sensitive grammars are computationally expensive and so limited in usefulness. As is

the case with normal grammars, the most useful PCGS classes are therefore the simple ones. This is

in fact more the case with PCGS; anticipating a bit, the fact that CF PCGS will turn out to be Turing

complete make RE and CS PCGS not just of limited utility, but not useful at all.

Moving to the more interesting PCGS classes, we first note that the class of languages gener-

ated by a centralized returning PCGS with regular components is a subset of the class of languages

generated by a non-centralized, returning PCGS with regular components. This indicates that the

generative power of a PCGS is greater than of a single grammar component, and that the more com-

munication facilities we have the more powerful the resulting system is: CPCn(REG)(PCn(REG),

n > 1 [22]. A similar result was found for PCGS with context free components; however in this

case the inclusion is not necessarily strict, so increased communication may not make the system

more powerful: CPC∗(CF)⊆ PC∗(CF) [12].

We note in general that the centralized variant is a particular case of a non-centralized PCGS.

Indeed, that centralized qualifier restricts the initiation of the communication to the first grammar

in the system. As a consequence the class of languages generated by a centralized PCGS of any

type can be generated by a non-centralized PCGS of the same type: CPCn(X) ⊆ PCn(X) for any

n≥ 1. As a more general comment on this matter it should be noted that the fact that the generative

power of a PCGS is greater that of a single grammar component is largely due to the introduction of

communication facilities. Once these facilities are restricted, the generative power is also restricted.

The following two results demonstrate that there are limitations to the generative power of

PCGS. When we have only two regular components the languages generated by centralized PCGS

are all context free. Even the non-centralized variant is limited to generating context-free languages.

• CPC2(REG)(CF, [8].

CHAPTER 3. PREVIOUS WORK 10

• PC2(REG)⊆ CF [8].

Another way to increase the generative power of a system is to increase the number of components

in the system. We have shown that this does not change the generative capacity in the RE and (to

some degree) CS case. However if we examine classes that are lower in the hierarchy we notice that

an increase in the number of components generally increases the generative capacity of the system

[8].

1. There exists a language generated by PCGS with 2 or more REG components that cannot be

generated by a linear grammar: Yn(REG)\LIN 6= /0 for n≥ 2, Y ∈ {PC,CPC,NPC,NCPC}.

2. There exists a language generated by a PCGS with 3 or more REG components that cannot

be generated by a context free grammar: Yn(REG) \CF 6= /0 for n ≥ 3 (and n ≥ 2 for non-

returning PCGS), Y ∈ {PC,CPC,NPC,NCPC}.

3. There exists a language generated by a PCGS with 2 or more linear components that cannot be

generated by a context free grammar: Yn(LIN)\CF 6= /0, n≥ 2, Y ∈ {PC,CPC,NPC,NCPC}.

4. There exists a language generated by a non-returning PCGS with 2 or more regular com-

ponents that cannot be generated by a context free grammar: Yn(REG) \CF 6= /0, n ≥ 2,

Y ∈ {NPC,NCPC}.

Obviously an increase in the power of the components will generally increase the power of

a PCGS. This holds strictly in the centralized case for REG versus LIN versus CF components:

CPCn(REG)(CPCn(LIN)(CPCn(CF), n≥ 1, [8]. Presumably the same relationship would hold

for the non-centralized case, but as far as we know this has not been investigated.

We already mentioned the number of components as an important factor in the generative power

of PCGS. It therefore makes sense to consider the hierarchies generated by this factor. Some of these

hierarchies are in fact infinite, namely CPCn(REG) and CPCn(LIN), n≥ 1 [8].

Some hierarchies however collapse. We have already mentioned that CPCn(CS) and

NCPCn(CS), n≥ 1, do not give infinite hierarchies, for all of these classes coincide with CS. Lower

CHAPTER 3. PREVIOUS WORK 11

classes also produce collapsing hierarchies; for instance non-centralized CF-PCGS with 11 com-

ponents generate the whole class of RE languages [10]. A later paper found that a CF-PCGS with

only 5 components can generate the entire class of RE languages by creating a PCGS that has two

components that track the number of non-terminals and use the fact that for each RE language L

there exists and Extended Post Correspondence problem P [14] such that L(P) = L. In other words,

RE = PC5CF = PC∗CF [9].

There have also been other papers that have examined the size complexity of returning and non

returning CF systems even further. It has been shown that every recursively enumerable language

can be generated by a context fee returning PCGS, where the number of nonterminals in the system

is less than or equal to a natural number k [6]. It has also been shown that non-returning CF-

PCGS can generate the set of recursively enumerable languages with 6 context free components by

simulating a 2-counter Turning machine [11].

The above results [6, 9, 10] use a particular communication model called broadcast communica-

tion, which is not necessarily implied by the canonical PCGS definition. In the one-step communi-

cation model which is arguably implied by the PCGS definition the hierarchy PC∗CF also collapse,

though not necessarily at n = 11 or n = 5 [23].

Turing completeness was also shown for non-returning systems [11, 19]. In particular, if k ≥ 2

and L ⊆ {a1, . . . ,ak}+ is a recursively enumerable language, then there exists a non-returning CF-

PCGS without ε-rules (meaning without rules of the form A→ ε) that generates L [11]. If we

consider that non-returning systems can be simulated by returning systems via the help of assistance

grammars holding intermediate strings [13], these results [11, 19] also apply to returning systems

(though the number of components necessary for this to happen does not remain the same).

3.1 PCGS Parse Trees

Our research is a continuation of the investigation into parse trees for context-free PCGS [4]. We

therefore review these results in more depth according to the paper already mentioned [4].

CHAPTER 3. PREVIOUS WORK 12

(a) (c) (e)

(b) (d) (f)

Figure 3.1: Parse trees for context-free grammars (a,b,c,d); supplementary parse trees for CF-
PCGS (e, f).

Definition 6 (PCGS Parse Trees). Let Γ = (N,K,Σ,G1, . . . ,Gn) be a PCGS with context-free com-

ponents.

A parse tree for some component Gi = (N∪K,Σ,Ri,Si), 1≤ i≤ n, of Γ is defined inductively as

follows: For every a ∈ N∪K∪Σ the tree depicted in Figure 3.1(a) is a parse tree with yield a, and

for every A→ ε ∈ Ri the tree depicted in Figure 3.1(b) is a parse tree with yield ε . Suppose that the

n trees from Figure 3.1(c) are parse trees with yields y1, y2, . . . , yn and that A→ A1A2 . . .An ∈ Ri;

then the tree shown in Figure 3.1(d) is a parse tree with yield y1y2 . . .yn. If the tree depicted in

Figure 3.1(e) is a parse tree of G j, then the tree from Figure 3.1(f) is a parse tree for Gi, 1≤ i, j≤ n,

i 6= j.

The yield of a parse tree continues to be the sequence of leaf labels as obtained by an inorder

traversal of that parse tree.

Definition 7 (PCGS Parse Forest). A parse forest for Γ is an n-tuple T = (T1,T2, . . . ,Tn), where Ti

is a parse tree for Gi as in Definition 6, 1 ≤ i ≤ n. The first component T1 of a parse forest T is

called the master parse tree (of T).

Definition 8 (Meta-tree). Let Γ = (N,K,Σ,G1, . . . ,Gn) be a context-free PCGS and let Tk, 1≤ k≤ n

be a tree in the parse forest of some derivation (S1,S2, . . . ,Sn)⇒∗Γ (x1,x2, . . . ,xn).

CHAPTER 3. PREVIOUS WORK 13

A meta-node (of Tk) is a maximal region of Tk which (a) has all its edges produced by applica-

tions of rules from a single component Gi of Γ, and (b) is rooted at Si, the axiom of Gi.

The meta-tree µ(Tk) of Tk is the tree of meta-nodes constructed using function µ defined recur-

sively (and naturally) such that for a given parse tree T , µ(T) produces the following meta-tree:

1. The root r of µ(T) is the meta-node rooted at the root of T . It has one child for every leaf

labelled with a query symbol Q j in r (zero children if no such a label exists in r).

2. For each edge (Q j,S j) in T that originates from a leaf of r labelled Q j the respective child of

r is µ(T ′), where T ′ is the tree rooted at S j.

The yield of µ(T) is defined as being the same as the yield of the underlying parse tree T .

Proposition 1. Every derivation resulting in a configuration (x1,x2, . . . ,xn) in a PCGS with context-

free components has an equivalent parse forest; the yields of the parse trees in that forest are x1, x2,

. . . , xn, respectively

Definition 9 (Checkpoint and Interference). Let Γ = (N,K,Σ,G1, . . . ,Gn) be a CF-PCGS. We use

γ0⇒Γ γ1⇒Γ · · · ⇒Γ γp to refer to any complete derivation in Γ, meaning that there is no γp+1 such

that γp⇒Γ γp+1. We further put γk = (γk1,γk2, . . . ,γkn), meaning that we use γki to refer to the i-th

component of the configuration γk, for 0≤ k ≤ p and 1≤ i≤ n.

A checkpoint of (component) Gi by G j, 1≤ i, j ≤ n during some derivation in Γ is either p (the

end of the derivation) or some 1 ≤ k < p such that |γk j|Qi 6= 0 (the event of G j querying Gi). Note

that during a particular derivation there may be multiple checkpoints of Gi by G j.

A component G j interferes with another component Gi in some derivation whenever there exists

a checkpoint C of Gi by G j and a string wi (the interference string) such that

1. Si⇒∗Gi
wi (wi can be produced by grammar Gi if it acts alone outside Γ), and

2. γC i 6= wi (wi cannot be produced by Gi at step C in the respective derivation of Γ).

Definition 10 (Unique-query PCGS). A unique-query PCGS is a PCGS in which no rewriting rule

contains two or more occurrences of the same query symbol.

CHAPTER 3. PREVIOUS WORK 14

Proposition 2. There exists a master parse tree of some synchronized PCGS that does not cor-

respond to any derivation in that PCGS. There exists a parse forest of some synchronized PCGS

that does not correspond to any derivation in that PCGS. This all holds for both returning and

non-returning PCGS.

Proposition 3. There exists a master parse tree of some non-returning, unsynchronized PCGS that

does not correspond to any derivation in that PCGS. There exists a parse forest of such a PCGS

that does not correspond to any derivation in that PCGS.

Proposition 4. There exists a master parse tree of some returning, unsynchronized, non-unique-

query PCGS that does not correspond to any derivation in that PCGS. There exists a parse forest of

such a PCGS that does not correspond to any derivation in that PCGS.

Chapter 4

Meta-Trees and Mixed Meta-Nodes

The meta-trees as introduced in Definition 8 are too restrictive. Indeed, while it is true that any

derivation has an equivalent parse tree, it is possible that the parse tree cannot be covered by meta

nodes. In other words, it is not the case that all derivations in a context-free PCGS have an equivalent

meta-tree. It is possible to have derivations and meta-trees that do not correspond to each other, even

when all the constraints are in place.

The cause of this issue is the first constraint in the definition of meta-trees namely, “a meta-node

(of Tk) is then a maximal region of Tk which (a) has all the edges produced by applications of rules

from a single component Gi of Γ”. While it is true that a meta-node is only expanded using rules

from a given component, the construction of that meta-node might have been started in a different

component, and so overall the rules that are being used do not come from the same component. If

this is the case, then such a parse tree cannot be covered by meta-nodes as defined originally.

We will therefore start by providing a relaxed definition for meta-nodes (and so meta-trees).

Definition 11 (Meta-tree). Let Γ = (N,K,Σ,G1, . . . ,Gn) be a context-free PCGS and let Tk, 1≤ k≤

n be a tree in the parse forest of some derivation (S1,S2, . . . ,Sn)⇒∗Γ (x1,x2, . . . ,xn). A meta-node

(of Tk) is then a maximal region of Tk which is rooted at Si, the axiom of Gi and does not include

any edge (Qk,X), 1 ≤ k ≤ n, X ∈ N ∪T . In other words, a meta-node is a maximal sub-tree of TK

rooted at some axiom and not containing any internal node labeled with a query symbol.

The meta-tree µ(Tk) of Tk is then a the tree of meta-nodes constructed using a function µ defined

15

CHAPTER 4. META-TREES AND MIXED META-NODES 16

recursively (and naturally) such that for some parse tree T µ(T) produces the following meta-tree:

1. The root r of µ(T) is the meta-node rooted at the root of T . It has one child for every leaf

labeled with a query symbol Q j in r (zero children if no such a label exists in r).

2. For each edge (Q j,S j) in T that originates from a leaf of r labelled Q j the respective child of

r is µ(T ′), where T ′ is the tree rooted at S j.

The yield of µ(T) is defined as being the same as the yield of the underlying parse tree T .

For a better understanding of the new meta-tree notion we proceed with the following example.

Figure 4.1(a) depicts the meta-nodes M1, M2 and M3 in the parse tree µ(T) shown in Figure

4.1(b). Note that this construction is not valid according to the original definition if for example the

rewriting rule A⇒ a belongs to the first component (according to the original definition that rule

has to come from the second component since it is used in the construction of a meta-node rooted at

S2). Figure 4.1(c) is the meta-tree µ(T) rooted at M1, which in turn has M2 and M3 as its children.

As we can see meta-tree µ(Tk) of Tk start with its axiom which is the master parse tree and contains

2 edges which correspond to all the queries performed during the derivation.

Definition 12 (Mixed meta-nodes). Let Γ = (N,K,Σ,G1, . . . ,Gn) be a context-free PCGS and let

Tk, 1 ≤ k ≤ n be a tree in the parse forest of some derivation (S1,S2, . . . ,Sn)⇒∗Γ (x1,x2, . . . ,xn). A

mixed meta-node of Tk is then a meta-node of Tk which at the time it is communicated from one

component to another contained at least one leaf labeled with a nonterminal.

Lemma 5. There exists a meta-tree µ(T) for every parse tree T from any PCGS parse forest.

Furthermore µ(T) covers all the nodes from T .

Proof. That µ(T) is a tree is immediate by the definition of a parse tree. During the derivation

components are building their respective meta-trees by expanding meta-nodes until a query symbol

is thus introduced. This is followed immediately by the connection of that query symbol with the

meta-tree constructed by the component that is being queried. This in turn introduces a new meta-

node that becomes the child of the initial meta-node, and so on.

CHAPTER 4. META-TREES AND MIXED META-NODES 17

1 S11

Q 2 Q
3

:M
2S

cA

:2M 3S

ca

:3M

(a)

S11

Q
2

Q
3

S

A
c a c

2 3

a

:T

S

3

11

2M M

M

(b) (c)

Figure 4.1: Meta-nodes M1,M2 and M3 (a), a parse tree T (b), and the associated meta-tree (c)

CHAPTER 4. META-TREES AND MIXED META-NODES 18

By induction over the depth of the nodes in T we can show that µ(T) covers all the nodes of T .

At level 0 the tree starts with Sk of T which is the root of the root meta-node. The children of this

meta-node are all introduced by edges (Q j,Si) in the parse tree. Note that these are the only kind of

edges whose start nodes are labeled with query symbols.

At a level n > 0 we have a meta-node that starts at some axiom Si by the inductive hypothesis.

We keep including in this meta-node all the nodes of the parse trees until we reach either leaf nodes

or nodes labeled with query symbols. In the latter case we note again that the only edge starting

from a query symbol Q j has the form (Q j,Si) and so starts a new meta-tree (rooted at S j) on the

next level.

Chapter 5

Complete Characterization of PCGS
Derivations by Parse Trees

Parse trees are useful for context-free grammars because all derivations have equivalent parse trees

and the other way around. According to Theorem 1, we already know that there exists a parse

tree for every derivation in a context-free PCGS. However, whether this also works the other way

around (any parse tree corresponds to an equivalent derivation) depends on other characteristics of

the PCGS in discussion. Whenever there exists a derivation for every parse tree of a PCGS we

say that the respective PCGS is completely characterized by parse trees. This property turns out to

depend on the presence of interference and mixed meta-nodes.

It is already known that interference causes PCGS not to be completely characterized by parse

trees. As a consequence, synchronized PCGS, unsynchronized, non-returning PCGS, as well as

unsynchronized, returning PCGS that are not unique-query cannot be completely characterized by

parse trees (see Propositions 2, 3, and 4).

By contrast, unsynchronized, returning, unique-query PCGS were believed to be completely

characterized by parse trees. We consider this class of PCGS further and we discover that the

second property (mixed meta-nodes) also plays a role.

Theorem 6. Every (master) parse tree of a PCGS Γ with root S1 and yield w corresponds to a (not

necessarily unique) derivation (S1,S2, . . . ,Sn)⇒∗Γ (w,x2, . . . ,xn) for some xi ∈ N ∪Σ, 2 ≤ i ≤ n iff

there is no interference and the construction of the parse tree did not use mixed meta-node.

19

CHAPTER 5. COMPLETE CHARACTERIZATION OF PCGS DERIVATIONS BY PARSE TREES20

Proof. Let Γ = (N,K,Σ,G1, . . . ,Gn) and let T be some master parse tree with µ(T) its correspond-

ing meta-tree.

We start by considering the case in which there is no interference and no mixed meta-nodes

where used, and proceed by structural induction over µ(T).

Consider a meta-node rooted as Si, 0 ≤ i ≤ n that has no queries anywhere inside it. All the

leaves were labeled with terminals at communication time, so the rules that were used to construct

the meta-node are all coming from the same component (the one that produced the node originally)

through a component-wise derivation. Given that there is no interference in Γ, the respective com-

ponents has the time to carry on any derivation, including the one corresponding to the meta-node in

discussion. Therefore we can just choose a suitable component-wise derivation in Γ that produces

our meta-node, as desired; the base case is established.

Now let us consider the scenario where query symbols Qi1 , Qi2 , . . . , Qik are presented. We

start constructing meta-nodes rooted as Si1 , Si2 , Sik . By the previous argument all these meta-nodes

correspond to component-wise derivations. By the induction hypothesis and absence of interference,

each meta-node will have the time to reach any combination starting from their axiom. By the

absence of the nonterminals as leaves at the moment of querying we are sure that all the rewriting

rules used in the meta-node Mi are coming from Gi. The parent node does not interfere with its

children since it does not perform any query. In the meta-node Mi we will have a configuration that

corresponds to a string which includes query symbols Qi1 , Qi2 , . . . , Qik . By the definition of a meta-

tree, the query symbols should become the root of corresponding components. The actual children

do correspond to such derivations (by induction hypothesis). Therefore the whole tree corresponds

to a derivation, as desired. The induction is complete.

Consider now the checkpoint C of Gi by G j such that G j interferes with Gi at C in an otherwise

successful derivation of Γ with parse tree T . Let wi be the interference string. The checkpoint

C corresponds in T to a node labelled Qi having Si as sole child (which in turn is the root of

some subtree). Replace then the aforementioned tree rooted at Si with the tree corresponding to the

derivation Si⇒∗Gi
wi. We still have a parse tree, yet such a tree cannot correspond to any derivation

CHAPTER 5. COMPLETE CHARACTERIZATION OF PCGS DERIVATIONS BY PARSE TREES21

2

S
11

cQ

A

S

a b

Q

Q

2

2

2

a b

c

3

S

S

2

2

S

3

S

A

(a) (b)

Figure 5.1: Possible parse trees for the first and second component of a PCGS.

in Γ since this would imply that wi has communicated to G j at checkpoint C (an impossibility since

the interference string wi is not available at that point).

Finally, let at least one nonterminal A be present in the yield of a parse tree at the time if is

queried by the other component. Existence of such a nonterminal will allow the tree to grow in such

a way that the respective derivation cannot be obtained in the system. We establish this case using

the following counterexample:

Let Γ = ({S1,S2,S3,A}, K, {a,b,c}, G1, G2,G3) be an unsynchronized, returning, unique-query

PCGS such that

R1 = {S1→ Q2c,S2→ ab}

R2 = {S2→ aAb,S2→ Q3}

R3 = {S3→ Q2c,A→ S2}

CHAPTER 5. COMPLETE CHARACTERIZATION OF PCGS DERIVATIONS BY PARSE TREES22

A

S11

S

c

a b

Q

Q

Q2

2

2

2

a

a b

b

c

3

S

S

2

2

S

3

S

A

Figure 5.2: A parse tree that cannot correspond to any derivation in the respective PCGS.

CHAPTER 5. COMPLETE CHARACTERIZATION OF PCGS DERIVATIONS BY PARSE TREES23

This system generated the language L (Γ) = {anbncm|n > 1,m ≥ n}. Indeed, a cycle be-

tween R2 and R3 would result in suitable numbers of a, b and c as follows: (S1,S2,S3) ⇒∗

(Q2c,anS2bncm,S3) ⇒ (anS2bncm+1,S2,S3) for some n > 1, which will be finally rewritten to

(an+1bn+1cm+1,S2,S3). There is no other possible derivation in the system.

On the side of constructing the parse trees, we start in the first component. As we can see

in Figure 5.1, the first component should wait for the construction of the other meta-tree, so we

wait until we reach a desired tree in the second component. A particular parse tree constructed

by the second component is shown in Figure 5.1. This tree starts being constructed in the second

component starting its level 4 where the rule S2 ⇒ aAb is used. Then this tree is queried by the

third component (rule S3 ⇒ Q2c). The nonterminal A in the yield of this tree (which is a mixed

meta-node) is then rewritten using the rule A⇒ S2 (level 5). This is where the contradiction starts

to happen. Indeed, the tree thus obtained gets further communicated to the second component (level

0), where it continues to expand but this time using rules from the second component. Accordingly,

we use at level 6 S2⇒ aAb (since we are in the tree being operated on by the second component).

On the other hand we are also in the meta-node corresponding to the third component and so at level

7 we use A⇒ S2.

Finally, we communicate the tree just derived in the second component to the first. We then

rewrite S2 in the first component to ab, thus reaching the master parse tree shown in Figure 5.2, with

yield a3b3c2. Clearly, this does not correspond to any derivation in Γ; as desired.

We already know that derivations in PCGS that are either synchronized or non-returning cannot

be completely characterized by parse trees. We further know that this is also the case for unsyn-

chronized, unique-query PCGS that are not unique-query. These results were established earlier

based on interference. The existence (or absence) of mixed meta-nodes allows us to further refine

the remaining class.

First however we need to see what are the features of a PCGS that ensure the absence of mixed-

meta-nodes in their parse trees. We note that when a string w is communicated from a component

i to another component j we connect to the parse tree of component i a tree rooted at s j with

CHAPTER 5. COMPLETE CHARACTERIZATION OF PCGS DERIVATIONS BY PARSE TREES24

yield w. A mixed meta-node in particular corresponds with a yield w such that |w|N 6= 0 (that is

a yield that contains no nonterminal). The only way to avoid mixed meta-nodes is to disallow the

communication of strings containing nonterminals.

Definition 13. A PCGS with communication by terminal strings the communication of strings that

contain nonterminals is not allowed.

Corollary 7. Every parse tree with root S1 and yield w of an unsynchronized, returning,

unique-query PCGS Γ corresponds to a (not necessarily unique) derivation (S1,S2, . . . ,Sn) ⇒∗

(w,x2, . . . ,xn) in Γ for some xi ∈ N ∪Σ, 2 ≤ i ≤ n iff Γ is a PCGS with communication by terminal

strings.

Proof. If (by contrapositive): If we have any interference or any mixed meta-node in Γ there is at

least one parse tree that does not correspond to any derivation in Γ by Theorem 6. The lack of both

interference and mixed meta-nodes only happen in unsynchronized, returning, unique-query PCGS

with communication by terminal strings.

Only if: There is no interference in unsynchronized, returning, unique-query PCGS. Indeed, in

such a system any checkpoint reduces the queried component to its axiom, which thereafter has any

time it needs to reach any possible form. Since the system is with communication by terminal strings

no mixed meta-nodes are ever communicated. The result then follows directly from Theorem 6.

Chapter 6

Conclusions

Like for context-free grammars, parse trees would be a very useful tool for CF-PCGS both theo-

retically and practically if they turn out to completely characterize derivations. The existence of

an equivalent parse tree for every derivation is already established (Proposition 1). However, the

other way around (meaning that there is a derivation for every parse tree) for different types of

PCGS derivations depends on notions of interference and as it turns out also mixed meta nodes

(Definition 12).

One case of derivations believed to have complete characterization by parse trees was the un-

synchronized, non-returning, unique query CG-PCGS. Our incursion into this area revealed that ex-

istence of mixed meta-nodes in PCGS causes parse trees that do not correspond to any derivation. In

this respect, we noticed that the the definition of meta-trees needs to be modified since it is not valid

for all the parse trees. As a result we gave a more general definition for meta-trees (Definition 11).

With the new definition we were able to define the notion of mixed meta-nodes (Definition 12).

Existence of mixed meta-nodes in a PCGS will result in some parse trees that cannot correspond to

any derivation (Theorem 6). Having said that, we have complete characterizations in an unsynchro-

nized, non-returning, unique-query PCGS if and only if we only have communication by terminal

strings.

A relatively straightforward argument similar to one made earlier [4] will show that a CF-PCGS

in which we have complete characterization of derivations by parse trees is not more powerful than

25

CHAPTER 6. CONCLUSIONS 26

a single context-free grammar. It follows that the vast majority of CF-PCGS variants do have more

expressive power than their components (all of them except unsynchronized, non-returning, unique-

query PCGS with communication by terminal strings).

The ultimate goal of showing a complete characterization of PCGS by parse trees is for using

PCGS as a basis for formal specification. In fact, we are aiming at modeling only the interactions

of (albeit complex) computing systems with their environment. In this respect, even though the

unsynchronized PCGS are less powerful, they still seem suitable. Similar characteristics of these

systems, as they are arguably closer to the way an actual concurrent system works, make them a

great candidate for particular tasks of system specification. Based on the findings from this thesis

imposing more restrictions such as unique queries and communication by terminal strings become

very appealing, though it remains to be seen how meaningful such restrictions would be from the

point of view of formal specification and verification.

Bibliography

[1] R. ALUR AND P. MADHUSUDAN, Visibly pushdown languages, in Proceedings of the 36th

Annual ACM Symposium on Theory of Computing (STOC 04), ACM Press, 2004, pp. 202–

211.

[2] J. A. BERGSTRA AND J. W. KLOP, Process theory based on bisimulation semantics, in Linear

Time, Branching Time and Partial Order in Logics and Models for Concurrency, vol. 354 of

Lecture Notes in Computer Science, Springer, 1988, pp. 50–122.

[3] S. D. BRUDA AND M. T. BIN WAEZ, Unrestricted and disjoint operations over multi-stack

visibly pushdown languages, in Proceedings of the 6th International Conference on Software

and Data Technologies (ICSOFT 2011), vol. 2, Seville, Spain, July 2011, pp. 156–161.

[4] S. D. BRUDA AND M. S. R. WILKIN, Parse trees and unique queries in context-free parallel

communicating grammar systems, Tech. Rep. 2013-001, Department of Computer Science,

Bishop’s University, apr 2013.

[5] L. CAI, The computational complexity of linear PCGS, Computer and AI, 15 (1989), pp. 199–

210.

[6] E. CSUHAJ-VARJÚ, On size complexity of context-free returning parallel communicating

grammar systems, in Where Mathematics, Computer Scients, Linguistics and Biology Meet,

C. Martin-Vide and V. Mitrana, eds., Springer, 2001, pp. 37–49.

27

BIBLIOGRAPHY 28

[7] E. CSUHAJ-VARJÚ, J. DASSOW, J. KELEMEN, AND G. PAUN, Grammar Systems: A Gram-

matical Approach to Distribution and Cooperation, Gordon and Breach, London, 1994.

[8] E. CSUHAJ-VARJÚ, J. DASSOW, J. KELEMEN, AND G. PAUN, Grammar Systems: a Gram-

matical Approach to Distribution and Cooperation, Gordon and Breach Science Publishers

S.A., 1994.

[9] E. CSUHAJ-VARJÚ, P. GHEORGHE, AND G. VASZIL, PC grammar systems with five context-

free components generate all recursively enumerable languages, Theoretical Computer Sci-

ence, 299 (2003), pp. 785–794.

[10] E. CSUHAJ-VARJÚ AND G. VASZIL, On the computational completeness of context-free par-

allel communicating grammar systems, Theoretical Computer Science, 215 (1999), pp. 349–

358.

[11] E. CSUHAJ-VARJÚ AND G. VASZIL, On the size complexity of non-returning context-free

PC grammar systems, in 11th International Workshop on Descriptional Complexity of Formal

Systems (DCFS 2009), 2009, pp. 91–100.

[12] J. DASSOW, G. PAUN, AND G. ROZENBERG, Grammar systems, in Handbook of Formal

Languages – Volume 2: Linear Modeling: Background and Applications, Springer, 1997,

pp. 155–213.

[13] S. DUMITRESCU, Nonreturning PC grammar systems can be simulated by returning systems,

Theoretical Computer Science, 165 (1996), pp. 463–474.

[14] V. GEFFERT, Context-free-like forms for the phrase-structure grammars, in Mathematical

Foundations of Computer Science, vol. 324 of Lecture Notes in Computer Science, Springer,

1988, pp. 309–317.

[15] M. A. GRANDO AND V. MITRANA, A possible connection between two theories: grammar

systems and concurrent programming, Fundamenta Informaticae, 76 (2007), pp. 325–336.

BIBLIOGRAPHY 29

[16] S. LA TORRE, P. MADHUSUDAN, AND G. PARLATO, A robust class of context-sensitive lan-

guages, in Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science

(LICS 07), Washington, DC, 2007, IEEE Computer Society, pp. 161–170.

[17] H. R. LEWIS AND C. H. PAPADIMITRIOU, Elements of the Theory of Computation, Prentice-

Hall, 2nd ed., 1998.

[18] D. MADUDU, S. D. BRUDA, AND M. T. BIN WAEZ, Cmvp, a process algebra based on

multi-stack visibly pushdown languages and their disjoint operations, Tech. Rep. 2019-002,

Department of Computer Science, Bishop’s University, Jan. 2019.

[19] N. MANDACHE, On the computational power of context-free PCGS, Theoretical Computer

Science, 237 (2000), pp. 135–148.

[20] G. PAUN AND L. SANTEAN, Parallel communicating grammar systems: the regular case,

Analele Universitatii din Bucuresti, Seria Matematica-Informatica, 38 (1989), pp. 55–63.

[21] G. PAUN AND L. SANTEAN, Further remarks on parallel communicating grammar systems,

International Journal of Computer Math., 34 (1990), pp. 187–203.

[22] L. SANTEAN, Parallel communicating grammar systems, Bulletion of the EATCS (Formal

Language Theory Column), 1 (1990).

[23] M. S. R. WILKIN AND S. D. BRUDA, Parallel communicating grammar systems with context-

free components are Turing complete for any communication model, Acta Universitatis Sapi-

entiae, Informatica, 8 (2016), pp. 113–170.

	Introduction
	Preliminaries
	Context-Free Grammars
	Parallel Communicating Grammar Systems

	Previous Work
	PCGS Parse Trees

	Meta-Trees and Mixed Meta-Nodes
	Complete Characterization of PCGS Derivations by Parse Trees
	Conclusions
	Bibliography

