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Abstract

We investigate the possibility of using mixed, logical and algebraic approaches to
the verification of systems. Constructive equivalence ensures that different models
of a system exhibit identical behaviors with respect to specified properties, crucial
for maintaining system integrity and safety. We show that it is possible to inte-
grate the formal frameworks of timed temporal logic (namely, TCTL) and timed
process algebra (namely, TCCS). For this purpose we show that we can algorithmi-
cally determine whether a given TCTL formula and a given TCCS specification are
equivalent.

While we effectively show that conversion algorithms between the two frame-
works exist, we fall short of providing such algorithms. However, we use relatively
simple examples such as traffic light control, railroad crossing, and elevator control
systems to suggest a way forward toward these algorithms.

Our investigation opens the study of mixed, algebraic and logical specifications
of large real-time systems. Such an approach will greatly improve the scalability
of real-time formal methods, but to the best of our knowledge has never been tried
before.

i



Acknowledgements

My supervisor, Prof. Stefan D. Bruda made me start researching the theoretical
computing on formal techniques and for that I would be forever thankful to him. I
am grateful to him for all his help and encouragement. He provided me with lots of
useful references and helped me greatly throughout the entire writing process of my
thesis. This study would not have been performed in its present form without his
consistent guidance. My appreciation also extends to the Department of Computer
Science and Management and as well my course professors for their support during
my coursework.

Big thank you to my amazing family, wife, Mrs. Faith Onyeukwu and our kids
Jett and Alex Nduka-Onyeukwu for sacrificing a lot of sleep with me most nights
keeping alert so I would work through this thesis. Well, I should not miss to thank
my friends (classmates), who did all help they could for solving out the problems
during challenging times.

Extensive thanks to everyone that assisted me over the several months while
this project was in progress.

ii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5
2.1 Algebraic Theories and Specifications . . . . . . . . . . . . . . . . . . 5

2.1.1 CCS Operational Syntax and Semantics . . . . . . . . . . . . . 5
2.1.2 Labeled Transition Systems . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Timed Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Event Clock Automata . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.5 (Bi)simulation Checking . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Logical Theories and Specification . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Kripke Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 TCTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Literature Review 20
3.1 Fundamental Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Abstraction and Equivalence . . . . . . . . . . . . . . . . . . . 21
3.3.2 Linear Time and Branching Time Concurrency Semantics . . 22
3.3.3 Compact Kripke Structure Equivalent with an LTS . . . . . . . 22

3.4 Compositional Verification . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Equivalence Checking of Real-Time Systems 27
4.1 Equivalence Verification Algorithm . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Translation of a TCTL Formula into an Equivalent Event Clock
Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 TCTL Formulae and Equivalent Automata . . . . . . . . . . . 35
4.2.2 Synchronous Product Example . . . . . . . . . . . . . . . . . . 37

iii



4.2.3 Automated Model Checking Implementation . . . . . . . . . . 38
4.2.4 Equivalence Verification with a Clock Automaton . . . . . . . 39
4.2.5 Yet Another Constructive Equivalence Checking . . . . . . . . 40

4.3 Addressing Non-Constructive Equivalence . . . . . . . . . . . . . . . 40

5 Conclusion 42

Bibliography 44

iv



Chapter 1

Introduction

1.1 Motivation

Computers now narrowly practically every aspect of our daily lives. The globe
has become a global village thanks to the Internet. Recently, computer system
applications have been used in every aspect of daily life, including production,
communication, entertainment, education, and health care. Artificial Intelligence
(AI) is trending now. It is certain that human life will speed up, behaviors will alter,
and businesses will undergo significant transformation by AI powered technolo-
gies in the nearest future. Acknowledging the accuracy of system behaviors and
security is the obstacle that computer scientists and stakeholders must overcome.
Consequently, system verification is required.

For ages, there has been a manner for evaluating computer systems. It has
been established that the oldest testing method is empirical system verification
[23, 71, 81]. Empirical testing is gathering information from the testing procedure
and utilizing it to inform choices on the functionality and quality of the product. A
continuous feedback loop is frequently used, with modifications made in response
to outcomes as they are seen. It might incorporate both white-box (unit testing)
and black-box testing (user testing) methodologies. The emphasis is on obtaining
information and coming to conclusions using empirical evidence. This non-formal
approach feeds a system with input, watches the output, and confirms that the
output matches the input’s predicted value. Such testing can never prove accuracy
because it is unable to verify every potential combination of inputs. However, it
can refute correctness. The next verification technique to be developed historically
is deductive verification [46, 78]. Deductive verification is a process in software
engineering and formal methods where the correctness of a system or software is
proven through deductive reasoning and mathematical methods. The goal is to
formally demonstrate that a program or system meets its specified requirements,
ensuring that it behaves correctly under all possible conditions. It entails manually

1



CHAPTER 1. INTRODUCTION 2

producing proofs of program correctness using a set of axioms and inference guide-
lines. Program proofs are a time-consuming and highly skilled expert-dependent
method of providing authoritative proof of correctness.

Numerous methods have been devised to carry out program verification auto-
matically in a way that is like deductive reasoning but more automated. The broad
category of verification techniques is known as formal techniques.Formal tech-
niques are mathematical methods used to rigorously specify, develop, and verify
software and hardware systems.These techniques provide a foundation for proving
system properties and ensuring correctness without exhaustive testing [22]. The
key formal techniques include, model checking,theorem proving and equivalence
checking [10, 25, 14, 1]. The general method involves automatically comparing a
system to a formal specification. Model checking and model-based testing are the
two formal techniques approaches that gained traction. Their origins are in de-
ductive reasoning and simulation, respectively. On the other hand, these formal
techniques are reliable, comprehensive, and mostly automatic. They have shown
their worth over time and are presently widely utilized in the computer sector.

Algebraic and logical are the two primary categories into which formal system
specifications [22] and implementations fall. The first is in favor of refinement when
a system’s definition and implementation are represented by a single algebraic for-
malism that has a refinement relation attached [85, 84]. A valid implementation
is one that improves upon its specification. Traditional refinement relations are
either behavioural equivalences or preorders [21, 35], with process algebra [49],
labeled transition systems [22], and finite automata [61] being frequently utilized
because they frequently describe the system transitionally. Model-based testing is
one common example [87]. In the second approach to conformance testing, as-
sertive constructions are preferred; the attributes of the system requirements and
implementations are described using various formalisms [22, 23]. While implemen-
tations are typically stated in a logical language, specifications

Model-based testing (MBT) is a formal technique used in software testing. It
involves creating a model that represents the expected behavior of a system and then
generating test cases based on this model. The primary goal is to systematically
derive test cases from the model to ensure comprehensive testing of the system.
MBT is considered a formal technique because it relies on well-defined models and
mathematical concepts to guide the testing process. A well-known black box testing
method for creating test cases is MBT [41, 90]. In MBT, some model types often
referred to as test models are created or taken from previous stages of the software
lifecycle (e.g., requirements or design) for generation of test cases. Since a few
decades ago, a great deal of work on MBT has also been done by researchers in the
field of formal methods. See [21, 22, 67, 72, 86]. For instance, in [86], a formal method
notation called Labelled Transition Systems (LTS) was used in an MBT approach. In
[42], a method for determining finite-state machines (FSMs) was introduced; these
FSMs can then be utilized in MBT. In MBT, a system’s specification is provided
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algebraically, and the underlying semantics are provided in an operational way as
LTS, or occasionally as a finite automaton (a special, limited type of LTS). Usually,
an abstract description of the system’s intended behavior is included in such a
specification. The same formalism either finite or infinite LTS is used to model the
system that is being tested. After that, tests are derived from the specification in
a methodical and formal manner and applied to the system that is being tested.
Soundness and completeness are guaranteed by the manner the tests are created.

In contrast, the system specification in model checking is provided in a tem-
poral logic format [23, 28, 29, 74]. Consequently, the specification is a (logical)
description of the intended system characteristics. A formal specification language
called TCTL (Timed Computation Tree Logic) is used to specify temporal features
of systems with a time concept. In model checking a formal verification method
used to determine whether a system model meets a certain set of properties TCTL
is very well-liked. Computation Tree Logic (CTL) is extended by TCTL, which adds
temporal operators, especially for timed system reasoning.

The study of process algebra, on the other hand, as the basis for the semantics
of concurrent computation has proven to be a fruitful endeavor, yielding nearly
constant discoveries over the past ten years regarding the mathematical structure
and useful advancement of concurrent processes, whether mechanical or not [66].
Milner’s Calculus of Communicating Systems (CCS) of [64] and lately [63] was one
of the first process algebra approaches examined as a mathematical model of con-
currency, and this algebra is still being researched and expanded upon in numerous
ways. ACP (Algebra of Communicating Processes) by [13], Boudol’s Meĳe calculus
of [16], Hennessy’s process language [46], and Hoare’s Communicating Sequential
Processes (CSP) of [50] and [20] are other significant methods in process algebra.
Algebra is a form of mathematics that simplifies difficult problems by using symbols
to represent variables, calculus, and their relations. Algebra enables complicated
problems to be expressed and investigated in a formal and rigorous process. The
process algebra is a set of formal notations and rules for describing algebraic rela-
tions of software processes. Wang and his colleagues found that the existing work
on process algebra and their timed variations.[77, 15, 79, 92],can be extended to a
new form of expressive mathematics, now the Real-Time Process Algebra(RTPA)

In this research, we will focus on the timed calculus of communication system
(CCS) as RTPA model. The Calculus of Communication Systems (CCS) is an ex-
tenstion of the traditional process algebra developed by Robin Milner in the late
1970s and early 1980s [64, 63]. It’s a formal method used to model and analyze the
behavior of real-time systems. In CCS a software system is perceived and described
mathematically as a set of coherent processes. A computational action that modifies
a system’s inputs, outputs, and/or internal variables to change it from one state to
another is referred to as a process in RTPA. A process might be as simple as a single
meta-process or as complicated as a multi-process that builds upon the RTPA’s pro-
cess relations formula. We consider applying CCS notations to the formal design
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of real-time systems. Our aim is to establish a constructive equivalence in real time
systems between algebraic and logical frameworks and to demonstrate a translation
between TCCS processes and TCTL formulas such that the behavior of a process in
TCCS corresponds to the satisfaction of TCTL formula and vice versa.

1.2 Contribution

Equivalence proving in formal methods involves demonstrating that two different
models |=1 and |=2 or descriptions 𝜙1 and 𝜙2 of a system are behaviorally identical.
This is crucial for ensuring that different representations, such as an abstract model
and its concrete implementation, conform to the same specifications. Equivalence
can be checked in various contexts, including algebraic models (Timed Calculus
of Communicating Systems - TCCS) and logical models (Timed Computation Tree
Logic - TCTL). The process loops from defining the system using two different
formalisms such algebraic modeling and logical specification(modeling), Specify-
ing the properties or behaviour that the system should exhibit in both models
(specification), determining the criteria for equivalence such as bisumation, trace
equivalence, or logical equivalence (methodology), and finally using formal meth-
ods to prove that the models meet the equivalence criteria (verification). The process
aims to ensure that both models consistently represent the same system behavior.
This consistency is crucial for verifying the system properties and using different
formal methods. Demonstrating equivalence increases confidence that the system
meets its specifications across different levels of abstraction. It also makes models
interoperable by facilitating the use of different tools and techniques for verifica-
tion, leveraging the strength of each formalism. By understanding and applying
these formal techniques, system designers and verifiers can ensure that different
models of a system are behaviorally equivalent, leading to more robust and reliable
systems.



Chapter 2

Preliminaries

In this chapter, we will provide the background knowledge required for temporal
logic. We shall focus on the algebraic and logical frameworks we are using in this
thesis.

2.1 Algebraic Theories and Specifications

We seize this space to look into the structure of CCS notation and specification. A
fundamental problem identified in real-time system software is specification and
refinement and the CCS approach for solving the problem are described.

2.1.1 CCS Operational Syntax and Semantics

CCS introduces a limited collection of operators for creating system descriptions
from subsystem specifications [64]. Actions are the fundamental building elements
of these descriptions and system definitions in all process algebras currently in
use. Actions intuitively signify discrete, uninterrupted operations that systems
could carry out; certain actions signify internal functioning, while others indicate
possible exchanges between the system and its surroundings. CCS is based on a
sequential, synchronous model of process communication, and this design choice
is reflected in the way the collection of activities is organized. Actions might be
internal computing steps or inputs/outputs on ports. Because actions on ports
necessitate interaction with the environment in order to occur, they are sometimes
referred to as external.

Let Λ represent a countably infinite set of labels, or ports, that do not include
the unique symbol τ in order to formalize these intuitions. Then, a CCS action can
take one of the three following shapes.

• 𝛼, where 𝛼 ∈ Λ, represents the act of receiving a signal on port τ.

• 𝛼, where 𝛼 ∈ Λ. represents the act of emitting a signal on port 𝛼.

5
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• τ represents an internal computation step.

In that manner,𝐴𝐶𝐶𝑆 is used to stand for the set of all CCS actions; that is,

𝐴𝐶𝐶𝑆 = Λ ∪ {𝛼|𝛼 ∈ Λ} ∪ {τ}.

We refer to the actions 𝛼 and 𝛼, where 𝛼 ∈ Λ, as complementary, as they represent
an input and output action on the same channel. The set 𝐴𝐶𝐶𝑆 − {τ} then contains
the set of external, or visible, actions; the only internal action is τ .

Now that the set 𝐴𝐶𝐶𝑆 of CCS actions has been established, we may present the
operators that the process algebra offers for system construction. In the following,
we assume a countably infinite set C of process variables and that 𝑝, 𝑝1, and 𝑝2 rep-
resent previously created descriptions of CCS systems. The following constructors
are offered by CCS.

• nil represent the terminated process that has finished execution.

• Given 𝑎 ∈ 𝐴𝐶𝐶𝑆, the prefixing operator a. allows an action to be “prepended”
onto an existing system description. Intuitively, a.p is capable first of an a and
then behaves like p.

• + represents a choice construct. The system 𝑝1 + 𝑝2 offers the potential of
behaving like either 𝑝1 or 𝑝2, depending on the interactions enabled by the
environment.

• | denotes parallel composition. The system 𝑝1|𝑝2 interleaves the execution
of 𝑝1 and 𝑝2 while also permitting complementary actions of p1 and p2 to
synchronize; in this case, the resulting composite action is a τ .

• If 𝐿 ⊆ 𝐴𝐶𝐶𝑆−{τ} then the restriction operator \𝐿permits actions to be localized
within a system. Intuitively, 𝑝 \ 𝐿 behaves like 𝑝 except that it is disallowed
from interacting with its environment using actions mentioned in 𝐿. Note
that τ can never be restricted.

• The operator [ 𝑓 ] allows actions in a process to be renamed. Here 𝑓 is
a function from 𝐴𝐶𝐶𝑆 to 𝐴𝐶𝐶𝑆 that is required to satisfy the following two
restrictions

– 𝑓 (τ) = [τ]
– 𝑓 (𝑎) = 𝑓 (𝑎)

When this is the case, 𝑓 is called a renaming. The system 𝑝[ 𝑓 ] behaves exactly
like 𝑝 except that 𝑓 is applied to each action that 𝑝 may engage in.

• If 𝐶 ∈ C , then 𝐶 represents a valid system provided that a defining equation
of the form 𝐶 ≜ 𝑝 has been given. Intuitively, 𝐶 represents an “invocation”
that behaves like 𝑝. This construct allows systems to be defined recursively.



CHAPTER 2. PRELIMINARIES 7

System descriptions created with the use of the operators above are frequently
referred to as terms or processes in process-algebraic terminology. To represent the
collection of all CCS processes, we employ P𝐶𝐶𝑆.

CCS has an operational semantics built in to accurately describe the execution
stages that processes are allowed to take in order to clarify their meanings. A
ternary relation, →, is typically used to specify this semantics; intuitively, 𝑝

𝑎−→ 𝑝
′

holds if system p is able to perform action a and subsequently behave like 𝑝. A set
of inference rules for each operator is usually used by process algebras like 𝐶𝐶𝑆 to
define → inductively. These guidelines are formatted as follows.

𝑃𝑟𝑒𝑚𝑖𝑠𝑒𝑠
𝐶𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 (𝑆𝑖𝑑𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)

A rule states that, if one has established the premises, and the side condition
holds,then one may infer the conclusion. This presentation style for operational
semantics is often called SOS, for Structural Operational Semantics, see [73]. For
instances;

𝑎.𝑝
𝑎−→𝑝

This rule concludes that processes of the form a.p may participate in a and then act
like p. The rule has no premises. Take note that the side condition is missing; in
these instances, it is taken to be "true." Option. There are two symmetric principles
for the choice operator.

𝑝
𝑎−→𝑝

′

𝑝+𝑞
𝑎−→𝑝

′
𝑞
𝑎−→𝑞

′

𝑞+𝑝
𝑎−→𝑞

′

These rules basically say that a system of the form p + q "inherits" the transitions
that occur in its p and q subsystems.The parallel composition operator has three
rules, the first two of which are symmetric.

𝑝
𝑎−→𝑝

′

𝑝|𝑞
𝑎−→𝑝

′ |𝑞
𝑞
𝑎−→𝑞

′

𝑞|𝑝
𝑎−→𝑞

′ |𝑝

These rules indicate that | interleaves the transitions of its subsystems. The next
rule allows processes connected by | to interact.

𝑝
𝑎−→𝑝

′
, 𝑞

𝑎−→𝑞
′

𝑝|𝑞
τ−→𝑝

′ |𝑞′

According to this rule, subsystems may synchronize on complementary actions (i.e.,
inputs and outputs on the same port). Note that the action produced as the result of
the synchronization is a τ ; since τ is undefined, this ensures that synchronizations
involve only two partners. Restriction. The restriction operator has one rule.
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𝑝
𝑎−→𝑝

′

𝑝⧹𝐿
𝑎−→𝑝

′⧹𝐿
(𝑎, 𝑎 ∉ 𝐿)

This rule, which includes a side condition, only allows actions not mentioned in L
(or whose complements are not in L) to be performed by 𝑝⧹𝐿. Restriction in effect
“localizes” actions in L, since the operator forbids the system’s environment from
interacting with the system using them. Relabeling. The relabeling operation has
one rule.

𝑝
𝑎−→𝑝

′

𝑝[ 𝑓 ]
𝑓 (𝑎)−−−→𝑝

′[ 𝑓 ]

As the intuitive account above suggests, 𝑝[ 𝑓 ] engages in the same transitions as 𝑝,
the difference being that the actions are relabeled via 𝑓 . Process Variables. The
behavior of process variables is given by one rule.

𝑝
𝑎−→𝑝

′

𝐶
𝑎−→𝑝

′ (𝐶 ≜ 𝑝)

This rule states that a system C behaves like the body, 𝑝, of its definition 𝐶 ≜ 𝑝.
The combination rules of meta-processes in RTPA are governed by a set of

algebraic process relations. For instances, 𝑃 ∥ 𝑄 is the operational semantics
of parallel that denote relations between system architectural concepts that are
functionally parallel or equivalent. 𝑃 → 𝑄 implies a sequential relation, 𝑃 ⟲ 𝑃

means a recursion which process relation in which a process P calls itself.

2.1.2 Labeled Transition Systems

Given the notion of →, CCS processes can be understood as a particular kind of
state machine. Firstly, we demonstrate how CCS may be understood as a structure
known as a labeled transition system, which is made up of a variety of potential
system states and transitions.

A labeled transition system (LTS) [21] is a tuple 𝑀 = (𝑆, 𝐴,→, 𝑠0) where 𝑆 is a
countable, non empty set of states, 𝑠0 ∈ 𝑆 is the initial state, and 𝐴 is a countable
set of actions. The actions in 𝐴 are called visible (or observable), by contrast with
the special, unobservable action τ ∉ 𝐴 (also called internal action). The relation
→⊆ 𝑆×(𝐴∪{τ})×𝑆 is the transition relation; we use 𝑝

𝑎−→ 𝑞 instead of (𝑝, 𝑎, 𝑞) ∈→.A
transition 𝑝

𝑎−→ 𝑞 means that state 𝑝 becomes state 𝑞 after performing the (visible or
internal) action 𝑎.

A path (or run)𝜋 starting from state 𝑝′ is a sequence 𝑝′
= 𝑝0

𝑎1−→ 𝑝1
𝑎2−→ . . . 𝑝𝑘−1

𝑎𝑘−→
𝑝𝑘 with 𝑘 ∈ 𝒩 ∪ {𝜔} such that 𝑝𝑖−1

𝑎𝑖−→ 𝑝𝑖 for all 0 < 𝑖 ≤ 𝑘. We use |𝜋| to refer to 𝑘,
the length of 𝜋. If |𝜋| ∈ 𝒩 , then we say that 𝜋 is finite. The trace of 𝜋 is the sequence
𝑡𝑟𝑎𝑐𝑒(𝜋) = (𝑎𝑖)0<𝑖≤|𝜋|,𝑎𝑖≠τ ∈ 𝐴∗ of all the visible actions that occur in the run listed in
their order of occurrence and including duplicates. Note in particular that internal
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actions do not appear in traces. The set of finite traces of a process p is defined as
𝐹𝑖𝑛(𝑝) = {𝑡𝑟 ∈ 𝑡𝑟𝑎𝑐𝑒𝑠(𝑝) : |𝑡𝑟| ∈ 𝑁}. If we are not interested in the intermediate
states of a run then we use the notation 𝑝

𝜔−→ 𝑞 to state that there exists a run 𝜋

starting from state p and ending at state 𝑞 such that trace (𝜋) = 𝜔. We also use 𝑝
𝜔−→

instead of ∃𝑝′ : 𝑝
𝜔−→ 𝑝

′. A process 𝑝 that has no outgoing internal action cannot
make any progress unless it performs a visible action. We say that such a process is
stable [80]. We write 𝑝 ↓whenever we want to say that process 𝑝 is stable. Formally,
𝑝 ↓= ¬(∃𝑝′

≠ 𝑝 : 𝑝
∈−→ 𝑝

′). A stable process p responds predictably to any set of
actions 𝑋 ⊆ 𝐴, in the sense that its response depends exclusively on its outgoing
transitions. Whenever there is no action 𝑎 ∈ 𝑋 such that 𝑝

𝑎−→ we say that 𝑝 refuses
the set 𝑋. Only stable processes are able to refuse actions; unstable processes refuse
actions “by proxy”: they refuse a set 𝑋 whenever they can internally become a
stable process that refuses 𝑋. Formally, 𝑝 refuses 𝑋 (written 𝑝 ref 𝑋) if and only if
∀𝑎 ∈ 𝑋 : ¬(∃𝑝′ : (𝑝 ∈−→ 𝑝

′) ∧ 𝑝′ ↓ ∧𝑝′ 𝑎−→)
There are additional definitions of LTS that specify a start state.Known as rooted

labeled transition systems, these labeled transition systems are made up of quadru-
ples of the type 𝑄, 𝐴,→, 𝑞𝑆, where 𝑞𝑆 ∈ 𝑄 denotes the start state. However, this
chapter’s definitions demonstrate that CCS can be thought of as a single LTS. Re-
member that P𝐶𝐶𝑆 stands for the (infinite) set of syntactically valid CCS system
definitions. The transition relation specified in the preceding subsection is repre-
sented by → 𝐶𝐶𝑆. Therefore, P𝐶𝐶𝑆, A𝐶𝐶𝑆, and → 𝐶𝐶𝑆 meet the requirements for
being an LTS. There are two implications to this discovery. First, by defining some
definitions with respect to LTSs, language-independent definitions for things like
behavioral equivalencies and refinement orderings can be provided. The potential
conversion of individual system descriptions into rooted LTSs is the second effect. A
rooted LTS is mathematically represented as the quadruple P𝐶𝐶𝑆,A𝐶𝐶𝑆,→ 𝐶𝐶𝑆, 𝑝

for every CCS system.

2.1.3 Timed Automata

If we introduce a real-time model, as an extension of finite state automata with
real-valued variables for measuring time. The abstraction can be known as Timed
automata. [6] introduced timed automata in the early 1990s as finite-state automata
equipped with real-valued variables for measuring time between transitions in the
automaton.

Timed automata have proven very convenient for modeling and reasoning about
real-time systems: they combine a powerful formalism with advanced expressive-
ness and efficient algorithmic and tool support, and have become a model of choice
in the framework of verification of embedded systems.

The timed-automata formalism is now routinely applied to the analysis of real-
time control programs [17, 37, 62] and timing analysis of software and asynchronous
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Figure 2.1: Timed automata of simplified mouse clicks.

circuits [18, 17, 88, 89]. Similarly, numerous real-time communication protocols have
been analysed using timed automata technology, often with inconsistencies being
revealed [43, 82]. During the last few years, timed-automata-based schedulability
and response-time analysis of multitasking applications running under real-time
operating systems have received substantial research effort [19, 32, 33, 53, 93]. Also,
for optimal planning and scheduling, (priced) timed automata technology has been
shown to provide competitive and complementary performances to classical ap-
proaches [2, 3, 11, 38, 44, 52, 58]. Finally, controller synthesis from timed games has
been applied to several industrial case studies[4, 24, 54].

Our model in Figure 2.1 is an example of a (simplified) computer mouse: this
automaton receives press events, corresponding to an action of the user on the
button of the mouse. When two such events are close enough (less than 300 mil-
liseconds apart), this is translated into a double-click event. Because clock variables
are real-valued, timed automata are infinite-state models, where a configuration
is given by the location of the automaton and a valuation of the clocks. Timed
automata have two kinds of transitions: action transitions correspond to firing a
transition of the automaton, and delay transitions correspond to letting time elapse
in the current location of the automaton.

Let Σ be a finite set of actions in a set of time domain R≥0. A time sequence is
a finite or infinite non-decreasing sequence of non-negative reals. A timed word is
a finite or infinite sequence of pairs (𝑎1 , 𝑡1) . . . (𝑎𝑝 , 𝑡𝑝) . . . such that 𝑎𝑖 ∈ Σ for every
i,and (𝑡𝑖)𝑖 ≥ 1 is a time sequence. An infinite timed word is converging if its time
sequence is bounded above (or, equivalently, converges).

If we consider a finite set C of variables, called clocks. A (clock) valuation over
C is a mapping 𝑣 : 𝐶 → R≥0 which assigns to each clock a real value. The set of all
clock valuations over C is denoted R𝐶

≥0, and 0𝐶 denotes the valuation assigning 0
to every clock 𝑥 ∈ 𝐶.

Let 𝑣 ∈ R𝐶
≥0 be a valuation and 𝑡 ∈ R≥0; the valuation 𝑣 + 𝑡 is defined by

(𝑣 + 𝑡)(𝑥) = 𝑣(𝑥) + 𝑡 for every 𝑥 ∈ 𝐶. For a subset r of C, we denote by v[r]
the valuation obtained from v by resetting clocks in r; formally, for every 𝑥 ∈ 𝑟,
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𝑣[𝑟](𝑥) = 0 and for every 𝑥 ∈ 𝐶 𝑟, 𝑣[𝑟](𝑥) = 𝑣(𝑥).
The set 𝜙(𝐶) of clock constraints over C is defined by the grammar

𝜙(𝐶) ∋ φ ::= 𝑥 − 𝑦 ⋉ 𝑘|𝜙1 ∧ 𝜙2(𝑥 ∈ 𝐶, 𝑘 ∈ Z 𝑎𝑛𝑑⋉ ∈ <,≤,=,≥, >)

A Timed Automaton [6] is a tuple (𝐿,L0 , 𝐶,Σ, 𝐼 , 𝐸) consisting of a finite set L of
locations with initial location L0 ∈ 𝐿, a finite set C of clocks, an invariant1 mapping
𝐼 : 𝐿 → 𝜙(𝐶), a finite alphabet Σ and a set 𝐸 ⊆ 𝐿 × 𝜙(𝐶) × Σ × 2𝐶 × 𝐿 of edges. We
shall write 𝑙

φ,𝑎,𝑟−−−→ L
′ for an edge (φ, 𝑎, 𝑟 ,L ′) ∈ 𝐸.

The operational semantics of a timed automaton A = (𝐿,L0 , 𝐶,Σ, 𝐼 , 𝐸) is the
(infinite-state) timed transition system [[𝐴]] = (𝑆, 𝑠0 , 𝑅≥0 × Σ, 𝑇) given as follow:
𝑆 = {(L , 𝑣) ∈ 𝐿 × R𝐶

≥0|𝑣 |= 𝐼(L )}, 𝑠0 = (L0 , 0𝐶), T = {(L , 𝑣) 𝑑,𝑎−−→ (L ′
, 𝑣

′)|∀𝑑′ ∈
[0, 𝑑] : 𝑣 + 𝑑′ |= 𝐼(L ) ∧ ∃L

φ,𝑎,𝑟−−−→∈ 𝐸 : 𝑣 + 𝑑 |= φ ∧ 𝑣′
= (𝑣 + 𝑑)[𝑟]}.

2.1.4 Event Clock Automata

Event Clock Automata (ECA) is a type of timed automaton designed specifically
for the verification of timed properties using event clocks. Unlike standard timed
automata, where clocks may be reset at any transition, ECA restricts the usage of
clocks by associating each clock with specific events. This allows for efficient model
checking of Timed Computation Tree Logic (TCTL) properties, as the event clocks
reset only when specific events occur, simplifying the tracking of time and reducing
the state space.

Formally, ECA can be defined as a turple 𝒜 = (𝒬,Σ, 𝐶, 𝐼 , 𝑞, 𝐹) where 𝒬 is finite
set of states, Σ is a finite alphabet of events (or actions), C is finite set of event clocks.
Each clock 𝑐 ∈ 𝐶 is associated with an event in Σ and is reset every time that event
occurs.

The essential power of nondeterminism in timed automata lies in its ability to re-
set clocks nondeterministically. An Event Clock Automaton (ECA) is a special type
of timed automaton designed to track and reason about the timing of events within
a system. Unlike regular timed automata, ECAs specifically use event clocks, which
are reset not based on the passage of time but on the occurrence of certain events
in the system [7]. This makes them well-suited for systems where the timing of
certain events and the relationships between those events need to be monitored and
verified. Event Clock Automata are primarily used in model checking and formal
verification to reason about the timing of actions and events in real-time systems,
particularly when verifying systems against timed temporal logic properties, such
as TCTL.

An event clock automaton 𝒜 can be deterministically transformed with relative
ease. Initially, we can convert 𝒜 into an automaton ℬ such that the set of guards 𝒢
utilized on the transitions is minimal. This means that for any pair of guards 𝑔 and 𝑔′

within𝒢 , it is impossible to find a clock valuation that satisfies both simultaneously.
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Following this, a subset construction can be applied to this automaton. Let us
denote 𝐵 = ⟨𝑉,𝑉0 , 𝑉𝐹 , 𝑋, 𝐸⟩. Subsequently, we can create a deterministic event
recording automaton 𝐶 = ⟨2𝑉 , 𝑉0 , 𝐹, 𝑋, 𝐸

′⟩, where for every subset 𝑆 ⊆ 𝑉 , an
input symbol 𝑎 ∈ Σ, and a guard 𝑔 ∈ 𝒢 , the relation (𝑆, 𝑎, 𝑔, 𝑆′) ∈ 𝐸′ holds true if
𝑆

′
= 𝑣

′ ∈ 𝑉|∀𝑣 ∈ 𝑆.(𝑣, 𝑎, 𝑔, 𝑣′) ∈ 𝐸. The collection ℱ consists of sets 𝑆 ⊆ 𝑉 such that
their intersection with the final states 𝑉𝐹 is non-empty (𝑆 ∩ 𝑉𝐹 ≠ ∅). It is evident
that 𝐶 operates deterministically and recognizes the same language as 𝐵. However,
it is crucial to note that a similar construction would not succeed for timed automata
due to the possibility of having two states within a set §, namely 𝑣 and 𝑣′, connected
by edges (𝑣, 𝑔,𝜆, 𝑣1) and (𝑣′

, 𝑔
′
,𝜆

′
, 𝑣

′
1), where the outputs differ (𝜆 ≠ 𝜆

′).

Theorem 2.1. [7] Event Clock Automata are effectively closed under complementation.
Additionally, a given timed automaton 𝒜 and an event clock automaton ℬ, the challlenge
of checking wether 𝐿(𝒜) ⊆ 𝐿(ℬ) is PSPACE-complete.

2.1.5 (Bi)simulation Checking

The operational semantics of timed automata is provided in terms of timed transi-
tion systems, which are actually equivalent to standard labeled transition systems
with labels (d, a) consisting of a delay and a letter, as explained in Sect. 2.1.3.
Therefore, any ordering and behavioral equivalency defined on labelled transition
systems may be understood across timed automata. The following idea of timed
(bi)simulation is specifically derived from the classical concepts of simulation and
bisimulation [63, 70]:

Definition 2.1. Let A = (𝐿,L0 , 𝐶,Σ, 𝐼 , 𝐸) be a timed automaton. A relation 𝑅 ⊆ 𝐿 ×
ℛ𝐶

≥0 × 𝐿 × ℛ𝐶
≥0 is a timed simulation provided that for all (L1 , 𝑣1)𝑅(L2 , 𝑣2), for all

(L1 , 𝑣1)
𝑑,𝑎−−→ (L ′

1 , 𝑣
′
1) with 𝑑 ∈ ℛ≥0 and 𝑎 ∈ Σ, there exists some (L ′

2 , 𝑣
′
2) such that

(L ′
1 , 𝑣

′
1)𝑅(L

′
2 , 𝑣

′
2).

A timed bisimulation is a timed simulation which is also symmetric, and two states
(L1 , 𝑣1), (L2 , 𝑣2) ∈ [[𝐴]] are said to be timed bisimilar, written (L1 , 𝑣1) ∼ (L2 , 𝑣2), if
there exists a timed bisimulation 𝑅 for which (L1 , 𝑣1)𝑅(L2 , 𝑣2).

Note that ∼ is itself a timed bisimulation on A, which is easily shown to be an
equivalence relation and hence transitive, reflexive, and symmetric. Also as usual
timed bisimilarity may be lifted to an equivalence between two timed automata A
and B by relating their initial states.

Consider the four automata A, X, U and D in Figure 2.2 (identifying the automata
with the names of their initial locations). Here (𝑈, 𝑣) and (𝐷, 𝑣) are timed bisimilar
as any transition (𝑈, 𝑣) 𝑑,𝑎−−→ (𝑉, 𝑣′) may be matched by either (𝐷, 𝑣) 𝑎−→ (𝐺, 𝑣′) or
(𝐷, 𝑣) 𝑎−→ (𝐸, 𝑣′) depending on whether 𝑣(𝑦) > 2 or not after delay 𝑑. Infact, it may
easily be seen that 𝑈 and 𝐷 are the only locations of Figure 2.1.3 that are timed
bisimilar (when coupled with the same valuation of 𝑦). E.g., A and X are not timed
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Figure 2.2: Autamata A,X, U, and D.

bisimilar since the transition (𝑋, 0) 1.5,𝑎−−−→ (𝑌, 1.5) cannot be matched by (𝐴, 0) by a
transition with exactly the same duration. Instead A and X are related by weaker
notion of timed-abstracted bisimulation, which does not require equality of delays.
It may be seen that A and X are both time-abstracted simulated by U and D but not
time-abstracted bisimilar to U and D. Also, U and D are time-abstracted bisimilar,
which follows from the following easy fact:

Theorem 2.2. Any two automata being timed bisimilar are also time-abstracted bisimilar.

2.2 Logical Theories and Specification

2.2.1 Kripke Structure

A Kripke structure K , named after the logician Saul Kripke, is a mathematical
structure used in modal logic and model checking to represent possible worlds
or states and the relationships between them. It serves as a formal semantics for
modal logics, providing a way to interpret and reason about model formulas. The
structure K is a model of the formula 𝜙. If K ⊭ 𝜙, then the model checker
outputs a counterexample that witnesses the violation of 𝜙 by K . The generation
of counterexamples means that, in practice, falsification (the detection of bugs) can
often be faster than verification (the proof of their absence). If every one of the
specified initial states of each structure K satisfies the logic formula, the system
then meets the specification [23].

Kripke structures [53] are finite directed graphs whose vertices are labeled with
sets of atomic propositions. The vertices and edges of the graph are called “states”
and “transitions,” respectively. In our context, they are used to represent the
possible configurations and configuration changes of a discrete dynamical system.
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Figure 2.3: Canadian and Austrian traffic lights as Kripke structures.

Formally, a Kripke [29] K over a set𝐴𝑃 of atomic proposition is a tuple (𝑆, 𝑆0 ,→
, 𝐿), where 𝑆 is a set of states, 𝑆0 ⊆ 𝑆 is the set of initial states, →⊆ 𝑆 × 𝑆 is the
transition relation, and 𝐿 : 𝑆 → 2𝐴𝑃 is a function that assigns to each state exactly all
the atomic propositions that are true in that state. As usual we write 𝑠 → 𝑡 instead
of (𝑠, 𝑡) ∈→. It usually assumed [29] that → is total, meaning that for every state,
𝑠 ∈ 𝑆 there exists a state 𝑡 ∈ 𝑆 such that 𝑠 → 𝑡. Such requirement can however, be
easily established by creating a “sink” state that has an atomic proposition assigned
to it, is the target of all the transitions from states with no other outgoing transitions,
and has one outgoing “self-loop” transition back to itself. The system’s dynamic
behavior represented by a Kripke structure corresponds to a path through the
graph.

A path 𝜋 in Kripke structure is sequence 𝑠0 → 𝑠1 → 𝑠2 → · · · such that 𝑠𝑖+1 for
all 𝑖 ≥ 0. The path originates at state 𝑠0. Numerous paths can begin in any state. It
follows that all the pathways start from a particular state 𝑠0. Any state could be the
beginning of several paths. As a result, any path that begins at a certain state, 𝑠0,
can be represented collectively as a computation tree with nodes with state labels.
Such a tree has its root at 𝑠0, and its edges (𝑠, 𝑡) are present if and only if 𝑠ß𝑡. While
some temporal logics consider computation pathways separately, others consider
computation trees.

2.2.2 TCTL

Timed Computation Tree Logic(TCTL) is the real-time extension of Computation
tree logic (CTL). CTL was introduced by Emerson and Clark [26] as a specification
language for finite-state systems. If we briefly review it’s syntax and semantics, we
would come up with the following presentation as follows;

Let AP be a set of atomic propositions. The formulas of CTL are inductively
defined as

𝜙 := 𝑝| 𝑓 𝑎𝑙𝑠𝑒|𝜙1 → 𝜙2|∃# 𝜙1|∃(𝜙1
⋃

𝜙2)|∀(𝜙1
⋃

𝜙2),
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where 𝑝 ∈ 𝐴𝑃, and 𝜙1 and 𝜙2, are CTL-formula ∃ # 𝜙 intuitively means that there
is an immediate successor state, reachable by extending one step, in which 𝜙 holds.
∃(𝜙1

⋃
𝜙2) means that for some computation path, there exists an initial prefix

of the path such that 𝜙2 holds at last state of the prefix and 𝜙1 holds at all the
intermediate states. ∀(𝜙1

⋃
𝜙2) means that for every computation path the above

property holds.
Some of the commonly used abbreviations are ∃ ⋄ 𝜙 for ∃(𝑡𝑟𝑢𝑒⋃𝜙),∀ ⋄ 𝜙 for

∀(𝑡𝑟𝑢𝑒⋃𝜙),∃□𝜙,for ¬∀ ⋄ ¬𝜙, and ∀□𝜙, for ¬∃ ⋄ ¬𝜙

Figure 2.4: The next operator semantics.

Formally, the semantics of CTL can be defined to a Kripke structure M =

(S , µ →, 𝐸), where S is a countable set of states, µ : S → 2𝐴𝑃 gives an assignment
of truth values to propositions in each state, and E is a binary relation over S given
the possible transitions. A path is an infinite sequence of states (𝑆1 , 𝑆2 , · · · ) such
that ⟨𝑆𝑖 , 𝑆𝑖+1⟩ ∈ 𝐸 for all 𝑖 ≥ 0.

Given a CTL-formula 𝜙 and a state 𝑆 ∈ S , the satisfaction relation (M , 𝑆) |= 𝜙
(meaning 𝜙 is true in M at 𝑆) is defined inductively as follows. (since the structure
is fixed, we can abbreviate (M , 𝑠) |= 𝜙 to 𝑆 |= 𝜙):

• 𝑆 |= 𝑝 iff 𝑝 ∈ µ(𝑆)

• 𝑆 ⊭false

• 𝑆 |= 𝜙1 → 𝜙2 iff 𝑆 ⊭ 𝜙1 or 𝑆 |= 𝜙2

• 𝑆 |= ∃# 𝜙 iff 𝑡 |= 𝜙 for some state 𝑡 ∈ S such that ⟨𝑠, 𝑡⟩ ∈ 𝐸

• 𝑆 |= ∃(𝜙1
⋃

𝜙2) iff for some path (𝑆0 , 𝑆1 , · · · ) with 𝑆 = 𝑆0 for some 𝑖 ≥ 0, 𝑆𝑖 |=
𝜙2 and 𝑆 𝑗 |= 𝜙1 for 0 ≤ 𝑗 < 𝑖
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• 𝑆 |= ∀(𝜙1
⋃

𝜙2) iff for every path (𝑆0 , 𝑆1 , · · · ) with 𝑆 = 𝑆0, for all some 𝑖 ≥
0, 𝑆𝑖 |= 𝜙2 and 𝑆 𝑗 |= 𝜙1 for 0 ≤ 𝑗 < 𝑖

Figure 2.5: The until and eventually operator semantics.

A CTL-formula 𝜙 is called satisfiable iff there are Kripke structure M and a state
𝑆 of it such that (M , 𝑆) |= 𝜙. However, the Timed Computation Tree Logic(TCTL)
is the real-time extension of (CTL) [61] with time constraints on modalities.

In CTL, if we write a formula ∃ ⋄ 𝑝, which says along some computation path,
𝑝 eventually becomes true. CTL does not provide a way to put a bound on the
time at which 𝑝 will become true. A natural and straightforward extension is to
put subscripts on the temporal operators to limit their scope in time [56, 39]. For
instance, we can write ∃ ⋄<5 𝑝 to say along the computation path 𝑝 become true
5-time units. This approach is then used to introduce the explicit time in the syntax

𝜙 ::= 𝑝|¬𝜙|𝜙1 ∧𝜙2|𝜙1 ∨𝜙2|𝐴𝐹≤𝑡𝜙|𝐸𝐹≤𝑡𝜙|𝐴𝐺≤𝑡𝜙|𝐸𝐺≤𝑡𝜙|𝐴(𝜙1 ∪≤𝑡 𝜙2)|𝐸(𝜙1 ∪≤𝑡 𝜙2)

where the temporal operators with timing constraints imply:

• 𝐴𝐹≤𝑡𝜙: "In all future paths,𝜙 holds within time 𝑡"

• 𝐸𝐹≤𝑡𝜙: "In some future paths,𝜙 holds within time 𝑡"

• 𝐴𝐺≤𝜙: " Globally in all path, 𝜙" holds at all time within 𝑡

• 𝐸𝐺≤𝜙: " Globally in some path, 𝜙 holds at all time within 𝑡"

• 𝐴(𝜙1
⋃

≤𝑡 𝜙2) : "In all paths, 𝜙1 holds until, 𝜙2 holds within time 𝑡"

• 𝐸(𝜙1
⋃

≤𝑡𝜙2 𝜙2) : "In some paths, 𝜙1 holds until, 𝜙2 holds within time 𝑡"
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A path is simply a ω-sequence of states. If we assume that along any particular
computation path, there is a unique state at every instant domain 𝑅 to states of the
system.

In TCTL, constraints are typically imposed on either states or paths, which are
sequences of states. The timing is monitored using clock variables, enabling the
specification of conditions such as "within 10 seconds" or "at least 5 seconds have
elapsed." The operators are categorized into two groups: state-based operators
(such as 𝐴𝑋 and 𝐸𝑋) and path-based operators (including 𝐴𝐺, 𝐸𝐺, 𝐴𝐹, 𝐸𝐹, 𝐴𝑈 ,
and 𝐸𝑈). Their meaning is summarized in Table 2.1.

Real-time constraints and TCTL operators enable the articulation of intricate
timing requirements in the formal verification of systems, thereby ensuring safety,
liveness, and fairness within stringent timing parameters. The integration of logical
operators with timing constraints in TCTL creates a robust framework for modeling
and verifying the temporal behaviors essential for real-time systems. All the oper-
ators are thus reactive to real-time constraints because of the time intervals [a,b].
This is important for the verification of temporal properties in real-time systems.
They represent concrete lower and upper time bounds in which a specific property
must be satisfied or an event must happen, making them particularly useful for
real-time systems with hard deadlines and safety-critical tasks.

Integration of these timing constraints in turn helps better manage fulfilment
properties for a real-time system.

2.2.3 Model Checking

Model checking is a computer-aided method for the analysis of dynamical systems
that can be modeled by state-transition systems.In mathematical logic, program-
ming languages, hardware design, and theoretical computer science, model check-
ing is now widely used for the verification of hardware and software in industry[27].
Timed Computation Tree Logic (TCTL) is a popular formalism used in model check-
ing. The temporal ordering of events within the system is specified by these at-
tributes, which also serve as constraints. Temporal logic, like Timed Computation
Tree Logic (TCTL) or Linear Temporal Logic (LTL), can be used to define temporal
features in an abstract model. These logics make it possible to formally specify
the system’s restrictions and temporal linkages. These logics allow for the formal
specification of temporal relationships and constraints within the system.
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Operator Interpretation Operational Semantics
𝐴𝑋[𝑎,𝑏] For all paths, in the

next state, a property𝜙
holds within the time
interval [a,b].

In real-time, suppose we have a system where
if a process is active in a current state, then in
all possible next states, a certain safety condition
must hold within 3 to 5 seconds. If the safety
condition doesn’t hold in even one next state,
𝐴𝑋[3,5](Safety) would be false

𝐸𝑋[𝑎,𝑏] There exists at least
one path where, in the
next state, a property𝜙
holds within the time
interval [a,b]

In a real-time network communication protocol,
we might want to confirm that there’s at least
one transition to a recovery state within 2 to 4
seconds after an error occurs. This is written as
𝐸𝑋[2,4](Recovery).

𝐴𝐺[𝑎,𝑏] For all paths, a prop-
erty 𝜙 holds in every
state (globally) at all
times within the inter-
val [a,b].

If we want a temperature sensor to stay
within safe operating limits at all times
winthin 0 to 10 second, we would need
𝐴𝐺[0,10](SafeTemperature) to hold,ensuring that
every path maintains the temperature constraint
throughout the interval.

𝐸𝐺[𝑎,𝑏] There exists a path
where a property 𝜙
holds in every state
(globally) in the time
interval [a,b].

In a system power management setting, 𝐸𝐺[0,5]
(NoOverload) would mean that at least one path
exists where the system remains free from over-
loads for up to 5 seconds

𝐴𝐹[𝑎,𝑏] Along all paths, a
property 𝜙 eventually
holds within the time
interval [a,b].

In real-time, if a request is made for a shared re-
source, 𝐴𝐹[2,6](AccessGranted) would mean that
every path guarantees resource access within 2
to 6 seconds.

𝐸𝐹[𝑎,𝑏] There exists at least
one path where a
property 𝜙 eventually
holds within the time
interval [a,b].

In real-time, in an emergency response system,
𝐸𝐹[1,3](Evacuate) would indicate that there’s at
least one path where evacuation is initiated be-
tween 1 and 3 seconds after an alarm.

𝐴𝑈[𝑎,𝑏] For all paths, a prop-
erty 𝜙1 holds until 𝜙2
holds within the time
interval [a,b].

In real time situation, for a robotic arm,
𝐴𝑈[2,7](ArmEngagedUTargetReached) would
mean that on all paths, the arm stays engaged
until it reaches the target within 2 to 7 seconds.

𝐸𝑈[𝑎,𝑏] There exists a path
where a property 𝜙1
holds until 𝜙2 holds
within the time inter-
val [a,b].

In an automated assembly line, 𝐸𝑈[5,10] (As-
semblyRunningUTaskComplete) means there is
a path where the assembly process continues
running until the task completes within 5 to 10
seconds

Table 2.1: Temporal operators and their meaning.
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Figure 2.6: The basic model-checking methodology.



Chapter 3

Literature Review

Constructive equivalence is a fundamental concept in real-time system verification
that ensures different models of a system act consistently with respect to predeter-
mined attributes. This review of the literature examines the use of process algebra
and model checking to demonstrate constructive equivalence in real-time systems.
This overview covers fundamental theories, significant applications, significant
methodologies, and current advancements in the field.

3.1 Fundamental Theories

The concept of timed automata was introduced by [6] and provides a mathematical
framework for the analysis and modeling of real-time systems. Process algebra
is relevant to this idea. Temporal restrictions on states and transitions can be set
using timed automata, which are finite automata with clocks added to them. A
formal vocabulary for explaining and debating concurrent systems is provided by
process algebra. CSP (Communicating Sequential Processes) and CCS (Calculus of
Communicating Systems) are two instances of this. CCS was introduced by [47] and
is the foundation for several process algebra approaches used in real-time systems.

Equivalency and Bisimulation The equivalence of many models can be demon-
strated with the understanding of bisimulation. Two systems are bisimilar if they
are able to gradually imitate each other’s behavior. [70] established bisimulation as
a connection.

3.2 Methodologies

Concurrent systems with finite states can be verified automatically using a method
called model checking. An algorithmic method to ascertain whether a system model
fits a given specification is called model checking, and it is commonly described in

20
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temporal logic [29]. A popular tool for model testing timed automata, UPPAAL was
created by [60] and serves as a useful foundation for verifying real-time systems.

The real-time capabilities of process algebra have been enhanced. Two tech-
niques are utilized to introduce temporal restrictions into the process algebra
framework: Timed Calculus of Communicating Systems (TCCS) and Timed CSP
[80]. These advances make it possible to check timing details and simulate time-
dependent behavior using algebraic tools. Examples of real-time system models
that illustrate real-world application use cases are the traffic light control system,
rail crossing system, and elevator control system [48, 38, 5]. These systems do not
exhibit dynamic behavior in the sense of unpredictable or learning-based changes.
However, they are considered real-time systems because their operation depends
critically on timing constraints and deterministic responses to external events.

3.3 Previous Work

We have not gone too far in exploring the connections between algebraic and logical
frameworks of formal definition and verification. Parameterized verification has
gained popularity recently and deals with verifying systems with an arbitrary num-
ber of components. In [40], methods for parameterized model checking of timed
systems were created, allowing the verification of systems with various numbers of
processes.

A semantic model for reasoning about real-time system specifications that com-
bines timed processes and formulas in linear-timed temporal logic with a time
constant (TLTL) was proposed in Chun Dai’s work [30] on testing framework for
real-time systems. Negar Nourollahi [68] also conducted a great deal of work on
inductive conversion problems in dense time, as well as verification and TCTL
model testing of real-time systems on timed automata and timed Kripke structure.
The basis of algebraic software system specification is provided by CCS [64], CSP
[50], and ACP [13], however the only comprehensive study of the topic is based on
computation tree logic (CTL) and its relationship in [85].

3.3.1 Abstraction and Equivalence

There are two different approaches to system verification[68]. Equivalency checking
is the first method, and it seeks to determine a semantic equivalent between two
systems, one of which is the implementation of the specification provided by the
other. The second strategy, known as model checking, seeks to determine whether
a particular system meets a condition that is often provided in a temporal or modal
logic [12]. Developing techniques like abstraction and bisimulation equivalency try
to replace a huge structure with a smaller structure that meets the same features
in order to prevent the state explosion problem. By providing a mapping between
a small set of abstract data values and the actual data values in the system, the
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abstraction is made possible. Finding transition systems that can simulate one
another step-by-step because they have the same branching structure is the aim of
bisimulation equivalency.

3.3.2 Linear Time and Branching Time Concurrency Semantics

Up to 12 semantics can be defined on uniform concurrency, as shown in Figure 3.1.
Since trace semantics only considers the (partial) trace, it is regarded as the coarsest
[49]. Miller in [65] found that the most sophisticated semantics were found in bisim-
ulation. Semantics of bisimulation is the norm for the process algebra CCS. The
benefits of bisimulation equivalency over observational equivalency were demon-
strated in [45]. On the domain of concrete sequential processes that branch finitely,
both equivalencies are consistent. The semantics established in [34] complement
bisimulation semantics in this field as well.

There are ten semantics in between. Firstly, by using entire traces instead of
partial ones, several kinds of trace semantics can be achieved. In [51], failures
semantics is put out and used to build a process algebra model [49]. Compared to
comprehensive trace semantics, it is finer. [35] established that the failure semantics
on the domain of finitely branching, concrete, sequential processes coincides with
testing equivalency as introduced in [67], as done in [55] and [31]. Readiness
semantics, which is marginally finer than failures semantics, is introduced in [69].
As independently proposed in [75], ready trace semantics is identified between
bisimulation semantics and readiness. (there called barbed semantics)[9] and [76]
(under the name exhibited behaviour semantics).

3.3.3 Compact Kripke Structure Equivalent with an LTS

We will demonstrate in this thesis that it is feasible to actualize equivalence be-
tween Timed Calculus of Computation System(TCCS) and Time Computation tree
logic(TCTL). Previous work by Nourollahi in [68] has established algorithm equiva-
lence between Timed automata (TA) and Timed Kripke (TK) structure, for instance,
as a conversion between (TA)and timed (TK) in the dense time domain. This
has been answered positively in the untimed domain, where different construc-
tive equivalence relations under CTL between labeled transition system (LTS) and
Kripke structures in the untimed domain have been developed. The equivalences
are inductive and algorithmic.

Method 1: Function 𝒦 Converts an LTS into an Equivakent Kripke Structure

Definition 3.1. Equivalence between Kripke Structurs and LTS: Given a Kripkee structure
K and a set of states 𝑄 of 𝐾, the pair 𝐾, 𝑄 is equivalent to a process 𝑝, written 𝐾, 𝑄 ≃ 𝑝

(or 𝑝′
𝐾, 𝑄), if and only if for any 𝐶𝑇𝐿∗ formula 𝐾, 𝑄 |= 𝑓 if and only if 𝑝 |= 𝑓 .
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Figure 3.1: Linear time-branching spectrum [68].

Theorem 3.1. There exists an algorithmic function 𝒦 which converts a labeled transition
system 𝑝 into a Kripke structure 𝐾 and a set of states 𝑄 such that 𝑝 ≃ (𝐾, 𝑄).

Specifically, for any labeled transition system 𝑝 = (𝑆, 𝐴,→, 𝑆0), its equivalent
Kripke structure 𝑘 = 𝐾(𝑝) is defined as 𝑘 = (𝑆0 , 𝑄, 𝑅

′
, 𝐿

′) where

1. 𝑆′
= {⟨𝑠, 𝑥⟩ : 𝑠 ∈ 𝑆, 𝑥 ⊆ 𝑖𝑛𝑖𝑡(𝑎)}

2. 𝑄 = {⟨𝑠0 , 𝑥⟩ ∈ 𝑆
′}
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3. ℛ contains exactly all the transitions (⟨𝑎, 𝑁⟩, ⟨𝑡 , 𝑂⟩) such that ⟨𝑎, 𝑁⟩, ⟨𝑡 , 𝑂⟩ ∈
𝑆

′ and

• for any 𝑛 ∈ 𝑁, 𝑠 𝑛−→ 𝑡

• for some 𝑞 ∈ 𝑆 and for any 𝑜 ∈ 𝑂, 𝑡 0−→ 𝑞, and item if 𝑁 = 𝜙 then 𝑂 = 𝜙
and 𝑡 = 𝑠 (these loop ensure that the relation 𝑅′ is complete

• 𝐿
′ : 𝑆′ → 2𝐴𝑃 such that 𝐿′(𝑠, 𝑥) = 𝑥 where 𝐴𝑃 = 𝐴

Figure 3.2: A conversion of an LTS (a) to an equivalent Kripke structure (b) [23].

By utilizing function K conversion method, the semantics of 𝐶𝑇𝐿∗ formulae with
respect to a process rather than Kripke structure can be definedd. The resulting
Kripke structure is very compact, but a new satisfaction operator for sets of Kripke
states is needed [23] (since one state of a process can generate multiple initial Kripke
states).

Method 2: Function 𝒳 Converts an LTS into an Equivakent Kripke Structure
The need of a supplementary satisfaction operator can be eliminated using a dif-
ferent conversion function [36], at the expense of a considerably larger Kripke
structure.

Theorem 3.2. . There exists an algorithmic function 𝒳 which converts a labeled transition
system into an equivalent Kripke structure.

The function 𝒳 is defined as follows: with △ a fresh symbol not in 𝐴, given an
LTS 𝑝 = (𝑆, 𝐴,→, 𝑠0) the Kripke structure 𝒳(𝑝) = (𝑆′

, 𝑄, 𝑅
′
, 𝐿) is given by:

1. 𝐴𝑃 = 𝒜 ⊎△

2. 𝑆′ ∪ {(𝑟, 𝑎, 𝑠) : 𝑎 ∈ 𝒜 𝑎𝑛𝑑 𝑟
𝑎−→ 𝑠}

3. 𝑄 = {𝑠0}



CHAPTER 3. LITERATURE REVIEW 25

4. ℛ′
= {(𝑟, 𝑠) : 𝑟

τ−→ 𝑠} ∪ {𝑟, (𝑟, 𝑎, 𝑠)) : 𝑟
𝑎−→ 𝑠} ∪ {((𝑟, 𝑎, 𝑠), 𝑠) : 𝑟

𝑎−→ 𝑠}

5. For 𝑟, 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝒜 : ℒ((𝑟, 𝑎, 𝑠)) = {𝑎}
Then 𝑝 ≃ 𝒳(𝑝).

Figure 3.3: Conversion of an LTS (a) to its equivalent Kripke structure (b) [23].

In the resulting Kripkle structure, instead of combining each state with its corre-
sponding actions in the LTS (and thus possibly splitting the LTS state into multiple
Kripke structure states), the new symbol △ is used to stand for the original LTS
states. Every △ state of the Kripke structure is the LTS state, and all the other states
in the Kripke structure are the actions in the LTS. This ensures that all states in the
Kripke structure corresponding to actions that are outgoing from a single LTS state
have all the same parent. This inturn eliminates the need for the weaker satisfaction
operator over sets of states. However, a relatively straightforward modification to
the CTL satisfaction operator is needed (to “jump over” △ states).

3.4 Compositional Verification

Compositional verification breaks down the verification of complex systems into
smaller, more manageable components. [59] proposed compositional model check-
ing techniques for timed systems, enhancing scalability and reducing the complex-
ity of verification.

Overall, a vibrant and developing subject is constructive equivalency in real-
time systems employing process algebra and model checking. Rigorous verifi-
cation methods are based on foundational theories like bisimulation and timed
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automata. Real-time system practical verification is made possible by time compu-
tation tree logic and process algebra extensions, which have important applications
in traffic control, train safety, and elevator systems. Modern developments in
compositional methods, probabilistic models, and parameterized verification keep
these approaches more capable and scalable while guaranteeing the security and
dependability of ever-more complicated real-time systems.



Chapter 4

Equivalence Checking of
Real-Time Systems

Because real-time systems are intricate and involved, they also have more stringent
demands [22]. For instance, when verifying real-time systems with formal methods
it is very important to guarantee that multiple models (algebraic view versus logical
view) still describe the same behavior. Equivalence checking is one of a class of
techniques to determine whether two models are, in some sense not extrapolated
here, equivalent. In particular, we will investigate formal equivalences including
those between Timed Calculus of Communicating Systems (TCCS), a process alge-
bra for the modelling timed systems and Timed Computation Tree Logic (TCTL)
which can specify properties of real-time aspects.

Constructive equivalence implies that descriptions of system behaviors in TCCS
can be translated to checks in TCTL, and vice versa: the distinct ways of describing
a system parse; [57, 8]. This is useful in defining the system behaviour with respect
to the rule that has been mentioned, both using TCCS and asking questions about
it with TCTL. Consider a job like we have some new robot and it knows what to do
such as move forward, turn left or right, stop etc. TCCS gives us a way of describing
them and how long they take. But TCTL would be suitable checking that certain
things happen in the system at a particular time or higher level checks. You’re
literally asking questions regarding what the robot does: “does robot takes a turn
in 5 seconds”? or "Does the robot always wait at 2 seconds before moving again". By
constructive equivalence we mean that to every method of encoding system actions
in TCCS gives rise a question in CTL asking if the encoded behaviour is satisfied
and vice versa.

Example The road crossing is a well-known concurrent system, similar to the rail-
road crossing, where every part must coordinate to timely alert people and vehicles
to stay off the railway track while a train is approaching. Usually this consist of a

27
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train, crossing gate, vehicles (cars) and may even include pedestrians all synchron-
ically working together to prevent any accidents via exercises in cooperation. The
problem at railroad crossings is a common example of safety-critical real-time sys-
tems — where the train and gate (controlled by different parties) must react within
real-time constraints to prevent an accident.

Figure 4.1: The Rail Road Crossing Problem [83].

TCCS, an extension of CCS (Calculus of Communicating Systems) with timing
information. TCCS reports on process behaviors over time, which interpreters
can then use to define delays, timeouts and timed transitions. However, there are
a number of features specific to simulation. Transitions is associated with time
delays while behavioural equivalence between processes which can be defined
using bisimulation (methodology), which is extended to timing information in
CCS. CCS model equation is given by 𝑃

τ−→ 𝑄: Process 𝑃 can transition to process
𝑄 with delay τ.

Similarly, TCTL is an extension of Computation Tree Logic (CTL) that includes
timing constraints, allowing the expression of temporal properties with explicit
timing requirements. The key features include; temporal operators with timing
Constraints such as 𝐴𝐹≤𝑡 , 𝐸𝐹≤𝑡 ,𝐴𝐺≤𝑡 , 𝑒𝑡𝑐 and path qualifiers. TCTL formulas de-
scribe properties over paths, considering all possible future executions or specific
ones.

We can represent the scenerio with a directed graph (KripKe structure) or using
timed directed graph (Timed Automata).

4.1 Equivalence Verification Algorithm

In a very broad sense, equivalence checking in formal verification is the process of
deciding if two models (an algebraic model and an logical one) behave identically. In
this section we develop an algorithm for checking the equivalence between models
in Timed CCS and sets of properties written in TCTL.
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𝑠0start 𝑠1 𝑠2 𝑠3

x:=0 y:=0 1<x <2

(y >2)

Figure 4.2: The Rail Road Crossing timed graph.

1. Define the system utilizing TCCS, outlining states, actions, and transitions
along with their corresponding timing limitations.
Let ℳ𝑇𝐶𝐶𝑆 = (𝒮 , 𝐴𝑐𝑡,→, 𝐼), where 𝒮 is the set of states, 𝐴𝑐𝑡 is the set of
actions,→ is the transition relation, and 𝐼 is the timing interpretation function.

2. Define the TCTL property 𝜙𝑇𝐶𝑇𝐿 that need to be verified.

3. Construct the state space of the 𝑇𝐶𝐶𝑆 model by exploring all possible states
and the transitions.
We thus generate the transition System 𝒯 = (𝑆,→), where 𝑆 is the set of states
and → is the set of transitions (i.e. a given finite Automaton)

4. Translate 𝜙𝑇𝐶𝑇𝐿 into an equivalent event clock automaton. This involves the
construction of an event clock automaton that accepts all paths satisfying the
𝑇𝐶𝑇𝐿 formula.

5. Synchronous Product, here we construct the𝑇𝐶𝐶𝑆model ℳ𝑇𝐶𝐶𝑆 and the au-
tomaton representing 𝜙𝑇𝐶𝑇𝐿. The product automaton will represent possible
behaviours of the 𝑇𝐶𝐶𝑆 model that might satisfy the 𝑇𝐶𝑇𝐿 formula.
Synchronous Product is an operation to merge a process model like Timed
Calculus of Communicating systems (TCCS) with a specification model such
as Timed Automaton which can be a representation of TCTL(Timed Compu-
tation Tree Logic) formula. It is from this method that we can use property
specifications in checking the behaviour of a system at certain temporal prop-
erties.

6. Bisimulation Checking [63, 70, 10]: This involves conducting bisimulation
equivalence between the 𝑇𝐶𝐶𝑆 model and 𝑇𝐶𝑇𝐿 automaton to ensure that
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for every behaviour (path) in the 𝑇𝐶𝐶𝑆 model, there is a corresponding path
in the 𝑇𝐶𝑇𝐿 automaton and vice versa

7. Model Checking [29, 10]: Perform model checking to verify whether the𝑇𝐶𝐶𝑆
model satisfies the𝑇𝐶𝑇𝐿 formula. We can use a model checker tool to explore
all paths in the 𝑇𝐶𝐶𝑆 model and check if the 𝜙𝑇𝐶𝑇𝐿 holds.
However, Performing model checking to verify whether a TCCS (Timed Calcu-
lus of Communicating Systems) model satisfies a TCTL (Timed Computation
Tree Logic) formula involves a systematic process to explore all possible states
and transitions of the TCCS model to ensure that the temporal logic proper-
ties expressed by the TCTL formula hold. Below are the detailed steps and
considerations for this verification.If we formally define the TCCS model that
represents the behavior of the real-time system. This includes defining the
processes, actions, communication events, and timing constraints.

8. Equivalence Decision: If the bisimulation holds and the model checker con-
firms that the 𝑇𝐶𝐶𝑆 model satisfies 𝜙𝑇𝐶𝑇𝐿, conclude that model are equiv-
alent. Otherwise, if there is exception(a path in the TCCS model does not
satisfy 𝜙𝑇𝐶𝑇𝐿, the models are not equivalent.

4.1.1 Translation of a TCTL Formula into an Equivalent Event Clock
Automaton

Step 4 of the algorithm above needs now to be refined. Recall that the input of
this step is a TCTL formula 𝜙 and the output will be an equivalent event clock
automaton 𝒜𝜙. We proceed by structural induction.

For the base case we handle atomic propositions as follows:

1. Atomic propositions: We create states and transitions in the ECA that corre-
spond to the satisfaction or violation of each atomic proposition 𝑝 in 𝜙. Add
a transition from state 𝑆 to the new state 𝑆𝑝 , labeled with 𝑝, if 𝑝 holds at state
𝑆.

We then provide the following constructions for the Boolean operators:

2. Conjunction: Given the automata 𝒜𝜙1 and 𝒜𝜙2 for two formulae 𝜙1 and 𝜙2,
we construct an automaton for 𝜙1 ∧ 𝜙2 that accepts a path if both 𝒜𝜙1 and
𝒜𝜙2 do.
Let 𝒮𝜙1 and 𝒮𝜙1 be the set of all states representing different stages satisfying
𝜙1 and 𝜙2, respectively. The product Automaton 𝒜𝜙1∧𝜙2 involves combin-
ing the states and transitions of 𝒜𝜙1 and 𝒜𝜙2 . The set of states of prod-
uct automaton is then the Cartesian product of the states of 𝒜𝜙1 and 𝒜𝜙2 :
𝒮𝜙1∧𝜙2 = 𝒮𝜙1 × 𝒮𝜙2 , with the initial state of 𝒜𝜙1∧𝜙2 being (𝑆0𝜙1 , 𝑆0𝜙2), where
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𝑆0𝜙1 and 𝑆0𝜙2 are the initial state of 𝒜𝜙1 and 𝒜𝜙2 respectively. Similarly,
the accepting states of 𝒜𝜙1∧𝜙2 is the product of the accepting states of 𝒜𝜙1

and 𝒜𝜙2 that is, ℱ𝜙1∧𝜙2 = ℱ𝜙1 × ℱ𝜙2 . A state (𝑠1 , 𝑠2) is accepting if both 𝑠1 is
accepting state in 𝒜𝜙1 and 𝑠2 is an accepting state in 𝒜𝜙2 .
We now define transition for 𝒜𝜙1∧𝜙2 based on transition of 𝒜𝜙1 and 𝒜𝜙2 as
follows: A transition ((𝑠1 , 𝑠2), 𝑎, (𝑠

′
1 , 𝑠

′
2)) exists in 𝒜𝜙1∧𝜙2 whenever (𝑠1 , 𝑎, 𝑠

′
1)

in 𝒜𝜙1 and (𝑠2 , 𝑎, 𝑠
′
2) in 𝒜𝜙2 . This implies that both automata simultaneouly

perform the same action 𝑎. We also ensure to synchronize clocks, meaning
that clocks from both 𝒜𝜙1 and 𝒜𝜙2 are combined. Constraints must hold for
both automata for a transition to be valid.
To construct the timing constraints for the automaton 𝒜𝜙1∧𝜙2 from the indi-
vidual constraints of 𝒜𝜙1 and 𝒜𝜙2 , we need to combine the constraints and
condition of both automata into a single automaton that satisfies both subfor-
mulas 𝜙1 and 𝜙2 simultaneously. If the clocks used for 𝒜𝜙1 are defined as
{𝑥1 , 𝑥2 , . . . , 𝑥𝑛} and those of automaton 𝒜𝜙2 are {𝑦1 , 𝑦2 , . . . , 𝑦𝑚} then 𝒜𝜙1∧𝜙2

will feature the clocks {𝑥1 , 𝑥2 , . . . , 𝑥𝑛 , 𝑦1 , 𝑦2 , . . . , 𝑦𝑚}, the disjoint union of the
two sets of clocks. All clocks are reset according to the transitions of their
respective automata. The disjoint union ensure that the reset of clocks on one
automaton does not interfere with the clocks in the other automaton.
To construct the timing constraints for the automaton 𝒜𝜙1∧𝜙2 (conjunction of
two subformulas 𝜙1 and 𝜙2) out of the timing constraints of 𝒜𝜙1 and 𝒜𝜙2 we
simply take the conjunction of the existing constraints. That is, with the clock
constraints for 𝒜𝜙1 and 𝒜𝜙2 as 𝐾1 and 𝐾2, respectively, the timing constraints
for the new automaton 𝒜𝜙1∧𝜙2 will be 𝐾𝜙1∧𝜙2 = 𝐾1 ∧ 𝐾2. This means that a
transition is allowed in 𝒜𝜙1∧𝜙2 only if both 𝒜𝜙1 and 𝒜𝜙2 allow the transition

(i.e., their individual timing constraints are satisfied). That is, if (𝑆1
𝑎,𝑘1−−−→ 𝑆

′
1) is

a transition in 𝒜𝜙1 and (𝑆2
𝑎,𝑘2−−−→ 𝑆

′
2) is a transition in 𝒜𝜙1 , then the combined

transition in 𝒜𝜙1∧𝜙2 is: 𝑆1 , 𝑆2)
𝑎,𝑘1∧𝑘2−−−−−→ (𝑆′

1 , 𝑆
′
2).

3. Disjunction: Following the same conventions we construct the combined
automaton 𝒜𝜙1∨𝜙2 that accepts a path if either 𝒜𝜙1 or 𝒜𝜙2 does. For this
purpose we create a disjoint union of the two automata that is, 𝒮𝜙1∨𝜙2 =

𝒮𝜙1 ∪ 𝒮𝜙2 . We then introduce a new initial state 𝑆0 with transition to both
𝑆0𝜙1 and 𝑆0𝜙2 : 𝑆0

𝜖−→ 𝑆0𝜙1 and 𝑆0
𝜖−→ 𝑆0𝜙2 . These epsilon transition indicates

that the system can non-deterministically start in either𝒜𝜙1 or𝒜𝜙2 . It follows
that the set accepting states for 𝒜𝜙1∨𝜙2 is the union of the accepting states of
𝒜𝜙1 and 𝒜𝜙2 . ℱ𝜙1∨𝜙2 = ℱ𝜙1 ∪ ℱ𝜙2 .

4. Negation follows immediately from Theorem 2.1. The process involves the
conversion of the given automaton into a deterministic version and then the
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flip of all the accepting states into non-accepting states and the other way
around.

For the temporal operators we find convenient to consider the operators themselves
first and then consider path quantifiers separately.

5. For 𝐹𝐼𝜙1 we construct an automaton that tracks the time until 𝜙1 is satisfied
within interval 𝐼 by creating a clock 𝑥 and reset it upon entering a state where
𝜙1 holds. The clock resetting to 0 upon each entry into a state 𝑠

′ ∈ 𝑆𝜙1

is event-driven (satisfying EVA criteria). This can be done by introducing
a clock 𝑥 that will measure the time elapsed since the automaton entered
a specific state where 𝜙1 holds. This means that whenever the automaton
enters a state in 𝒮𝜙1 , 𝑥 is set to 0. Formally, for any transition (𝑠, 𝑎, 𝑠 ′) where

𝑠
′ ∈ 𝒮𝜙1 : 𝑠

𝑎,𝑥:=0−−−−→ 𝑠
′. Then we add transitions that move to an accepting state

if 𝑥 satisfies the interval 𝐼.This can be done by introducing transitions that
move to an accepting state based on the value of clock 𝑥. Let ℐ be the time
interval that defines the time constraint for accepting a path. These transitions
should check whether 𝑥 falls within the interval ℐ and move to an accepting
state if the condition is satisfied. Formally, for each state 𝑠 ′ ∈ 𝒮𝜙1 we add:

𝑠
′ 𝑎,𝑥∈ℐ−−−−→ 𝒮𝑎𝑐𝑐𝑒𝑝𝑡 .

6. For 𝐺𝐼𝜙1 we construct an automaton that ensures 𝜙1 holds continuously
within interval 𝐼 that is, we maintain the same clock 𝑥 and add transitions
that remain in the current state as long as 𝜙1 holds and 𝑥 is within 𝐼.
This can be done by for each state 𝑠 ∈ 𝒮𝜙1 , add a self-loop transition that
allows the system to remain in the same state as long as 𝜙1 holds and 𝑥 is
within the interval ℐ . Formally, for each state 𝑠 ∈ 𝒮 we put 𝑠

𝜀,𝑥∈ℐ−−−−→ 𝑠. The
clock condition 𝑥 ∈ ℐ ensures that this self-loop is valid only if 𝑥 is within the
specified time interval ℐ . However, the clock constraints are applied on the
transitions, not on maintaining a condition within states. This aligns with the
requirement that event clock automata should not impose time constraints on
states directly.

7. To convert 𝜙1
⋃
𝐼 𝜙2 we construct an automaton that stays in a where 𝜙1

holds until 𝜙2 is satisfied, ensuring that 𝜙1 holds up until that point, and
𝜙2 is satisfied within interval 𝐼. This can be achieved by ensuring a temporal
property where 𝜙1 must hold continuously until 𝜙2 is satisfied within a timing
constraint.
Concretely, let 𝒜𝜙1 and 𝒜𝜙2 be the automata equivalent to 𝜙1 and 𝜙2, respec-
tively. A new clock 𝑥 is reset on every transition outgoing from the start state
𝑠𝑠𝑡𝑎𝑟𝑡 of 𝒜𝜙1 , and we add the time constraint 𝑥 ∈ 𝐼 for all the other transitions
of 𝒜𝜙1 . This ensures that we can only stay in 𝒜𝜙1 within the time interval
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𝐼. We then add a transition 𝑠 𝑓
𝜀,𝑥∈𝐼−−−−→ 𝑠𝑠𝑡𝑎𝑟𝑡 for each accepting state 𝑠 𝑓 of 𝒜𝜙1 ,

which allows us to stay within this automaton for as long as necessary. Fi-
nally, we also add the transitions 𝑠 𝑓

𝜀,𝑥∈𝐼−−−−→ 𝑠′𝑠𝑡𝑎𝑟𝑡 , where 𝑠′𝑠𝑡𝑎𝑟𝑡 is the start state
of 𝒜𝜙2 . This allows the resulting automaton to transition from 𝜙1 to 𝜙2 at
any time within 𝐼, without the possibility of coming back. If 𝒜𝜙2 completes
its run successfully then 𝜙2 accepts and thus releases 𝜙1 from its obligation.
If on the other hand the run is rejecting, then the input will be rejected unless
there exists another, successful run. This observes all the properties of the

⋃
operator.
All the timing conditions remain unchanged, except for the clock 𝑥 which is
added and observes the restrictions of event clock automata requirements.

Finally we introduce the path quantifiers 𝐴 and 𝐸. We will construct automata
corresponding to the formulae 𝐴𝜙𝐼 and 𝐸𝜙𝐼 assuming by inductive hypothesis the
existence of the automaton 𝒜𝜙𝐼 equivalent to 𝜙𝐼 . Note that 𝜙𝐼 can have one of the
forms 𝑋𝐼𝜙, 𝐹𝐼𝜙, 𝐺𝐼𝜙, and 𝐴𝑈𝐼𝜙.

8. The automaton 𝒜𝜙𝐼 is already equivalent to 𝐸𝜙𝐼 . Indeed, the automaton
accepts iff there exists a successful run. A single such a run suffices, thus
meeting the requirements of the existential quantifier.

9. On the other hand the automaton equivalent to 𝐸𝜙𝐼 must accept only if all
the runs are accepting. This can be handled by constructing a variant of the
deterministic version of 𝒜𝜙𝐼 . Let 𝑆 and 𝐹 be the set of states and the set of
accepting states of 𝒜𝜙𝐼 , respectively. We proceed with the usual construction
in establishing the states and transition of the deterministic automaton [7]
(also see Theorem 2.1), thus obtaining 𝒜𝑑

𝜙𝐼
with the set of stated 𝑆𝑑 ⊆ 2𝑆 and

the set of accepting states 𝐹𝑑. Recall in particular that 𝐹𝑑 = { 𝑓 ∈ 𝑆𝑑 : 𝐹∩ 𝑓 ≠ ∅}:
A run of 𝒜𝑑

𝜙𝐼
ends in a state 𝑠 whenever all the runs of 𝒜𝜙𝐼 end in one of

the states in 𝑠; if one of these states is accepting then the respective run is
accepting and so the input is accepted and the other, possibly rejecting runs
become irrelevant. When we introduce the universal quantifier we want all
the runs to be accepting in 𝒜𝜙𝐼 for 𝒜𝑑

𝜙𝐼
to accept the input. This is easily

accomplished by setting 𝐹𝑑 = 2𝐹. In other words, a state in 𝒜𝑑
𝜙𝐼

is accepting
if all the component states (from 𝒜𝜙𝐼 ) are accepting that is, if all the runs 𝒜𝜙𝐼
are accepting.
No new clocks or time constraints are added, so 𝒜𝑑

𝜙𝐼
is an event clock automa-

ton under the inductive hypothesis that 𝒜𝜙𝐼 is an event clock automaton.

Theorem 4.1. There exists an algorithm that determines whether a given TCTL formula
and a given TCCS process are equivalent. The algorithm presented in Section 4.1 accepts
the input TCTL formula and TCCS process if and only if they are equivalent.
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Proof. The following are the constructions used in the algorithm.

(𝑎) Timed Automaton Construction: The first step in the algorithm involves con-
structing a timed automaton from the TCTL formula. This construction is formal-
ized and proven in Section 4.1.1. Specifically, the automaton encodes all the timing
constraints and logical structures present in the TCTL formula, such that the au-
tomaton accepts exactly the same set of timed traces (timed words) that satisfy the
formula. Thus, this step guarantees the correctness of the automaton representing
the TCTL formula.

(𝑏) Cross-Product Construction: Once both the timed automaton (representing the
TCTL formula) and the Timed Transition System (TTS) (representing the TCCS
process) are constructed, the algorithm proceeds to take the cross-product of the
two systems.

The cross-product construction combines the state spaces and transitions of the
TTS and the timed automaton into a new automaton. The result of this construction
represents the joint behavior of the two systems. By doing this, the algorithm creates
a unified framework to compare the behavior of both the TCTL formula (through
the timed automaton) and the TCCS process (through the TTS).

This step ensures that we can analyze whether the behaviors (timed traces) of
the TTS and the timed automaton align. In this context, the cross-product is not
yet sufficient to establish equivalence, but it prepares the two systems for further
analysis.

(𝑐)Bisimulation Check: Next, the algorithm performs a bisimulation check between
the TTS and the timed automaton from the cross-product. Bisimulation is a formal
equivalence relation that checks whether two systems simulate each other step by
step. In the context of timed systems, the bisimulation takes into account both state
transitions and timing constraints.

If the bisimulation check succeeds, it means that the TTS and the timed automa-
ton (representing the TCTL formula) exhibit equivalent behavior in all relevant
states and time evolutions. This establishes that the TCCS process and the TCTL
formula describe the same timed behavior. If the bisimulation check fails, the two
systems are not behaviorally equivalent, and hence the TCCS process does not
satisfy the TCTL formula. Thus, the bisimulation check is a necessary step for
confirming whether the process and formula are observationally indistinguishable
in terms of timed behaviors.

(𝑑) Model Checking: The next step is performing model checking on the TTS
against the TCTL formula. Model checking systematically explores the state space
of the TTS to verify whether all possible executions (timed traces) satisfy the TCTL
formula.

If the model checking succeeds, the TTS satisfies the TCTL formula, meaning
that the process described by the TCCS model adheres to the logical and timing
requirements specified by the formula. If the model checking fails, there exists
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a counterexample trace where the TTS violates the TCTL formula, thus proving
non-equivalence between the process and the formula. The model checking step
provides a concrete verification of whether the specific TCCS process adheres to
the formal specification described by the TCTL formula.

Note that both bisimulation and model checking are required because they estab-
lish equivalence from different perspectives: Bisimulation guarantees behavioral
equivalence between the TCCS process and the timed automaton representing the
TCTL formula. It checks whether the process and formula behave equivalently
under all possible scenarios. Model checking verifies whether the specific instance
of the TCCS process satisfies the logical properties encoded in the TCTL formula.
It provides a direct method for ensuring that all behaviors of the process are valid
with respect to the specification.

In other words bisimulation ensures that the two systems are behaviorally equiv-
alent, while model checking guarantees that all behaviors of the process are allowed
by the formula. Thus, both steps together establish the full equivalence between the
TCCS process and the TCTL formula, ensuring that the algorithm correctly accepts
the input if and only if they are equivalent. □

4.2 Examples

4.2.1 TCTL Formulae and Equivalent Automata

Consider the following TCTL formula:

𝜙 = 𝐴[𝐺(𝑝 → 𝐹[0,5]𝑞)]

The equivalent automaton is define d as follows:

• States: 𝒮 = {𝑆0 , 𝑆1 , 𝑆2}

• Clock: 𝒞 = 𝑥.

• Transition relation: 𝑆0
𝑝,𝑥:=0
−−−−→ 𝑆1, 𝑆1

¬𝑞,𝑥<5
−−−−−→ 𝑆1, 𝑆1

𝑞,0≤𝑥≤5
−−−−−−→ 𝑆2

• Accepting states: ℱ = {𝑆2}.

For path 𝜋 = (𝑆0 , 𝑆1 , 𝑆2), the automaton will accept the path if it reaches the state
𝑆2, because 𝑆2 ∈ ℱ . The automaton is shown in Figure 4.3.

Consider now the following TCTL formula

𝜙 = 𝐸[𝑝𝑈[2,5]]𝑞

which reads as follows: There exists at least one path where 𝑝 holds continuously
until 𝑞 becomes true, and 𝑞 occurs after at least 2 times but no more than 5 time
units from the beginning. The equivalent automaton is shown in Figure 4.4, where:
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𝑠0start 𝑠1 𝑠2

𝑝, 𝑥 := 0

¬ q, x <5

q,0 ≤ x ≤ 5

Figure 4.3: Automata illustrating the temporal operators A, G, F

• States: 𝒮 = {𝑆𝑖 , 𝑆0 , 𝑆1},

• Clock: 𝒞 = 𝑥.

• Transition relation: 𝑆𝑖
𝑝,𝑥:=0
−−−−→ 𝑆0, 𝑆0

𝑝,𝑥≤5
−−−−→ 𝑆0, 𝑆0

𝑞,2≤𝑥≤5
−−−−−−→ 𝑆1,

• Accepting states: ℱ = {𝑠1}.

𝑠𝑖start 𝑠0 𝑠1

𝑝, 𝑥 := 0

p,𝑥 ≤ 5

q,2 ≤ 𝑥 ≤ 5

Figure 4.4: Automaton illustrating the temporal operators 𝐸 and𝑈 .

Finally we consider a more complex formula as follows:

𝜙 = 𝐴[𝐺(𝑝 → 𝐸[𝑞𝑈[1,4]𝐹[2,6]𝑟])]

This formula specifies that for all paths, globally, if 𝑝 holds, then there exist at least
one path where 𝑞 holds continuously until 𝑟 becomes true, and 𝑟 occurs within the
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time interval [1,4] time units. This implies that 𝑟 eventually holds between 2 and 6
time units.

The equivalent automaton is shown in Figure 4.5, where:

• States: 𝒮 = {𝑆0 , 𝑆1 , 𝑆2 , 𝑆3}.

• Clock: 𝒞 = 𝑥.

• Transition relation: 𝑆0
𝑝,𝑥:=0
−−−−→ 𝑆1, 𝑆1

𝑞,1≤𝑥≤4]
−−−−−−−→ 𝑆2, 𝑆2

𝑟,2≤𝑥≤6−−−−−−→ 𝑆3.

• Accepting states: ℱ = {𝑆1 , 𝑆3}. Note that 𝑆1 corresponds to the continuous
satisfaction of 𝑞, and 𝑆3 corresponds to 𝑟 being eventually satisfied within the
interval [2,6].

𝑠0start 𝑠1 𝑠2 𝑠3

p,x:= 0
q,1 ≤ 𝑥 ≤ 4 r,2 ≤ 𝑥 ≤ 6

Figure 4.5: An Automaton illustrating the temporal operators A, E, F, G, U.

4.2.2 Synchronous Product Example

Let us assume a simple TCCS model of a train crossing system where a train can
approach and cross a gate.

1. Definition of the TCCS Model say 𝑀𝑇𝐶𝐶𝑆

processes:
𝑇𝑟𝑎𝑖𝑛 = 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ.𝑇

𝑇 = 𝑐𝑟𝑜𝑠𝑠.𝐺

𝐺𝑎𝑡𝑒 = 𝑐𝑙𝑜𝑠𝑒.𝑔.𝑜𝑝𝑒𝑛.𝐺𝑎𝑡𝑒

[gate closes, wait for the signal to open , and the opens]
System: Representation of the entire system
𝑀𝑇𝐶𝐶𝑆 = (𝑇𝑟𝑎𝑖𝑛|𝐺𝑎𝑡𝑒)⧹{𝑐𝑙𝑜𝑠𝑒 , 𝑜𝑝𝑒𝑛}
where | donates a parallel composition and ⧹{𝑐𝑙𝑜𝑠𝑒 , 𝑜𝑝𝑒𝑛} donate the hiding
of actions

2. Definition of TCTL formula say 𝜙𝑇𝐶𝑇𝐿
𝜙𝑇𝐶𝑇𝐿 = 𝐴[(𝑐𝑟𝑜𝑠𝑠 → 𝐹[0,3]𝑜𝑝𝑒𝑛)]

3. Construction of time Automaton
𝑆0

𝑐𝑟𝑜𝑠𝑠,𝑥:=0−−−−−−−→ 𝑆2
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𝑆1
𝑜𝑝𝑒𝑛,𝑥≤3
−−−−−−−→ 𝑆2

𝑆1
𝑥>3−−−→ Violation : if 3 times units pass without the gate opening, trainsition

to a violation state

4. Synchronize 𝑀𝑇𝐶𝐶𝑆 and the Timed Automaton
The synchronous product combines the states and transitions of 𝑀𝑇𝐶𝐶𝑆 and
the automaton, ensuring that the TCCS system behaves according to the tim-
ing constraints specified in 𝜙𝑇𝐶𝑇𝐿.

• Initial state:(𝑇𝑟𝑎𝑖𝑛, 𝐺𝑎𝑡𝑒 , 𝑆0)

• Transition 1:(𝑇𝑟𝑎𝑖𝑛, 𝐺𝑎𝑡𝑒 , 𝑆0)
𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ
−−−−−−−→ (𝑇, 𝑐𝑙𝑜𝑠𝑒.𝑔.𝑜𝑝𝑒𝑛.𝐺𝑎𝑡𝑒 , 𝑆0)

• Transition 2:(𝑇, 𝑐𝑙𝑜𝑠𝑒.𝑔.𝑜𝑝𝑒𝑛.𝐺𝑎𝑡𝑒 , 𝑆0)
𝑐𝑟𝑜𝑠𝑠,𝑥:=0−−−−−−−→ (𝐺, 𝐺𝑎𝑡𝑒 , 𝑆1)

• Transition 3:(𝐺, 𝐺𝑎𝑡𝑒 , 𝑆1)
𝑜𝑝𝑒𝑛,𝑥≤3
−−−−−−−→ (𝑇𝑟𝑎𝑖𝑛, 𝐺𝑎𝑡𝑒 , 𝑆2)

Our illustration demonstrates the process of creating a TCCS model along with
its associated automaton to represent a TCTL formula. The synchronous product
guarantees that the system model𝑀𝑇𝐶𝐶𝑆 fulfills the temporal requirements outlined
by 𝜙𝑇𝐶𝑇𝐿.

4.2.3 Automated Model Checking Implementation

Consider a TCCS model of a simple train crossing system:

Train = (approach -> cross -> leave -> Train)
Signal = (signalOn -> wait -> signalOff -> Signal)

We define a temporal formula that satisfies the TCCS model (𝑀𝑇𝐶𝐶𝑆) as :

𝜙𝑇𝐶𝑇𝐿 = 𝐴[𝐺(𝑠𝑖𝑔𝑛𝑎𝑙𝑂𝑛 → 𝐹[0,3]𝑐𝑟𝑜𝑠𝑠)]

If TCCS model is converted to a transition system that captures the states and
transitions. This is very necessary before model checking because it allows the
system’s possible behaviours to be translated in terms of states and actions, making
the system suitable for model checker. Each translation between states is associated
with an action such as approcah, signalOn, cross, etc.

Once the transition system is defined, it is provided to a model checker tool as
input. Popular model checkers for real-time systems include: UPPAAL(Supports
timed automata and TCTL-based model checking), NuSMV(a symbolic model
checker for finite state systems that can be used for real time verification) and
PRISM(a tool for model checking probabilistic real-time systems.

After inputting the TCCS model and the TCTL formula into the model checker,
the tool will explore all possible states and transitions of the model to check if the
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formula holds across all paths. It generates all possible states reachable from initial
state of the TCCS model and check if the timing constraints and actions specified
in the TCTL formula are satisfied in every state and transition. For the given TCTL
formula:

𝐴[𝐺(𝑠𝑖𝑔𝑛𝑎𝑙𝑂𝑛 → 𝐹[0,3]𝑐𝑟𝑜𝑠𝑠)]
The model checker verifies whether for all path, whether the signalOn event occurs,
the cross event happens within 3 times units.

4.2.4 Equivalence Verification with a Clock Automaton

Let the overall 𝑇𝐶𝐶𝑆 model 𝒯𝑆𝑦𝑠𝑡𝑒𝑚 be a parallel composition of 𝒯𝑡𝑟𝑎𝑖𝑛 and 𝒯𝑔𝑎𝑡𝑒 :

𝒯𝑆𝑦𝑠𝑡𝑒𝑚 = 𝒯𝑔𝑎𝑡𝑒 ||𝒯𝑡𝑟𝑎𝑖𝑛

And the Safety property in 𝑇𝐶𝑇𝐿 is the primary safety property we want to verify
given as :

𝜙𝑠𝑎 𝑓 𝑒𝑡𝑦 = 𝐴𝐺(𝑡𝑟𝑎𝑖𝑛 ≠ 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 → 𝑔𝑎𝑡𝑒 = 𝑜𝑝𝑒𝑛)
Similarly, if we specify that gate closes within 2 times units of the train’s arrival and
open’s only after the train has crossed.

𝜙𝑡𝑖𝑚𝑖𝑛𝑔 = 𝐴𝐺(𝑎𝑟𝑟𝑖𝑣𝑒 → 𝐴𝐹≤2𝑐𝑙𝑜𝑠𝑒) ∧ 𝐴𝐺(𝑐𝑟𝑜𝑠𝑠 → 𝐴𝐹≤1𝑜𝑝𝑒𝑛)

Then using bisimulation equivalence verification we have:

stateSpace 𝒮 = {𝑖𝑑𝑙𝑒 , 𝑤𝑎𝑖𝑡𝑖𝑛𝑔, 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔, 𝑑𝑜𝑛𝑒}
transitions = {𝑎𝑟𝑟𝑖𝑣𝑒 , 𝑐𝑙𝑜𝑠𝑒 , 𝑐𝑟𝑜𝑠𝑠, 𝑜𝑝𝑒𝑛}
TCTLTimedAutomaton 𝜙 = {𝜙𝑆𝑎 𝑓 𝑒𝑡𝑦 , 𝜙𝑇𝑖𝑚𝑖𝑛𝑔}
synchronousProduct 𝒫 = 𝑝𝑎𝑖𝑟(𝒯𝑆𝑦𝑠𝑡𝑒𝑚 , 𝜙)

The timed automaton will accept all behaviour where:

• The gate is closed before the train crosses,

• The gate closes within 2 times unites of the trains arrival, and

• The gate opens only when the train has crossed.

We recall from Definition 2.1 that two states 𝑠1 and 𝑠2 are bisimilar if whenever
𝑠1 can transition to 𝑠 ′1 in one system, 𝑠2 can transition to 𝑠 ′2 in the other system, and
𝑠
′
1 and 𝑠 ′2 are bisimilar. The checking process is as follows:

1. For each state 𝑝𝑎𝑖𝑟(𝒮𝑇𝐶𝐶𝑆 ,𝒮𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛)

2. Ensure that timing constraints are preserved in both models
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3. If all state pairs satisfy bisimulation, the models are equivalent

Finally, we use model checker to confirm that the 𝑇𝐶𝐶𝑆 model 𝒯𝑠𝑦𝑠𝑡𝑒𝑚 satisfies the
𝑇𝐶𝑇𝐿 properties 𝜙𝑠𝑎 𝑓 𝑒𝑡𝑦 and 𝜙𝑡𝑖𝑚𝑖𝑛𝑔 .

In the formal example, we verify an equivalence between a TCCS model and a
TCTL specification by using bisimulation to check that real-time system behaviors
satisfy safe timing properties. For example, each step from the TCCS description
should exactly match with an existing TCTL checks so that both algebraic and
logical descriptions of Railroad crossing problem fits together. This makes TCCS
process verifiable wrt the behavior and demonstrates its constructive equivalent.

4.2.5 Yet Another Constructive Equivalence Checking

Let a constructive equivalence can be formally represented as 𝒜 ≡ ℬ, with 𝒜 =

(Σ, 𝑄, 𝑞0 ,Ω, 𝐹) and ℬ = (Σ, 𝑄 ′
, 𝑞

′
0 ,Ω

′
, 𝐹

′) where:

• Σ is sets of inputs,

• 𝑄 and 𝑄 ′ are sets of states,

• 𝑞0 and 𝑞′0 are sets of initial states,

• 𝐹 and 𝐹′ are sets of accepting states.

We need to show the following:

∀𝑞 ∈ 𝑄, ∃𝑞′ ∈ 𝑄 ′ : property(𝑞) = property(𝑞′)

In our case,

∀𝑞 ∈ {𝑆0 , 𝑆1 , 𝑆2 , 𝑆3}, ∃𝑞
′ ∈ {𝑆′

0 , 𝑆
′
1 , 𝑆

′
2 , 𝑆

′
3} : ¬(𝑆1 ∧ 𝑆2) ≡ ¬(𝑆′

1 ∧ 𝑆
′
2)

Therefore, by guaranteeing that the safety property is upheld, the equivalency
is demonstrated across both models. This same procedure can also be applied to
other examples of real time systems such as the elevator system, the traffic light
system, etc.

4.3 Addressing Non-Constructive Equivalence

Equivalence checking is a hard and complex problem, especially for large or intri-
cate real-time systems. State space explosion is a significant challenge if found to be
non-equivalent. This often results in additional simplification or re-design of the
system under question with respect to its intended specifications. Non-constructive
equivalence in real system verification between an algebraic model, such as Timed
Calculus of Communicating Systems (TCCS), and a logical model, e.g. Time Com-
putation Tree Logic(TCTL), means that the behaviors or properties expressible in
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one formalism cannot be entirely captured by another[91, 6, 5]. That difference
causes the verification to be incomplete and decreases reliability of system analysis.

For example, Algebraic model (TCCS): Train Behavior= {𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ.𝑇1 , 𝑐𝑟𝑜𝑠𝑠.𝑇2 ,
𝑙𝑒𝑎𝑣𝑒 , .𝑇} and the Gate Behavior ={𝑜𝑝𝑒𝑛.𝐺1 , 𝑐𝑙𝑜𝑠𝑒.𝐺2 , 𝑜𝑝𝑒𝑛.𝐺} and the system
composition can be expressed as follows:

𝑆𝑦𝑠𝑡𝑒𝑚 = (𝑇||𝐺){𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ, 𝑐𝑟𝑜𝑠𝑠, 𝑙𝑒𝑎𝑣𝑒, 𝑜𝑝𝑒𝑛, 𝑐𝑙𝑜𝑠𝑒}

then the logical Model (TCTL) should be able to close within 3 times units after
train leaves this can be given as :

𝜙1 = 𝐴(𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ → ∃ ≤ 3 𝑐𝑙𝑜𝑠𝑒)

Also in another situation, the gate must open within 2 time units after the train
leaves:

𝜙2 = 𝐴(𝑙𝑒𝑎𝑣𝑒 → ∃ ≤ 2 𝑜𝑝𝑒𝑛)
TCCS has the capability to represent intricate nested timing constraints that TCTL
struggles to capture fully, especially in cases like "the train crosses only if the gate
closed within 3 time units of approach." As a result, the consequence of this lack of
comprehensive equivalence leads to:

• Incomplete Verification: TCTL cannot verify some critical nested timing con-
straints, potentially overlooking important system behaviors.

• Reduced Reliability: The inability to check all timing constraints reduces the
assurance that the system meets all safety and performance requirements.

• Increased Complexity: Bridging the gap between models may require exten-
sions or more expressive logics, complicating the verification process.



Chapter 5

Conclusion

In this thesis we examined the verification of constructive equivalence across real-
time systems using a hybrid approach that combines process algebra (TCCS) and
temporal logic (TCTL) techniques such as bisimulation and model checking. The
need for a scalable, automated verification framework to verify the stability of
safety-critical systems with strict real-time limitations motivated this research.

We began by looking at the fundamental ideas of real-time systems, summa-
rizing existing verification tools, and emphasizing the ongoing advances in formal
verification methods (see Chapter 1). This contextual awareness provided the foun-
dation for our strategy. Chapters 2 and 3 provided the theoretical foundation for
our research, including the syntax and semantics of TCCS and TCTL. We conducted
a thorough literature analysis, discussing prior efforts on formal verification and
finding gaps that this thesis seeks to fill.

In Chapter 4, we used algebraic and logical approaches to create formal models
that represented and tested real-time system behavior. The main contribution of
our study is the fact that TCCS and TCTL are equivalent. We thus extended to some
degree an earlier result establishing the equivalence between failure trace testing
and CTL [23] to the timed domain. We effectively guarantee consistency between
algebraically modeled and logically verified system behaviors. We made it possible
to address the compositional complexity of big systems in a more structured manner
by using process algebra for modular verification.

Our findings advance the subject of formal verification by showcasing a scalable
method for combining logical and algebraic methodologies. Constructive equiv-
alence can improve the resilience of system verification, according to our results,
especially in fields like medical devices, aircraft, and transportation where timing
and safety are crucial.

As opposed to the results available for the untimed domain [23], we fall short
of actually providing algorithms for converting logical specifications into algebraic
specifications and the other way around. This limitation restricts the immediate
practical applicability of our framework and highlights an area requiring further
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investigation. Additionally, we only focused on deterministic real-time systems,
and stochastic behaviors were not addressed.

To build on the findings of this thesis, immediate future work should focus on
developing algorithms for bidirectional conversion between logical and algebraic
specifications. Other promising avenues for future research include extending the
verification framework to handle more complex real-time systems with stochastic
behaviors, incorporating machine learning techniques to optimize model-checking
processes and enhance automation, and conducting extensive industrial case stud-
ies to validate the scalability and effectiveness of the proposed framework in prac-
tical, large-scale systems.

Limitations and future directions notwithstanding, this work lays the founda-
tion for more robust, scalable, and widely applicable approaches to real-time system
verification.
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