
On Limits on the Computational Power of Data-Accumulating
Algorithms∗

Stefan D. Bruda
Department of Computer Science

Bishop’s University
Lennoxville, Quebec J1M 1Z7, Canada

Email: bruda@ubishops.ca

Selim G. Akl
School of Computing
Queen’s University

Kingston, Ontario K7L 3N6, Canada
Email: akl@cs.queensu.ca

August 10, 2005

Abstract

In the data-accumulating paradigm, inputs arrive continuously in real time, and the computation terminates when

all the already received data are processed before another datum arrives. Previous research states that a constant upper

bound on the running time of a successful algorithm within this paradigm exists only for particular forms of the data

arrival law. This contradicts our recent conjecture that those problems that are solvable in real time are included in

the class of logarithmic space-bounded computations. However, we prove that such an upper bound does exist in

fact in both the parallel and sequential cases and for any polynomial arrival law, thus strengthening the mentioned

conjecture. Then, we analyze an example of a non-continuous data arrival law. We find similar properties for the

sorting algorithm under such a law, namely the existence of an upper bound on the running time, suggesting that such

properties do not depend on the form of the arrival law.

Keywords: computational complexity, data-accumulating algorithms, sorting, parallel algorithms.

1 Introduction

In the classical study of algorithms, input data are considered to be available at the beginning of computation. The

algorithm eventually terminates when the input data have been processed. What happens though when the data arrive

while the computation is in progress? A paradigm considering such computations is thedata-accumulating paradigm

[4, 5, 6]. Here, data are considered as being an endless stream. An algorithm terminates when all the data that were

already received have been processed.

In this paper we investigate the computational power of data-accumulating algorithms. As a case study we consider

sorting algorithms, which are basic elements for various applications. It has been shown [5] that, if the data arrivefast

∗This research was supported by the Natural Sciences and Engineering Research Council of Canada.

1



enough, then a successful algorithm (i.e., one that terminates) must have a running time upper bounded by a constant;

when the running time exceeds that constant, the algorithm never terminates. Our results indicate that the qualifier

“fast enough” is not necessary, and a constant upper bound for the running time exists foranypolynomial data arrival

law, and for any (parallel of sequential) d-algorithm. This is a negative, yet important result as it establishes a limit that

was not previously known. Such a limit, however, is consistent with the conjectured inclusion of real-time problems

in the class of logarithmic space-bounded computations (NLOGSPACE) [3].

Subsequently, we extend these results by considering another data arrival law which is significantly different from

the polynomial one, being a non-continuous function. We find similar properties for the sorting algorithm, namely, the

existence of an upper bound on the running time. Therefore, we conjecture that these properties are not dependent on

the expression of the arrival law.

2 The Data-Accumulating Paradigm

In the data-accumulating paradigm [4, 5], input data arrive as time passes, conforming to adata arrival law. The

computation terminates when all the data currently arrived have been processed. Algorithms pertaining to this class

are calleddata-accumulating algorithmsor, for short,d-algorithms. The form proposed in [5] for the data arrival law

is

f(n, t) = n + knγtβ , (1)

wheren is the size of the initial data set, andk, γ, andβ are positive constants. Such a form of the arrival law is rather

flexible, and its polynomial form eases the reasoning about algorithms that use it. In particular, note that, whenγ = 0,

the amount of data that arrive in one time unit is independent of the size of the initial data set. Ifβ = 1, then the data

flow is constant during the time, while in the caseβ > 1 the flow of data actually increases with time. Similarly, when

β < 1, fewer and fewer data arrive as time increases.

A standard algorithm, working on a non-varying set of data, is referred to as astaticalgorithm. Consider a given

problemΠ. Let the best known static algorithm forΠ beA′. Then, a d-algorithmA for Π working on a varying set of

data of sizeN is optimalif and only if its running timeT (N) is asymptotically equal to the timeT ′(N), whereT ′(N)

is the time required byA′ working on theN data as if they were available at timet = 0.

The problems considered in [5] are solvable in polynomial time, i.e.,T ′(N) = O(Nα), whereα is a positive

constant, withT ′ defined as above. This implies that an optimal d-algorithm must have a time complexity ofT (N) =

2



cNα, for some positive constantc1. If the d-algorithm terminates at timet, then we havet = cNα. Considering the

data arrival law given by Relation (1), the termination timet can be expressed by the implicit function

t = c(n + knγtβ)α. (2)

It is shown in [5] that the d-algorithm will terminate forn in some interval that depends on the constants involved

only for certain values ofα, β, andγ. For example, it is claimed that, ifγ = 1, for αβ < 1, thenn grows as

(1/(kc1/α))t(1−αβ)/α. That is, for anyn, the d-algorithm will eventually terminate, even if its running time can be

very large. Forαβ ≥ 1, on the other hand, the algorithm terminates only for bounded values ofn; moreover, for

αβ > 1, the running time itself is upper bounded by a constant (this bound not being present in the other cases).

The parallel d-algorithm is defined in the same manner as the sequential one, except that its execution timeTp(N)

is compared to the execution timeT ′p(N) of a parallel static algorithm that uses the same number of processorsP (N)

as the parallel d-algorithm. The equation for the parallel optimal d-algorithm is similar to the one obtained for the

sequential case:

tp =
cp(n + knγtβp )α

P
, (3)

where the subscriptp denotes the parallel case andP is the number of processors. It is assumed in [5] thatP is a

polynomial function ofN .

We quote the following main results obtained in [5]:

Proposition 2.1 Given a problem admitting an optimal sequential d-algorithm obeying Relation (2) and an optimal

parallel d-algorithm obeying Relation (3), and forcp/P < c, αβ = 1, γ = 1, andP = ξ(n + knγtβp )δ, with some

constantsξ, ξ > 0, andδ, 0 ≤ δ ≤ α, it holds thatlimn→1/kc1/α t/P tp = ∞. In addition,t/P tp > c/cp for all

values ofα, β, γ.

This result shows that the quantityt/P tp (and thus the speedup of the parallel algorithm) may become arbitrarily

large. This implies that the normal bound for parallel speedup [2, 7] no longer holds.

3 Sorting

We now study sorting d-algorithms. Note that a similar problem is investigated in [5], but there the result is a search

tree. Conceivably, there exist applications working in real time on large sequences of data for which theO(log n)
1Note, however, that our study in the present paper covers d-algorithms that have a time complexity ofcNα, even if they are not optimal.

3



access time to the elements in a search tree is not acceptable. Therefore, the sorting algorithms discussed here output

anarray of sorted elements (the access time is thusO(1)). Henceforth, we refer to such processing assorting on a

linear structure(or simplysortingwhen there is no ambiguity).

For comparison, we use an optimal static sorting algorithm whose running time isΘ(n log n) [8].

3.1 A First Upper Bound on the Running Time

By definition, data accumulates as the computation proceeds. Generally, we consider that the incoming data are

buffered until some amountq is reached, and then the buffered data are inserted into the already sorted sequence (for

the non-buffered case simply setq to 1). The time complexity of such an operation is given by the following lemma.

Lemma 3.1 Let the length of the already sorted sequence bel. Then, the time complexity of insertingq new elements

into the sorted sequence isΘ(q log q + l), for anyq andl such that eitherq = 1 or l ≥ (q log q)/(q − 1).

Proof. The upper bound is immediate. For the lower bound, we have the following: Supposing that the distance

between the insertion point of some element and the end of the buffer isΩ(l) (the general case), the time required for

inserting a datum into some sorted sequence isΩ(l). If the newly arrived data are not sorted, then one should insert

them into the buffer one by one. Therefore, the insertion time for the whole sequence isΩ(ql). On the other hand,

the number of operations needed to sortq data isΩ(q log q) [8], while merging the sorted sequences requiresΩ(q + l)

operations [8]. ¤

We did not consider the case in which more thanq elements come before the processing of the already arrived

data is finished. However, this case is equivalent to the one in which the data arrive too fast and the d-algorithm never

stops. Indeed, as seen below, the necessary condition (4) for the algorithm to terminate in finite time covers this case.

Let tq be the time in which a buffer of sizeq is filled. At some timetx, when the buffer is filled and is ready to be

inserted, the length of the already sorted sequence will bel = n+knγ(tβx− tβq ), because all the arrived data have been

inserted, except the data which are in the buffer (otherwise, some elements are lost). We will consider for simplicity

thatβ = 1, but similar results can be obtained for other values as well. In this context, the time interval between two

arrivals isdt = 1/knγ . Suppose that the algorithm stops at timet. This means that, at timet, all the buffered data

have been inserted before another datum arrives. Thus, the time required to insert the buffer (given by Lemma 3.1)

should be no larger thandt, i.e.,

dt ≥ q log q + n + knγ(t− tq). (4)

4



Considering the data arrival law of Relation (1), the timetq in which the buffer is filled is given byq = knγtβq .

Then, simple calculations let us derive the following bound on the computation time:

t ≤ 1
(knγ)2

+
1

knγ
q(1− log q)− n

knγ
. (5)

This imposes a limit on the running time of any sequential sorting d-algorithm that terminates for the polynomial

data arrival law given by Relation (1). Henceforth, the right-hand side of Relation (5) will be denoted byt′B
2. We are

now ready to determine the complexity of sorting on a linear structure.

Theorem 3.2 Under the polynomial data arrival law given by Relation (1), the running time of any sequential d-

algorithm for sorting on a linear structure isΘ(N2). Thus, sorting on a linear structure does not admit an optimal

d-algorithm.

Proof. Assume first thatq is constant with respect to the running time (however, if it is a function ofn, then the proof

is not affected). By Lemma 3.1, the time required to insert theq elements from the buffer isΘ(q log q + l), wherel is

the number of already sorted elements. This time isΘ(l), sinceq is constant. Thus, the total time required for sorting

N elements isΘ(
∑N/q

l=n ql) = Θ(N2), as desired, sincel increases byq each time a new buffer is inserted.

Assume now that the sizeq of the buffer varies with time. We have∂t′B
∂t = − 1

knγ log q ∂q
∂t . Obviously,q ≥ 1 and

t′B > 0 (otherwise, the algorithm never terminates). If there is some constant (with respect to the time)Q such that

q ≤ Q everywhere, then the relation derived for constant buffer size holds (asq may then be approximated byQ and

the rate of growth does not change). Therefore, it is enough to consider the case ofq being an increasing function.

Then, ∂q
∂t > 0, and this implies∂t′B

∂t < 0, becauselog q > 0 for q > 1. That is,t′B is a decreasing function. Since

t′B(0) is finite, there exists someQ such thatt′B(q) ≤ 0, for all q ≥ Q. By Relation (5), the termination time of the

algorithm is less thant′B . Therefore, whenq ≥ Q, the upper limit for the termination time is negative, which means

that the algorithm never stops. Thus the valuesq for which the algorithm terminates are bounded again and we are in

the case covered by constant buffer size. ¤

3.2 Extending the Upper Bound on the Running Time

In the previous section we established an upper bound on the running time only for proving the complexity of sorting d-

algorithms. In this section, we analyze this bound. We begin by considering sorting d-algorithms, and then generalize

our results for other d-algorithms.
2This notation was chosen in order to be consistent with the notation from [5]. There,tB denotes an upper bound on the running time. Obviously,

Relation (5) also defines an upper bound.

5



First, note that a side consequence of the proof of Theorem 3.2 is that the best value for the buffer sizeq is the

minimal possible, i.e., 1, becauset′B is a decreasing function with respect toq. In other words, there is no reason to

buffer data; it is better to insert each arrived datum in linear time. Hence, we will considerq = 1. Second, the time

required to insert one element (q = 1) into the already sorted sequence iscl, for some constantc. The expression for

t′B becomes in this caset′B = 1
c(knγ)2 − n

knγ .

We have consideredβ = 1. This implies that the productαβ is larger than 1, and the existence of a limit on the

running time in this case was established in [5]. More interesting is the situation whereβ ≤ 1/2, for αβ ≤ 1. Under

these conditions, no limit on the running time is known. We now study this case.

Theorem 3.3 For the polynomial data arrival law given by Relation (1), if a sorting d-algorithm terminates, then its

running time is upper bounded by a constantT that does not depend onn.

Proof. We have the restrictionγ = 1 for easier calculations. The timedt after which a new datum arrives is

given by1 = knγ((t + dt)β − tβ), for some momentt. That is,(t + dt)β − tβ = 1/knγ . On the other hand,

Relation (4) in the general case becomesdt ≥ q log q + n + knγ(tβ − q/knγ). From these two relations,1/knγ ≥
(q(log q − 1) + n + knγtβ + t)β − tβ . In particular, forγ = 1,

1
kn

≥ (q(log q − 1) + n + kntβ + t)β − tβ . (6)

The complexity of the sorting algorithm isO(N2) by Theorem 3.2. That is, forγ = 1, n = t1/2/c(1 + ktβ). By

substituting this value in Relation (6) and manipulating the obtained expression,

qc

k
≥ b(t)× a(t). (7)

wherea(t) = (q(log q−1)+ t1/2

c + t)β− tβ andb(t) = t1/2/(1+ktβ). Then,∂b(t)
∂t = t−1/2

(1+ktβ)2
(1/2+k(1/2−β)tβ),

and hence, forβ ≤ 1/2, ∂b(t)
∂t > 0. That is,b(t) is an increasing function. Analogously,a(t) is an increasing function

as well:

∂a(t)
∂t

= β

(
t−1/2

c
+ 1

)(
q(log q − 1) +

t1/2

c
+ t

)β−1

− βtβ−1

> β

((
q(log q − 1) +

t1/2

c
+ t

)β−1

− tβ−1

)
[becauset−1/2/c > 0]

> 0 [becauseq(log q − 1) + t1/2/c > 0 for large enought].

6



Therefore,b(t) × a(t) is increasing. Moreover, it is easy to see that, forβ < 1/2, limt→∞ b(t) = ∞ , and

limt→∞ a(t) > 0. Therefore,limt→∞ b(t) × a(t) = ∞ for β < 1/2. For β = 1/2, limt→∞b(t) = 1/k, and, for

large enought, a(t) ≥ t1/8 and thuslimt→∞a(t) = ∞. Then again,limt→∞ b(t) × a(t) = ∞. Sinceb(t) × a(t)

is an increasing function and its limit is infinite, there exists some finiteT such thatb(t) × a(t) > qc
k for anyt > T .

Then, such at larger thanT will contradict the necessary condition for algorithm termination given by Relation (7).

Hence,T is an upper bound for the running time and this completes the proof. ¤

Note that the theorem implicitly gives an upper bound for the maximum amount of data which can be processed,

because this amount is given byN = n + knγtβ and its upper bound is obviouslyn + knγT β . We contradict by

Theorem 3.3 the results derived in [5], where it is claimed that such a bound does not exist forαβ < 1.

In the case of sorting on a linear structure we found an upper bound on the running time for any data arrival law.

Sorting is not the only case in which such a bound exists though.

Theorem 3.4 For the polynomial data arrival law given by Relation (1), letA be any d-algorithm with time complexity

Ω(Nα), α > 1. If A terminates, then its running time is upper bounded by a constantT that does not depend onn.

Proof. We consider only the caseβ ≤ 1/α, because the limit has been already found forαβ > 1 [5]. Let ε = α− 1,

ε > 0. If the algorithm terminates at some finite timet, thenN data have been processed,N = n + knγtβ . That is,

the time for processing one datum iscNα/N = cNε for some positive constantc. Following the same idea as the one

used for deriving Relation (4), we obtaindt ≥ c(n+knγtβ)ε, which is similar to Relation (4). Therefore, analogously

to the proof of Theorem 3.3, we obtain forγ = 1

qc

k
≥ t1/2

(1 + ktβ)
(
(c(n + kntβ)ε + t)β − tβ

)
. (8)

The left-hand side of this relation is increasing, becausec(n + kntβ)ε > 0, and it is immediate that the limit of

the right-hand side is infinite. Hence, the limitT is derived in the same way as in the proof of Theorem 3.3. ¤

We now consider parallel d-algorithms. Recall thatP is the number of processors in the parallel model. It is immediate

that the process described in Lemma 3.1 admits linear speedup. Indeed, sortingq elements admits linear speedup [1]

(page 179), and inserting the buffer into the previously sorted sequence may be achieved by using an optimal merging

algorithm [1] (page 209). Thus, Relation (5) becomes in the parallel caset ≤ P/(knγ)2 +q(1− log q)/knγ−n/knγ .

As expected, this relation is similar to Relation (5) for the sequential case. Therefore, all the above sequential results

hold for the parallel case as well. That is, the best value forq is 1 (buffering does not help), and a limitt′′B(P ), similar

7



to t′B , for the running time can be found,t′′B(P ) = P
cp(knγ)2 − n

knγ . It is then easy to see that Theorem 3.4 holds for

the parallel case as well.

Theorem 3.5 For the polynomial data arrival law given by Relation (1), letA be anyP -processor d-algorithm with

time complexityΩ(Nα), α > 1. If A terminates, then its running time is upper bounded by a constantT that does not

depend onn but depends onP .

Proof. It is enough to replace the first term from the right-hand side of Relation (8) in the proof of Theorem 3.4 by

P × t1/2/(1+ ktβ). The proof is then analogous, as this replacement introduces a multiplicative constant, which does

not change the sign of the derivative. As well, the appearance ofP does not change the limit. ¤

Finally, it is worth pointing out that a closer look at the proof of Proposition 2.1 given in [5] reveals that the

optimality of the d-algorithm in question is not used to establish the result. Therefore:

Theorem 3.6 Proposition 2.1 holds for any optimal or non-optimal d-algorithm with polynomial running time.

3.3 Using Another Data Arrival Law

Up to this moment, we have considered a polynomial data arrival law for the sorting problem, but we expect similar

results for other expressions. As an example, we consider here a totally different law:N(t) = q(n) + q(n)bt/r(n)c,
for some fixedn, whereq, r : N→ N. In plain English, data arrive in bundles ofq(n) elements eachr(n) time units.

This law is interesting because it extends the analysis of d-algorithms to non-continuous functions. For such an arrival

law, we first note that the minimum value for the size of the bufferq is q(n). Indeed,q(n) data arrive together, and all

of them must be temporarily stored into some buffer until they are inserted into the sorted sequence. Second, the time

intervaldt between two data arrivals isr(n). By the same method used to obtaint′B we havedt ≥ q log q +N(t− tq).

But tq is null (since the whole bundle of data arrives at once) andq = q(n). Hence, since sorting and merging admit

linear speedup, the limits for the running time of the sequential and parallelP -processor algorithms are given by:

bt/r(n)c ≤ r(n)
q(n)

− (1 + log q(n))

bt/r(n)c ≤ P
r(n)
q(n)

− (1 + log q(n))

The two relations above are very similar to the ones obtained for the polynomial arrival law. Therefore, a form of

Theorems 3.4, 3.5, and 3.6 holds.

8



4 Conclusions

In our study of data-accumulating algorithms for sorting, we have taken a different approach than the one in [5]: we

first obtained a bound for the running time and, based on this result, we were able to characterize sorting d-algorithms

in terms of complexity. This bound also helped us find the optimal size of the input buffer. Note that a sorting

(d-)algorithm updates the data structure in a time interval that depends on the number of already processed input data.

This is the reason for which the upper bound on the running timet′B exists. Therefore, we expected similar upper

bounds for other problems with this property, such as the construction of search trees (problems 3 and 4 in [5]). Our

expectations were justified as shown in Theorems 3.4 and 3.5.

Considering a data arrival law other than the polynomial one, we found that properties of sorting d-algorithms do

not change significantly. Based on this, we conjecture that the general properties of such algorithms hold for any type

of data arrival law.

Theorems 3.4 and 3.5 are the main results of this paper. They prove the existence of an upper bound on the running

time for a large class of algorithms. It has been claimed [5] that the existence of such a limit depends on bothα and

β. That is, it depends on both the complexity of the d-algorithm and the data arrival law. We have shown that, in

fact, the existence of such a bound depends only on the complexity of the d-algorithm. This is a serious limitation

of d-algorithms. It is, however, consistent with the results in [3], where we conjecture that problems solvable in real

time are included NLOGSPACE. Indeed, Theorems 3.4 and 3.5 restricts (successful) d-algorithms so that their static

counterparts fall into this class.

References

[1] S. G. AKL , Parallel Computation: Models and Methods, Prentice-Hall, Upper Saddle River, NJ, 1997.

[2] R. P. BRENT, The parallel evaluation of general arithmetic expressions, Journal of the ACM, 21 (1974), pp. 201–

206.

[3] S. D. BRUDA AND S. G. AKL , On the relation between parallel real-time computations and logarithmic space,

in Proceedings of the IASTED International Conference on Parallel and Distributed Computing and Systems,

Cambridge, MA, Nov. 2002, pp. 102–107.

[4] F. LUCCIO AND L. PAGLI , The p-shovelers problem (computing with time-varying data), in Proceedings of the

4th IEEE Symposium on Parallel and Distributed Processing, 1992, pp. 188–193.

9



[5] , Computing with time–varying data: Sequential complexity and parallel speed–up, Theory of Computing

Systems, 31 (1998), pp. 5–26.

[6] F. LUCCIO, L. PAGLI , AND G. PUCCI, Three non conventional paradigms of parallel computation, in Parallel

Architectures and Their Efficient Use, F. M. auf der Heide, B. Monien, and A. L. Rosenberg, eds., Springer Lecture

Notes in Computer Science 678, 1992, pp. 166–175.

[7] J. R. SMITH , The Design and Analysis of Parallel Algorithms, Oxford University Press, 1993.

[8] J. D. ULLMAN , A. V. A HO, AND J. E. HOPCROFT, The Design and Analysis of Computer Algorithms, Addison-

Wesley, Reading, MA, 1974.

10


