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Abstract

Parallel Communicating Grammar Systems (PCGS) were introduced as language-
theoretic treatments of concurrent systems. The communication between gram-
mars makes the whole system more powerful in solving a common task than its
grammar components. PCGS can be synchronized (with the component grammars
working in lock-step) or unsynchronized. Synchronized PCGS have received sig-
nificant attention, but the unsynchronized variant has largely been ignored. In this
thesis we investigate the generative capacity of unsynchronized PCGS with contex-
free components (unsynchronized CF-PCGS for short). Synchronized CF-PCGS
have been shown to be Turing complete. The hypothesis that unsynchronized CF-
PCGS are weaker has been circulated, and we show that this is true and also false.
For one thing, we show that returning unsynchronized CF-PCGS are Turing com-
plete. To do so, we will adapt a simulation of a 2-counter Turing machine to the
unsynchronized case. On the other hand, we also show that non-returning unsyn-
chronized CF-PCGS are linear space (and so they only generate context-sensitive
languages). This is established however under the assumption that no ε-rules are
used by the component grammars.
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Chapter 1

Introduction

Parallel Communicating Grammar Systems (PCGS), have been introduced [18] as a
language-theoretic treatment of concurrent systems. They consist of several gram-
mars which work separately in a parallel environment. But the thing which makes
them powerful is the fact that they may cooperate by communicating with each
other toward a common task. Communication consists of a request from one com-
ponent grammar resulting for the string currently derived in another component
grammar. Communication has priority over derivations, so once a query appears
it must be satisfied before any rewriting takes place. A derivation in a PCGS there-
fore consists of component-wise derivation and communication steps interleaved
with each other.

The first grammar in a PCGS is designated as the master grammar while the
others are helpers or slaves. The master is responsible for deriving a string with
the possible help of the slaves. The difference is stressed in centralized PCGS,
where only the master is allowed to initiate communication. By contrast, any com-
ponent can initiate communication in a non-centralized system [4, 21] (while the
master continues to be responsible for the overall output). Both centralized and
non-centralized PCGS can communicate in a returning or non-returning manner.
If the components of a PCGS return to their axiom after communication then the
PCGS is returning. On the other hand, if the components continue to process the
current string and do not reset to their axiom, then the system will be considered
non-returning [4].

PCGS can also be differentiated based on their synchronization behaviour. In a
synchronized PCGS all the components must perform a rewriting step at the same
time in the absence of any queries (unless the component grammar is holding a
terminal string, case in which it is allowed to stay put). By contrast, whenever
components are allowed to either perform a rewriting step or wait then we call the
respective system non-synchronized.

PCGS have been investigated with respect to their generative power, but some
variants received substatially more attention than others. In particular, there are
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CHAPTER 1. INTRODUCTION 2

many efforts related to synchronized PCGS. In particular, it has been shown that
non-returning PCGS with context free components are Turing complete, which
means they can generate all recursively enumerable languages [12]. On the other
hand, we know that non-returning systems can be simulated by returning systems
[8]. Consequently, returning CF-PCGS are also Turing complete [13]. This result
has also been developed independently by a direct simulation of a 2-counter Tur-
ing machine [5].

By contrast, unsynchronized PCGS have received very little attention. In par-
ticular, unsynchronized PCGS with context-free components (unsynchronized CF-
PCGS for short) have not been investigated at all in respect to their generative
power. This thesis sets out to investigate this area.

Our findings outline a wide variety in the generative power of unsynchronized
CF-PCGS. First, we start from a paper which proved that returning CF-PCGS are
Turing complete based on a direct simulation of a 2-counter Turing machine [5].
We show that this simulation also works in an unsynchronized manner. That is,
the same simulation takes place successfully even when the original system be-
comes unsynchronized. We therefore conclude that unsynchronized CF-PCGS can
generate all the recursively enumerable languages, so they are Turing complete.

Secondly, we investigate computational complexity of unsynchronized non-
returning CF-PCGS. We find that under certain constraints (namely, whenever none
of the components of the PCGS feature ε-rules) these systems can be simulated by
O(n) space-bounded Turing machines. Therefore the languages generated by this
family of CF-PCGS are all context sensitive.



Chapter 2

Preliminaries

We briefly review some basic notions regarding grammars and then parallel com-
municating grammar systems which are essential to follow the paper. Considering
some elements of the non-terminal and terminal alphabets. The basic intuition of a
grammar model of distributed systems can be the following: component grammars
forming the distributed system can execute rewritings on a shared set of words.
The order of participation and the start and end conditions of participation are de-
fined by the strategy of cooperation between the components [4].

A grammar is a tuple G = (N, Σ, S, R), where N is a set of nonterminal sym-
bols, Σ is a set of terminals, R is a set of rewriting rules (or productions), and S ∈ N
is the start symbol or axiom. A rule α → β ∈ R specifies that a substring α can be
replaced by β. A rewriting step is the application of a rewriting rule on a string w
obtaining the string w′ (written w ⇒ w′). A derivation from w to w′ is a chained
sequence of rewriting steps (written w⇒∗ w′). The language generated by a gram-
mar consists of exactly all the strings w such that S ⇒∗ w and |w|N = 0 (all the
terminal strings that can be generated by derivations that start from the axiom of
the grammar).

According to the Chomsky hierarchy, we have four classes of grammars, and
they can be classified by the form of their rewriting rules. Let G = (N, Σ, S, R) be a
grammar; then:

• The grammar is a type-0 or unrestricted if G does not have any restriction.
These grammars create languages which can be semi-decided by Turing ma-
chines. Any languages generated by this type of grammars are called recur-
sively enumerable, or RE for short [11].

• If |α| ≤ |β| for each rewriting rule α → β in R then G is a type-1 or context
sensitive grammar. This type of grammar can have a rewriting rule of the
form S → ε, but only if S is not on the right-hand side of any rewriting rule.
These languages are referred to as context sensitive, or CS for short [11].
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CHAPTER 2. PRELIMINARIES 4

Figure 2.1: The Chomsky hierarchy

• If every rewriting rule α → β in R satisfies |α| = 1 (meaning that α is a sin-
gle nonterminal), G is a context-free grammar, or type-2. Context-free gram-
mars include a further specific type where no rewriting rule is allowed to
have more than one non-terminal symbol on its right hand side (called lin-
ear grammars). The languages generated by type-2 grammars are referred
to as context free or CF for short, and the languages generated by the linear
grammar sub-type are referred to as Linear or LIN [9, 10].

• Whenever the rewriting rules of G are restricted to the following forms, G is
called a type-3 or regular grammar: A→ cB, A→ c, A→ ε, or A→ B, where
A, B are nonterminals and c is a terminal. A type-3 grammar can generate
languages which are called regular, or REG for short. A language is called
semi-linear if and only if it is letter equivalent to a regular language. When
two languages are indistinguishable from each other when we only look at
the relative number of occurrences of symbols in their words without taking
their order into consideration, they are called letter equivalent [11].

As shown in Figure 2.1, four language classes are showed in a hierarchy, REG
is the smallest and RE the largest class.

The idea behind parallel communicating grammar systems (PCGS) is the notion
of multiple grammars that work together in parallel, communicate with each other,
and generate strings. This concept supports the investigation of language-theoretic
properties of parallel systems.

Definition 2.1. PARALLEL COMMUNICATING GRAMMAR SYSTEM [4]: Let n ≥ 1 be
a natural number. A PCGS of degree n is an (n + 3) tuple Γ = (N, K, T, G1, . . . , Gn)
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where N is a nonterminal alphabet, T is a terminal alphabet, and K is the set of query
symbols, K = {Q1, Q2, . . . , Qn}. The sets N, T, K are mutually disjoint; let VΓ =
N ∪ K ∪ T. Gi = (N ∪ K, T, Ri, Si), 1 ≤ i ≤ n are Chomsky grammars. The grammars
Gi, 1 ≤ i ≤ n, represent the components of the system. The indices 1, . . . , n of the symbols
in K point to G1, . . . , Gn, respectively.

PCGS derivations consist of sequences of rewriting steps and communication
steps. Communication has priority over rewriting, so a rewriting step is impossible
if a query symbol (that requests communication) is present.

Definition 2.2. DERIVATION IN A PCGS [4]: Let Γ = (N, K, T, G1, · · · , Gn) be a
PCGS as above, and (xi, x2, . . . , xn) and (yi, y2, . . . , yn) be two n-tuples with xi, yi ∈ V∗Γ ,
1 ≤ i ≤ n. We write (xi, . . . , xn)⇒ (yi, . . . , yn) iff one of the following two cases holds:

1. |xi|K = 0, 1 ≤ i ≤ n, and for each i, 1 ≤ i ≤ n, we have xi ⇒Gi yi (in the grammar
Gi), or xi ∈ T∗ and xi = yi.

2. There exists i, 1 ≤ i ≤ n, such that |xi|K > 0. Then, for each such i, we write
xi = z1Qi1 z2Qi2 . . . ztQit zt+1, t ≥ 1, for z j ∈ V∗Γ , |z j|K = 0, 1 ≤ j ≤ t + 1. If
|xi j |K = 0, 1 ≤ j ≤ t, then yi = z1xi1 z2xi2 . . . ztxit zt+1 [and yi j = Si j , 1 ≤ j ≤ t].
When, for some j, 1 ≤ j ≤ t, |xi j |K 6= 0, then yi = xi. For all i, 1 ≤ i ≤ n, for
which yi is not specified above, we have yi = xi.

We consider the PCGS as returning if [and yi j = Si j , 1 ≤ j ≤ t] exists in the definition.
Otherwise the system is non-returning.

Like for grammars, we use⇒ to denote a derivation step (component-wise rewriting or
communication). ⇒∗ denotes a series of rewriting and communication steps (the reflexive
and transitive closure of⇒). We also use (sparingly) the notation Λ⇒ to explicitly identify
a communication step.

In other words, an n-tuple (x1, . . . , xn) yields (y1, . . . , yn) if:

1. If there is no query symbol in x1,. . . ,xn, then the derivation is component-wise
(xi ⇒Gi yi, 1 ≤ i ≤ n). In this case, one rule is used per component Gi, unless
xi is all terminals (xi ∈ T∗). In this case, the string does not change (yi = xi).

2. If a query symbols appears, then a communication step has priority and
should happen. For this, each query symbol Q j in xi is replaced by x j, if
and only if x j does not contain query symbols. In other words, in a commu-
nication step the query symbol Q j is replaced by the string x j; the result of
this replacement is referred to as Q j being satisfied (by x j).

The grammar G j continues processing from its axiom or from x j depending
on whether the system is returning or non-returning, respectively.

No rewriting step can take place unless all query symbols are satisfied during
a communication step. If some of them remains, the next step will perform
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another communication to satisfy them. The replacement string must not
contain query symbols.

We have two ways in which the derivation can be blocked [4, 14, 15, 21]:

1. if component xi of the current n-tuple (x1, . . . , xn) does not contain a nonter-
minal that can be rewritten in Gi, or

2. if a circular query appears; expressly, if Gi1 queries Qi2 , Gi2 queries Qi3 , and
so on until Gik−1 queries Qik and Gik queries Qi1 , as the communication step
has higher priority, and no communication is possible because only strings
without query symbols can be communicated, then a derivation will be im-
possible.

Definition 2.3. LANGUAGES GENERATED BY PCGS [4]: The language generated by a
PCGS Γ is L(Γ) = {w ∈ T∗ : (S1, S2, ..., Sn)⇒∗ (w,σ2, ...,σn),σi ∈ V∗Γ , 2 ≤ i ≤ n}.

The derivation begins from the tuple of axioms (S1, S2, ..., Sn). G1 and creates
a terminal string after one or more rewriting and/or communication steps are per-
formed. The end result is a terminal string produced by the master grammar. Note
that the form of the strings in the slave grammars is not restricted.

Definition 2.4. PCGS SEMANTICS [21]: In a centralized PCGS only the first compo-
nent grammar G1 can introduce query symbols. If on the other hand any component can
initiate communication we call the system non-centralized.

A PCGS is called a returning system when the component grammars return to their
axiom after a communication step. Whenever the grammars continue the derivation from
the current string they are non-returning.

A system is synchronized when each component grammar uses exactly one rewriting
rule in each component-wise derivation step (with the exception of a component grammar
holding a terminal string, which is not modified). In a non-synchronized system each
component may chose to either rewrite or wait in any step that is not a communication
step.

The family of languages generated by a non-centralized, returning PCGS with n com-
ponents of type X (where X is an element of the Chomsky hierarchy) will be denoted by
PCn(X). The language families generated by centralized PCGS will be represented by
CPCn(X). The fact that the PCGS is non-returning will be indicated by the addition of
an N, thus obtaining the classes NPCn(X) and NCPCn(X). Let M be a class of PCGS,
M ∈ (PC, CPC, NPC, NCPC); then we define:

M(X) = M∗(X) =
⋃

n≥1

Mn(X)

The language generated by a PCGS Γ is denoted by L(Γ) when Γ works as a synchro-
nized system and by Lu(Γ) when Γ works in an unsynchronized manner.
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Space-bounded-Turing machines will be used to define the computational com-
plexity of certain classes of CF-PCGS.

Definition 2.5. SPACE-BOUNDED TURING MACHINE [20]: Given a Turing machine
M and an input string x ∈ T∗, the working space of M on x is the sum of the lengths of
all the work tapes of M to accept x. More generally, let S be any function from N to N and
let L ⊆ T∗. We say that M semi-decides L in space S provided that M semi-decides L and
uses at most S(n) tape cells on any input of length n in T∗. If M is a nondeterministic
Turing machine then we write L ∈ NSPACE(S(n)). We say also that M is an S(n)
space-bounded Turing machine.

2.1 Examples of PCGS communication and coordination mod-
els

PCGSs can be classified based on their grammar structure, behaviour after satisfy-
ing a query, and timing manner.

Recall that a PCGS in which only one grammar can produce query symbols is
called centralized. If two or more grammars can request for a string by query, we
have a non-centralized PCGS.

As an example, the following PCGS is a centralized system, since only P1 can
initiate the queries:

Γ = ({S1, S2, S3}, K, {a, b, c}, G1, G2, G3)

P1 = {S1 → aS1, S1 → aQ2, S2 → bQ3, S3 → c},
P2 = {S2 → bS2},
P3 = {S3 → cS3}.

By contrast, the following is a non-centralized PCGS, for indeed both P1 and P2 can
initiate queries:

P1 = {S1 → aS1, S1 → aQ2, S2 → bQ3, S3 → c},
P2 = {S2 → bS2, S2 → bQ3},
P3 = {S3 → cS3}.

A PCGS can be either returning or non returning, which will affect the be-
haviour of the component strings after satisfying a query. After providing the
string for the grammar which requested it by issuing the respective query symbol,
the grammar which satisfied the query will continue the derivation from its axiom
in a returning system. On the other hand, in a non-returning system, the grammar
which provides the string satisfying the the query will continue the rewriting from
the current form of the respective component.

Consider the following PCGS as an example:
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Γ = ({S1, S2, S3}, K, {a, b, c}, G1, G2, G3)

P1 = {S1 → aS1, S1 → aQ2, S2 → bQ3, S3 → c},
P2 = {S2 → bS2},
P3 = {S3 → cS3}

Now consider the following derivation:

(S1, S2, S3)⇒ (aS1, bS2, cS3))⇒∗n (anS1, bnS2, cnS3)⇒
(an+1Q2, bn+1S2, cn+1S3)⇒ (an+1bn+1S2, S2, cn+1S3)⇒
(an+1bn+2Q3, bS2, cn+2S3)⇒ (an+1bn+2cn+2S3, bS2, S3)⇒
(an+1bn+2cn+3, b2S2, cS3)

When Q2 or Q3 are satisfied, the components P1 and P2 return to their respective
axiom. Thus, the system is returning. On the other hand, if the following derivation
happens then the PCGS will be non-returning.

(S1, S2, S3)⇒ (aS1, bS2, cS3))⇒∗n (anS1, bnS2, cnS3)⇒
(an+1Q2, bn+1S2, cn+1S3)⇒ (an+1bn+1S2, bn+1S2, cn+1S3)⇒
(an+1bn+2Q3, bn+2S2, cn+2S3)⇒ (an+1bn+2cn+2S3, bn+2S2, cn+2S3)⇒
(an+1bn+2cn+3, bn+3S2, cn+3S3)

A PCGS is called synchronized if all the grammars perform exactly one rewrit-
ing during a global rewriting step (with the excetption of those grammars whose
component strings do not feature any nonterminal). Conversely, if each grammar
can either perform a rewriting or wait then the system is called unsynchronized.
Note that in both cases a query symbol generates an immediate communication
step in the same way for both the synchronized and unsynchronized systems.

Consider the following PCGS as an example:

Γ = ({S1, S2, S3}, K, {a, b, c}, G1, G2, G3)

P1 = {S1 → aS1, S1 → aQ2, S2 → bQ3, S3 → c},
P2 = {S2 → bS2},
P3 = {S3 → cS3}

The following derivation assumes that the system is synchronized:

(S1, S2, S3)⇒ (aS1, bS2, cS3)⇒∗n (anS1, bnS2, cnS3)⇒∗m
(an+mS1, bn+mS2, cn+mS3)⇒∗k (an+m+kS1, bn+m+kS2, cn+m+kS3)⇒
(an+m+k+1Q2, bn+m+k+1S2, cn+m+k+1S3)⇒ . . .

By contrast,the following is a possible derivation when the system is considered
unsynchronized.

(S1, S2, S3)⇒ (aS1, bS2, cS3)⇒∗n (anS1, bS2, cnS3)⇒∗m
(an+mS1, b1+mS2, cnS3)⇒∗k (an+m+kS1, b1+m+kS2, cn+kS3)⇒
(an+m+kQ2, b1+m+kS2, cn+kS3)⇒ (an+m+kb1+m+kS2, S2, cn+kS3)⇒ . . .
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Note incidentally that all the derivations in a synchronized system are also valid
derivations in the unsynchronized version. The lack of synchronization can intro-
duce additional derivations but cannot remove derivations.



Chapter 3

Previous Work

In this chapter, we review some of the previous results related to generative capac-
ity of PCGS. Most research considers synchronized systems.

Context-sensative and recursively enumerable are the most powerful types,
and they work similar to each other as well. First of all, it is immediate that a
RE grammar and a PCGS with RE components are equally powerful so we have
RE grammar: RE = Yn(RE) = Y∗(RE), n ≥ 1, for all Y ∈ {PC, CPC, NPC, NCPC}
[4].

To some degree, a similar situation holds for PCGS with context-sensitive com-
ponents compared with context-sensitive languages: CS = Yn(CS) = Y∗(CS),
n ≥ 1, for Y ∈ {CPC, NCPC} [4]. The non-centralized PCGS with context-free
components are presumably more powerful.

This all being said, note that PCGS with CS components are not exactly use-
ful since they rely on an computationally expensive model (the context-sensitive
gramar). The most useful types use simpler, computationaly cheaper components.
Consequently, the investigation or PCGS with regular or context-free components
is more interesting.

The following result points that the class of languages which a centralized
PCGS with regular components generates is a subset of the class of languages
which are created by a non-centralized PCGS with regular components. We can
conclude that a PCGS is generally more powerful than a single grammar compo-
nent. Additionally, having more communications makes the system even more
powerful: CPCn(REG) ( PCn(REG), n > 1 [21]. The same idea holds for PCGS
with context-free components: CPC∗(CF) ⊆ PC∗(CF) [7]. Note however that the
inclusion is not strict, so a non-centralized system is not necessarily strictly more
powerful.

In general, the centralized variant is a specific case of a non-centralized PCGS. It
is obvious that centralized qualifier limits the communication initiation to the first
grammar in the system. Consequently, for any languages created by a centralized
PCGS of any type, there is a non-centralized PCGS of the same type which can

10
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generated the same : CPCn(X) ⊆ PCn(X) for any n ≥ 1.
Certain subclass of centralized PCGS with regular components can generate at

most the class of CF languages: If Γ is a regular, centralized or non-centralized,
returning PCGS such that com(Γ) = 1, then L(Γ) is context free [21]. These regular
PCGS are more powerful in generative capacity than a regular grammar. However,
their power is limited to the context-free languages.

The limitations of the generative power of PCGS can be investigated by the re-
sult below. When there are only two regular components, the languages generated
by centralized, or even non-centralized PCGS are all context free.

• CPC2(REG) ( CF [4].

• PC2(REG) ⊆ CF [4].

The generative power of a system can be increased by increasing the number
of components in the system as well. It has been shown that this does not change
the generative capacity in the RE and to some degree in the CS case, but if we
investigate classes that are lower in the hierarchy, it can be seen that an increase in
the number of components usually increases the generative capacity of the system
[4].

Another series of papers has examined the size complexity of returning and
non returning CF systems. It was shown that returning CF-PCGS can generate any
recursively enumerable language if the number of nonterminals in the system is
less than or equal to a natural number k [3]. By simulating a 2-counter Turning
machine, it has also been shown that non-returning CF-PCGS can generate the set
of recursively enumerable languages with 6 context free components [6]. Further
information of the Turing completeness of non-returning CF-PCGS is also available
[6, 12]. Specifically, if k ≥ 2 and L ⊆ {a1, . . . , ak}+ is a recursively enumerable
language, then there is a non-returning CF-PCGS without ε-rules that generates L
[6].

By considering the fact that the non-returning systems can be simulated by re-
turning systems by assistance grammars holding intermediate strings [8], the re-
sults mentioned above [6, 12] also apply to returning systems. However, the num-
ber of components for this to happen will not remain the same, meaning that as
far as we know a Turing-complete returning system is substantially more complex
than a returning Turing complete CF-PCGS.

Unsynchronized PCGS have received substantially less attention. Available re-
sults on these systems include the following. It has been proven that Lu(CPC∗LIN) ⊆
L(LIN) [4]. However, this is not true for the non-returning case and also for the
non-centralized case. In particular, Lu(NCPC2CF) contains one-letter non-regular
languages [4].

Several papers have shown that synchronization is useful, meaning that unsyn-
chronized PCGS are weaker than the synchronized ones [16, 17]:
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1. Lu(CPC∗REG) = L(REG), Lu(CPC∗ LIN) = L(LlN)

2. Lu(NCPC2, REG)− L(CF) 6= Ø, Lu(CPC2CF)− L(CF) = Ø

3. (L(CPC∗REG) ∩ L(NCPC∗REG))− (Lu(PC∗CF) ∪ Lu(NPC ∗ CF)) 6= Ø

Unsynchronized PCGS have been also investigated elsewhere [19]. Some of the
findings are:

1. Lu(PC2REG) ⊆ L(CF).

2. Lu(PC2LIN)− L(CF) 6= Ø

3. Lu(NCPC2REG) contains non-semi-linear languages.

4. Lu(NCPC2CF) contains one-letter non-regular languages.



Chapter 4

Returning Unsynchronized
CF-PCGS are Turing Complete

In this chapter we show that unsynchronized PCGS with context-free components
are Turing complete. It has been proved that CF-PCGS are Turing complete by sim-
ulating an arbitrary 2-counter Turing machine [5]. To prove that unsynchronized
CF-PCGS are Turing complete as well, we attempt to use the same construction but
this time in an unsynchronized manner. We will show that the 2-counter machine
must follow the same steps, as all the other variations introduced by the unsyn-
chronized nature of the simulating PCGS will lead the system to a blocked state.

Overall we have the following:

Theorem 4.1. Any recursively enumerable language can be generated by an unsynchro-
nized returning PCGS with context-free components. Therefore this variant of PCGS is
Turing complete.

Proof. One proof for the fact that synchronized returning CF-PCGS are Turing com-
plete [5] is based on constructing a PCGS that simulated an arbitrary 2-counter ma-
chine. This PCGS is shown in Figure 4. We consider the same PCGS, but this time
working in an unsynchronized manner. We follow the original simulation, show-
ing in the process that this simulation can only proceed in the original manner, all
the alternative derivations introduced by the now unsynchronized nature of the
system resulting in blocked derivations (that do not affect the language generated
by the PCGS).

In what follows we refer to the PCGS in discussion (see Figure 4) as Γ . We
further refer to its components by the names given to the respective set of rules in
the figure.

We start from the initial configuration:

Γ = (S, S1, S2, S3, S4, S1, S2, S3, S4, S, S)

13
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PGM = {S→ [I], [I]→ C, C→ Qa1} ∪
{< I >→ [x, q, Z, Z, e1, e2]|(x, q0, Z, Z, e1, e2, 0) ∈ R, x ∈ Σ} ∪
{< I >→ x[y, q, Z, Z, e1, e2]|(x, q0, Z, Z, q, e1, e2,+1) ∈ R, x, y ∈ Σ} ∪
{< x, q, c′1, c′2, e′1, e′2 >→ [x, q′, c1, c2, e1, e2]|(x, q, c1, c2, q′, e1, e2, 0) ∈ R,
x ∈ Σ, c′1, c′2 ∈ {Z, B}, e′1, e′2 ∈ {−1, 0,+1}} ∪
{< x, q, c′1, c′2, e′1, e′2 >→ x[y, q′, c1, c2, e1, e2],< x, qF , c′1, c′2, e′1, e′2 >→ x|
(x, q, c1, c2, q′, e1, e2,+1) ∈ R, c′1, c′2 ∈ {Z, B},
e′1, e′2 ∈ {−1, 0,+1}, x, y ∈ Σ},

Pc1
1 = {S1 → Qm, S1 → Qc1

4 , C→ Qm} ∪
{[x, q, c1, c2, e1, e2]→ [e1]

′, [+1]′ → AAC, [0]′ → AC, [−1]′ → C|
x ∈ Σ, q ∈ E, c1, c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I]→ [I]′, [I]′ → AC},

Pc1
2 = {S2 → Qm, S2 → Qc1

4 , C→ Qm, A→ A} ∪
{[x, q, Z, c2, e1, e2]→ [x, q, Z, c2, e1, e2], [I]→ [I]|x ∈ Σ, q ∈ E,
c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}}

Pc1
3 = {S3 → Qm, S3 → Qc1

4 , C→ Qm} ∪
{[x, q, Z, c2, e1, e2]→ a, [x, q, B, c2, e1, e2]→ [x, q, B, c2, e1, e2]

[I]→ [I]|x ∈ Σ, q ∈ E, c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}}

Pc1
4 = {S4 → S(1)

4 , S(1)
4 → S(2)

4 , S(2)
4 → Qc1

1 , A→ a}
Pc2

1 = {S1 → Qm, S1 → Qc2
4 , C→ Qm} ∪

{[x, q, c1, c2, e1, e2]→ [e2]
′, [+1]′ → AAC, [0]→ AC, [−1]→ C|

x ∈ Σ, q ∈ E, c1, c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}} ∪
{[I]→ [I]′, [I]′ → AC}

Pc2
2 = {S2 → Qm, S2 → Qc2

4 , C→ Qm, A→ A} ∪
{[x, q, c1, Z, e1, e2]→ a, [x, q, c1, B, e1, e2]→ [x, q, c1, B, e1, e2],
[I]→ [I]|x ∈ Σ, q ∈ E,
c1 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}}

Pc2
3 = {S3 → Qm, S3 → QC2

4 , C→ Qm} ∪
{[x, q, c1, Z, e1, e2]→ a, [x, q, c1, B, e1, e2]→ [x, q, c1, B, e1, e2]

[I]→ [I]|x ∈ Σ, q ∈ E, c1 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}}

Pc2
4 = {S4 → S(1)

4 , S(1)
4 → S(2)

4 , S(2)
4 → Qc2

1 , A→ a}
Pa1 = {S→ Qm, [I]→< I >, [x, q, c1, c2, e1, e2]→< x, q, c1, c2, e1, e2 >,

< x, q, c1, c2, e1, e2 >→< x, q, c1, c2, e1, e2 >, , I >→< I >, |x ∈ Σ,
q ∈ E, c1, c2 ∈ {Z, B}, e1, e2 ∈ {−1, 0,+1}}

Pa2 = {S→ S3, S(1) → S(2), S(2) → S(3), S(3) → S(4),

S(4) → Qc1
2 Qc1

3 Qc2
2 Qc2

3 S(1)}.

Figure 4.1: A CF-PCGS with broadcast communication that simulates a 2-counter
Turing machine [5].
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After the first rewriting step, Γ can only enter the following configuration:

Γ = ([I], u1, u2, u3, S(1)
4 , u′1, u′2, u′3, S(1)

4 , Qm, S(3))

Indeed, if PGM waits we end up in the configuration

(S, u1, u2, u3, S(1)
4 , u′1, u′2, u′3, S(1)

4 , Qm, S(3))

In PC1
2 u1 eventually will become Qm or QC1

4 . If it is Qm then Qm can be replaced by
S, [I], or C. Only C works, and then PC1

2 will return to Qm. If QC1
4 is introduced, then

it can be replaced by S4, S(1)
4 , S(2)

4 , or QC1
4 . In all cases the the system will block.

It should be mentioned on a more general note that the only two situations
in which an unsynchronized system can block is because of circular queries, or
because there are no rewriting rules for any of the components in the system that
contain one or more nonterminals. The second situation is not technically a blocked
state since the system can still be considered to be in a waiting state. However, since
no possible continuation exists we will still call this kind of a situation blocking.
We used the term “block” above in this sense, as will be the case throughout the
remainder of this paper.

If on the other hand PC1
1 waits, then the resulting configuration is

([I], S1, u2, u3, S(1)
4 , u′1, u′2, u′3, S(1)

4 , Qm, S(3))

In this situation, PC1
4 can only use a (possible chain of) the following rules:

S4 → S(1)
4 , S(1)

4 → S(2)
4 , S(2)

4 → QC1
1

No matter how long (or short) this chain is, PC1
1 cannot perform any derivation and

so the system will block.
If PC1

2 waits then we reach

([I], u1, S2, u3, S(1)
4 , u′1, u′2, u′3, S(1)

4 , Qm, S(3))

In this situation PC1
4 can again use only a chain of the following rules

S4 → S(1)
4 , S(1)

4 → S(2)
4 , S(2)

4 → QC1
1

and again no rewriting is possible in PC1
1 .

Suppose now that PC1
3 waits. We then enter the following configuration:

([I], u1, u2, S3, S(1)
4 , u′1, u′2, u′3, S(1)

4 , Qm, S(3))

which result in a blocked derivation just like the one caused by PC1
2 waiting.
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If the waiting component is PC1
4 then the current configuration becomes

([I], u1, u2, u3, S4, u′1, u′2, u′3, S(1)
4 , Qm, S(3))

In this case, A → a can never happen, and so A can never be eliminated resulting
in a failed (blocked) derivation.

Whenever PC2
1 , PC2

2 , PC2
3 , or PC2

1 wait we end up in the same blocked configura-
tion as the one resulting from PC1

1 , PC1
2 , PC1

3 , or PC1
1 waiting, respectively.

If Pa1 waits then we get:

([I], u1, u2, u3, S(1)
4 , u′1, u′2, u′3, S(1)

4 , S, S(3))

In this case the only way for PGM to continue is by using S→ [I] and [I]→ C. Then
the derivation blocks, since < I > never happens.

Finally, Pa2 waiting results in the following configuration.

([I], u1, u2, u3, S(1)
4 , u′1, u′2, u′3, S(1)

4 , Qm, S)

The only effect is on γ in the end, which does not produce any new case.
According to the aforementioned cases, the first rewriting for all the grammars

is unavoidably synchronized and so we reach the following configuration, just like
in the original proof:

([I], u1, u2, u3, S(1)
4 , u′1, u′2, u′3, S(1)

4 , Qm, S(3))

where u1, u2, u3 are either QmorQc1
4 and u′1, u′2, u′3 are either QmorQc2

4 . If any of these
symbols is not Qm, the system is blocked after the communication, so the next step
is:

([I], Qm, Qm, Qm, S(1)
4 , Qm, Qm, Qm, S(1)

4 , Qm, S(3))
Λ⇒

(S, [I], [I], [I], S(1)
4 , [I], [I], [I], S(1)

4 , [I], S(3))

This in turn is followed by the following rewriting:

(S, [I], [I], [I], S(1)
4 , [I], [I], [I], S(1)

4 , [I], S(3))⇒

([I], [I]′, [I], [I], S(2)
4 , [I]′, [I], [I], S(2)

4 ,< I >, S(4))

In this rewriting step, if PGM waits then we obtain:

(S, [I]′, [I], [I], S(2)
4 , [I]′, [I], [I], S(2)

4 ,< I >, S(4))

After three rewriting steps, P1, P2, and P3 turn to aQm, and they do not have S in
their grammars, so the system blocks.
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If PC1
1 waits then we obtain:

([I], [I], [I], [I], S(2)
4 , [I]′, [I], [I], S(2)

4 ,< I >, S(4))

Eventually, Q1 will appear in PC1
4 . This grammar does not have any definition for

[I], so the system blocks.
Since PC1

2 , PC1
3 do not change in this step, they do not cause any new case if they

wait.
If PC1

4 waits then we get:

([I], [I]′, [I], [I], S(1)
4 , [I]′, [I], [I], S(2)

4 ,< I >, S(4))

In this case, A→ a never happens, so A can never be eliminated from the configu-
ration and so the derivaton cannot result in a string in the language.

If any of PC2
1 , PC2

2 , PC2
3 , or PC2

4 wait, then we end up in the same situation as PC1
1 ,

PC1
2 , PC1

3 , or PC1
4 waiting, respectively.

If Pa1 waits then we obtain:

([I], [I]′, [I], [I], S(2)
4 , [I]′, [I], [I], S(2)

4 , [I], S(4))

However, PGM only has the rewriting rules S → [I] and [I] → C available and so
blocks, since < I > never happens.

If Pa2 waits then we get:

([I], [I]′, [I], [I], S(2)
4 , [I]′, [I], [I], S(2)

4 ,< I >, S(3))

The only effect is on γ in the end, which does not produce any new case.
According to the discusion above, we have again only one way to proceed, as

follows:

([I], [I]′, [I], [I], S(2)
4 , [I]′, [I], [I], S(2)

4 ,< I >, S(4))⇒
(C, AC, [I], [I], QC1

1 , AC, [I], [I], QC2
1 ,< I >, QC1

2 QC1
3 QC2

2 QC2
3 S(1))

Next comes a communication step, which is the same no matter whether the system
is synchronized or not (since communication always has priority over component-
wise derivation):

(C, AC, [I], [I], QC1
1 , AC, [I], [I], QC2

1 ,< I >, QC1
2 QC1

3 QC2
2 QC2

3 S(1))
Λ⇒

(C, S1, S2, S3, AC, S1, S2, S3, AC,< I >, [I][I][I][I]S(1))

The next rewriting step proceeds as follow:

(C, S1, S2, S3, AC, S1, S2, S3, AC,< I >, [I][I][I][I]S(1))⇒
(Qa1, u1, u2, u3, aC, u′1, u′2, u′3, aC,< I >, [I][I][I][I]S(2))



CHAPTER 4. RETURNING UNSYNCHRONIZED CF-PCGS 18

In this rewriting step, if PGM waits then we get:

(C, u1, u2, u3, aC, u′1, u′2, u′3, aC,< I >, [I][I][I][I]S(2))

if u = Qm then the system will block at the next step. However, if u = Q4 then the
system will continue and the subsequent communication step will introduce either
S(1)

4 C, < I >, or Qm. In all these cases the system will block.
If PC1

1 waits then we obtain the following configuration:

(Qa1, S1, u2, u3, aC, u′1, u′2, u′3, aC,< I >, [I][I][I][I]S(2))

After three steps, QC1
1 appears in PC1

4 and the system blocks.
If PC1

2 waits we get:

(Qa1, u1, S2, u3, aC, u′1, u′2, u′3, aC,< I >, [I][I][I][I]S(2))

Eventually, PC1
2 will be assigned to Pa2 , so γ′ will contain S2 and then the system

blocks.
If PC1

3 waits, the situation will be the same as PC1
2 waiting.

If PC1
4 waits then we obtain:

(Qa1, u1, u2, u3, aC, u′1, u′2, u′3, AC,< I >, [I][I][I][I]S(2))

In the next step PC1
2 will turn into QC1

4 and then AC will replace PC1
2 . Since this

grammar does not have any rewriting rule for that string, the system blocks.
If any of PC2

1 , PC2
2 , PC2

3 , or PC2
4 wait, the situation would be the same as PC1

1 , PC1
2 ,

PC1
3 , or PC1

4 waiting, respectively.
Pa1 does not change in this step, so waiting will not affect on the system.
If Pa2 waits then we get:

(Qa1, u1, u2, u3, aC, u′1, u′2, u′3, AC,< I >, [I][I][I][I]S(1))

This does not produce any new case.
Once more, the only way to continue is through a synchronized rewriting step.

Note in addition that u1, u2, and u3 are either Qm or QC1
4 , and u′1, u′2, and u′3 are

either Qm or QC2
4 . If any of these strings is Qm then the system is blocked after the

communication. In all we have

(Qa1, QC1
4 , QC1

4 , QC1
4 , aC, QC2

4 , QC2
4 , QC2

4 , AC,< I >, [I][I][I][I]S(2))
Λ⇒

(< I >, aC, aC, aC, S4, aC, aC, aC, S4, S, [I][I][I][I]S(2))

The next rewriting step is as follow:

(< I >, aC, aC, aC, S4, aC, aC, aC, S4, S, [I][I][I][I]S(2))⇒
(u[x′, q, Z, Z, e1, e2], aQm, aQm, aQm, S(1)

4 , aQm, aQm, aQm, S(1)
4 , Qm, [I][I][I][I]S(3))
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In this rewriting step, if PGM waits then we end up in the following configuration:

(< I >, aQm, aQm, aQm, S(1)
4 , aQm, aQm, aQm, S(1)

4 , Qm, [I][I][I][I]S(3))

None of PC1
1 , PC1

2 , PC1
3 , PC2

1 , PC2
2 , and PC2

3 have rules for < I >, so system blocks.
If PC1

1 waits then we get:

(u[x′, q, Z, Z, e1, e2], aC, aQm, aQm, S(1)
4 , aQm, aQm, aQm, S(1)

4 , Qm, [I][I][I][I]S(3))

Eventually, aC ⇒ aQm and Qm can only be satisfied by S, [I], or C. if Pm becomes
aS then the system blocks. if Pm becomes aC then we are back where we started,
which results in a loop. if Pm becomes a[I] then in the next steps, a[I] will replace
Qc1

1 atPc1
4 , and that grammar does not have a rule for a[I] so the system blocks.

If PC1
2 or PC1

3 waits then we obtain:

(u[x′, q, Z, Z, e1, e2], aQm, aC, aC, S(1)
4 , aQm, aQm, aQm, S(1)

4 , Qm, [I][I][I][I]S(3))

Eventually, aC ⇒ aQm and Qm can be satisfied by either S, [I], or C. As above the
system blocks for S, and enters a loop for C. Pm becoming a[I] only affects γ′ in the
end.

If PC1
4 waits then we get:

(u[x′, q, Z, Z, e1, e2], aQm, aQm, aQm, S4, aQm, aQm, aQm, S(1)
4 , Qm, [I][I][I][I]S(3))

This will not add or remove any string.
If any of PC2

1 , PC2
2 , PC2

3 , or PC2
4 waits, then the situation would be the same as

PC1
1 , PC1

2 , PC1
3 , PC1

4 waiting, respectively.
If Pa1 waits then we obtain:

(u[x′, q, Z, Z, e1, e2], aQm, aQm, aQm, S(1)
4 , aQm, aQm, aQm, S(1)

4 , S, [I][I][I][I]S(3))

Eventually, S will rewrite to QM which in turn can be replaced by S, [I], or C. We
obtain a loop for S. The system blocks for C. If Pm becomes [I] then [I] ⇒< I >⇒
u[x′, q, Z, Z, e1, e2] and this will be passed to PC2

1 , PC2
2 , PC2

3 , PC2
4 , PC1

1 , PC1
2 , PC1

3 , and
PC1

4 . Neither of these components have any rewriting rule for that, so the system
blocks.

If Pa1 waits then the resulting configuration is:

(u[x′, q, Z, Z, e1, e2], aQm, aQm, aQm, S(1)
4 , aQm, aQm, aQm, S(1)

4 , Qm, [I][I][I][I]S(2))

This configuration does not produce any new case.
Given the observations above it is obvious that the unsynchronized PCGS will

follow exactly the same steps as the synchronized PCGS and so will proceed in
exactly the same way toward correctly simulating the 2-counter machine. Thus
unsynchronized returning CF-PCGS can generate all recursively enumerable lan-
guages.



Chapter 5

Non-returning Unsynchronized
CF-PCGS are Linear Space

We now study the computational complexity of unsynchronized non-returning CF-
PCGS based on space-bounded Turing machines. We will show that in the absence
of ε-rules languages generated by unsynchronized non-returning CF-PCGSs can be
recognized by nondeterministic Turing machines using O(|w|) tape cells for each
input instance w. We adapt for this purpose an earlier proof for synchronized sys-
tems [1]. That proof was based on the existence of a threshold on the number of
occurrences of a nonterminal in a long enough string, above which the number
of occurrences of that nonterminal is no longer relevant to the overall derivation in
the respective system. It was later shown that this threshold does not actually exist,
and so the original proof was invalidated [2]. However, we are able to show that
the respective threshold in unsynchronized systems is effectively 1, meaning that a
nonterminal appearing in a (long enough) string is important, but that nonterminal
subsequently disappearing is not. Therefore a variant of the original proof holds in
the unsynchronized case.

Definition 5.1. During a derivation process in a PCGS, a component of the current con-
figuration xi is called non-direct-significant for the recognizing of the string w if

1. either i 6= 1 and xi is not queried anymore or

2. i = 1 and the derivation from x1 to w in G1 cannot end successfully unless x1 is
reduced to the axiom sometime in the future or

3. i 6= 1 and xi is queried by x j, j 6= i, and x j become non-direct-significant.

All the others components are called direct-significant. Any component which
is reduced to the axiom becomes direct-significant.

In other words, a non-direct-significant component of a PCGS cannot directly
participate at a successful derivation. It can only produce lateral effects (by queries

20
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which can modify other components) or block the derivation (by circular queries).
This definition introduces the class of components for which the structure is irrele-
vant for the derivation.

Lemma 5.1. Let Γ = (N, K, T, G1, ..., Gn) be an unsynchronized non-returning PCGS
and w a string. Let also (x1, ..., xn) be a configuration of the system. Then, if the length of
a component xi becomes greater than |w|, that component becomes non-direct-significant
for the recognizing of w.

Proof. We consider two situations:
Let i = 1. If |x1|K = 0, then x1 will be rewrited using the rules of G1. But

these are context-free rules and there are not ε-productions, so the length of x1
does not decrease. If |x1|K 6= 0, a communication step will be performed. But the
communication step does not reduce the length of the component because there
are not null components to be queried (there are not ε-productions). So, the length
of x1 does not decrease anymore and this leads to the rejection of w. Note that
querying a component does not result in the length of the respective component to
be reduced since the system is non-returning. Therefore x1 is non-direct-significant
according to the definition 5.1.

For i ≥ 2, either the component xi is never queried, therefore it is non-direct-
significant, or it is queried by the first component the length of x1 becomes greater
than |w|, therefore x1 becomes non-direct-significant (according to the point 1). So
xi is non-direct-significant. or it is queried by another component x j, j 6= i, j 6= 1,
which become in that way longer than w and also can not decrease.

Theorem 5.2. Let Γ be an unsynchronized non-returning PCGS with n context-free com-
ponents (n ≥ 1) and no ε-rules. Then there is a Turing machine M that recognizes the
language L(Γ) using at most O(|w|) amount of work tape space for each input instance w.

Proof. Let Γ = (N, K, T, G1, ..., Gn) be an unsynchronized non-returning PCGS, whe-
re Gi = (N ∪ K, T, Pi, Si), 1 ≤ i ≤ n, are context-free grammars (with no ε-rules).
We will construct the nondeterministic Turing machine M which recognizes L(Γ).
M will be a standard Turing machine, with a work tape equipped with a read/write-
head. The alphabet of the tape of M is N ∪ K ∪ T ∪ @, @ 6= N ∪ K ∪ T. Given an
input string w, M will simulate step by step the derivation of w by Γ .

There are two types of derivation steps to simulate: the component-wise rewrit-
ing and the communication. M will keep on its tape the current configuration and
will work on it as follows:

1. If |xi|K = 0 for all i, 1 ≤ i ≤ n, M simulate rewriting for each component
xi, 1 ≤ i ≤ n. If |xi|N > 0, M can choose to either

(a) select a rule from the rule set Pi and rewrites xi according to this rule, or

(b) remains unchanged.
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If there are some i for which |xi|N = 0 or such rule does not exist, that spe-
cific i has to choose the second option. If |xi| > |w| then, according with
Lemma 5.1, xi become non-direct-significant. Therefore its structure is irrele-
vant and it will be replaced by the string

@T1...TjQ1...Qk (5.1)

where @ is a special symbol (@ 6= N∪T∪K), T1, ..., Tj are the distinct nonter-
minals in xi and Q1, ..., Qk are the distinct query symbols in xi, each appearing
q1, q2, . . . , qk times, respectively. We have to explain now how the rewriting
works on strings of the form 5.1. Let the rewriting rule be

A→ A1 A2...Am (5.2)

where A ∈ N, A1, ..., Am ∈ N ∪ K. Then, there is Tr = A, 1 ≤ r ≤ j, (if
not, the rule is not applicable). If A j does not already exists in xi, then it is
added to xi. Since it is an unsynchronized system, each grammar can wait op-
tionally for an arbitrary amount of time. In fact, the possibility of waiting is
the only addition to unsynchronized systems over their synchronized coun-
terpart. Accordingly, we can assume that each non-terminal appears infinite
times without modifying the overall language generated by the PCGS.

2. If there are query symbols in the current configuration, then M simulates
communication steps. If there are circular queries, M rejects the input and
halts. Otherwise, M nondeterministicaly selects a component xi for which
Q j, 1 ≤ j ≤ q, are all the query symbols and |x j|K = 0, 1 ≤ j ≤ q. M
sequentially replaces Q j by x j. If either the current x j is of the form 5.2 or,
after replacement, xi becomes longer than |w|, then xi becomes non-direct-
significant, so it will be replaced by a string of the form 5.2.

This communication step is repeatedly performed until there are no query
symbols in the current configuration.

In non-direct-significant components we argue that the number of occur-
rences of a query symbol does not matter since all the occurrences will be
satisfied in the same way and the respective component will remain non-
direct-significant. In other words, the only thing a query symbol can do in
a non-direct-significant component is to block the derivation (or not). This
effect happens no matter how many times the respective symbol appears in
the component and so we do not need to maintain a count on the number
of occurrences (needing to satisfy a query symbol is important even in non-
direct-significant components, but how many times the query needs to be
satisfied is not).

M repeats steps of type 1 and 2 until the w and xi are identical, when M accepts
the input and halts.
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Note that counterintuitively no nonterminal symbol is ever erased from a non-
direct-significant component. This might appear to cause a problem in circum-
stances such as a nonterminal A being rewritten into another nonterminal B that
will influence the derivation differently from A (for example by blocking further
rewriting in contrast with A that would allow the derivation to continue). In a nor-
mal component the occurrence of A is replaces by B (so A disappears), whereas in
our representation of non-direct-significant components once A is replaces by B we
keep both A and B in the string. We argue that the continuing presence of A does not
affect the possible derivations as follows: If A were not present, the derivation in
the respective component would block. However, this does not have any influence
in the overall derivation of the system, since in this case the blocked component
can also just wait as much as necessary for the other components to perform their
derivations. In other words, the presence of a blocking nonterminal (for the respec-
tive component) does not result in an overall blocked derivation. Therefore the fact
that A is still present (and so an inadvertent escape from blocking) is irrelevant. It
is also the case that A is not required to rewrite itself into B at any fixed time; not
applying the respective rewriting rule for an arbitrary number of rewriting steps is
also an option. Overall, A and B can both appear in the string at any moment of the
global derivation. That is, in non-direct-significant components A and B appearing
sequentially one after the other (like in the real derivation) has the same effect as
the two nonterminals appearing simultaneously (as in our representation).

Let us count the amount of work space used by M during the derivation. In
the worst case, it become of the form 5.1. Because we have a fixed finite number t
of nonterminals for a given PCGS and exactly n query symbols, the length of such
component on the tape is independent of |w| and is less than 1 + (t + n), where
t = N.

A communication step may use temporarily an amount of tape space double
than the space used by a single component temporarily (e.g. a string of length |w|
is queried by another string of length |w|; before the reduction to form 5.1 we have
to use 2|w| tape cells). Therefore, the number of cells used by a component is less
than 2 max(|w|, 1+ (t+ n)). We have n components and we need some extra space
on the tape to keep the rules of the system and |w| which we denote it by Pl . So,
the space used by M is upper-bounded by 2n max(|w|, 1 + (t + n)) + Pl . However,
neither of t, n, or Pl are |w|-dependent, so the overall space used is linear in |w|, as
desired.

Corollary 5.3. All languages generated by unsynchronized non-returning PCGS with
context-free components and no ε-rules are context sensitive.

Proof. This result follows directly from Theorem 5.2 given that all context-sensitive
languages can be accepted in linear space [20].



Chapter 6

Conclusion

PCGS introduce an inherently concurrent model in formal languages. A possible
longer term interest to exploit the model in general (and CF-PCGS specifically) in
formal methods is interesting precisely because of this inherent parallelism. How-
ever, some formal language questions have to be investigated before starting to use
it, one of which being the generative power of CF-PCGS.

According to the previous results related to the expressiveness of synchronized
CF-PCGS, these PCGS are Turing complete. However, neither of them investigated
the unsynchronized CF-PCGS. We attempted here to remedy this situation.

First, we investigated one system designed earlier to show Turing completeness
in the synchronized case [5]. We proceeded to follow the system as it works in an
unsynchronized manner. We considered all other variants that an unsynchronized
system can fall into. In order to do this we checked what happens if one or multiple
grammars wait and the rest of the system continues the process. We concluded that
these extra possible derivations fall into one of the following three scenarios:

1. The system will block. Indeed, most of the cases will result in blocking the
system. For example, another grammar will query for the string from the
waiting grammar, but that grammar did not thus reach the intended string.
The new string causes the component that issued the query to be unable to
continue.

2. A loop happens and a grammar follows a number of rewriting steps to go
back to the string it started from. In this case, the process will continue as in
the synchronized case.

3. The new variant does not create any new output or does not affect the final
result.

Using these observations we were able to construct a CF-PCGS capable of sim-
ulating an arbitrary 2-counter Turing machine, and so show that CF-PCGS are in-
deed Turing complete.
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In addition, we showed that unsynchronized non-returning CF-PCGS can be
simulated in linear space. For this purpose we identified components that exceed
the length of the desired string (the non-direct-significant ones) and we provided a
compact representation for them, thus reducing the space requirements to O(n).

It would seem that synchronization has the most effect on non-returning sys-
tems. On one hand, unsynchronized returning CF-PCGS are as powerful as their
synchronized version. We can then conclude that the returning option makes the
system so powerful that the lack of synchronization cannot weaken it. On the other
hand, when we eliminate synchronization in a non-returning system we end up
with a CF-PCGS that is considerably weaker. It should be noted however that
we impose one extra restriction in the non-returning case namely, the absence of
ε-rules. It is easy to see that this restriction is central to the proof. Whether the
difference between Turing completeness and linear space is given by the returning
nature of the system or by the absence of ε-rules remains to be seen.
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