
SIZE MATTERS: LOGARITHMIC SPACE IS REAL TIME

S. D. Bruda∗and S. G. Akl†

Abstract

We show that all the problems solvable by a nondeterministic machine with logarithmic work space (NL) can be
solved in real time by a parallel machine, no matter how tight the real-time constraints are. We also show that several
other real-time problems are in effect solvable in nondeterministic logarithmic space once their real-time constraints
are dropped and they become non-real-time. We thus conjecture thatNL contains exactly all the problems that admit
feasible real-time parallel algorithms. The issue of real-time optimization problems is also investigated. We identify
the class of such problems that are solvable in real time. In the process, we determine the computational power of
directed reconfigurable multiple bus machines (DRMBMs) with polynomially bounded resources and running in con-
stant time, which is found to be the same as the power of directed reconfigurable networks with the same properties.
We also show that write conflict resolution rules such as Priority or even Common do not add computational power
over the Collision rule, and that a bus of width 1 (a wire) suffices for any constant time computation on DRMBM.

Key Words: real-time computation, timedω-language, parallel complexity, reconfigurable multiple bus machine,
independence system, matroid.

1 Introduction

One direction in the area of algorithms and complexity theory for real-time computations started by the introduction

of well-behaved timedω-languages[1]. Unlike previous models of real-time computation (e.g., [2]), timed languages

bridge the long standing gap between the complexity theorists and the real-time systems community: While timed

ω-languages create a formal model, they also capture all the features of real-time computations as understood by the

systems community. A computation is thus deemed real time if the notion of correctness is linked not only to the output

but also to the notion of time; in particular, the real-time qualifier is introduced by timing constraints on either input

(that arrives at moments in time determined precisely by external factors) or output (which has associated deadlines,

this being the most common type of real-time constraints). Our claim that timedω-languages capture all the features

of real-time computations as understood by the systems community is supported by the work from [1], where the for-

malism is used to model real-time computations encountered in practical areas. Real-time complexity classes, as well

as complexity theoretic properties of real-time computations, are studied in [3]. However, the computations analyzed

in [3] do not exhibit explicit deadlines; the real-time qualifier is given by the input (and its real-time characteristics).

Still, most practical applications do require that computations are carried out within deadlines.

For this reason, our main focus in this paper consists in computations with explicit deadlines: We study (clas-

sical) languages that can be recognized in nondeterministic logarithmic space, augmented with real-time constraints

(including deadlines). We show that all such computations can be carried out in parallel in a feasible manner (i.e., with

∗Department of Computer Science, Bishop’s University, 2600 College St, Sherbrooke, Quebec, J1M 0C8 Canada; email: bruda@cs.ubishops.ca
†School of Computing, Queen’s University, Kingston, Ontario, K7L 3N6 Canada; email: akl@cs.queensu.ca

1

polynomially bounded resources), no matter how tight the time constraints are. Conversely, we show that, although

hard to recognize in real time, the languages developed in [3] can be accepted in logarithmic space once the time

constraints are eliminated. Thus, we conjecture that (nondeterministic) logarithmic space contains exactly all the com-

putations that admit feasible real-time parallel implementations (again feasible means polynomial bounded resources,

or poly(n) processors in this particular case).

Motivated by this conjecture, we identify the class of optimization problems over independence systems that are

solvable in real-time, and we are able thus to extend the results obtained in [4]. We show that the solution obtained

by a parallel algorithm is arbitrarily better than the solution reported by a sequential one not only for the real-time

minimum-weight spanning tree (as shown in [4]), but for any real-time maximization problem over a matroid for

which the size of the optimal solution can be computed in real time.

In passing we offer a tight characterization of constant time computations onreconfigurable multiple bus machines

(RMBMs). We show that constant time directed RMBMs have the same computational power as the directedrecon-

figurable networks, and that there is no need for such powerful write conflict resolution rules as Priority or Common

as they do not add computational power over the easily implementable Collision rule. As far as constant time RMBM

computations are concerned, we also find that a unitary bus width is enough—a simple wire as bus will do for all

constant time RMBM computations.

The results in this paper are presented as follows: In Section 3 we show that exactly allNL languages can be

recognized in constant time using a directed fusing RMBMs withpoly(n) processors and buses, each of width 1.

Our main results are the subject of Section 4, where we establish that anyNL language is computable in real time on

RMBMs, no matter how tight the real-time restrictions actually are, and we state the aforementioned conjecture. The

issue of optimization problems over independence systems is considered in Section 5. We conclude in Section 6.

2 Preliminaries

The cardinality ofIN, the set of natural numbers, is denoted byω. Given somef : IN → IN, we denote by

DSPACE(f(n)) [NSPACE(f(n))] the set of languages [5] that are accepted by a deterministic [nondeterministic]

Turing machine which uses at mostO(f(n)) space (not counting the input tape) on any input of lengthn. L [NL] is a

shorthand forDSPACE(log n) [NSPACE(log n)]. GAPi,j denotes be the following problem: given a directed graph

G = (V, E), V = {1, 2, ..., n}, determine whether vertexj is accessible from vertexi.

2.1 Timedω-languages

A sequenceτ = τ1τ2 . . . ∈ IN ∪ ω is a time sequenceif it is an infinite sequence of positive values, andτi ≤ τi+1 for

all i > 0. Any subsequence of a time sequence is a time sequence. Awell-behavedtime sequence is a time sequence

for which, for everyt ∈ IN, there exists some (finite)i ≥ 1 such thatτi > t. A (well-behaved)timedω-word over

some alphabetΣ is a pair(σ, τ), whereτ ∈ INk is a (well-behaved) time sequence,k ∈ IN ∪ {ω}, andσ ∈ Σk. A

valueτi from τ represents the time at which the respectiveσi becomes available as input. For some timedω-word

w = (σ, τ), detime(w) = σ. By abuse of notation,detime(L) = {detime(w)|w ∈ L} for a timedω-languageL.

2

The concatenation of two timed words is defined as the merging of their sequences of symbols, ordered in nonde-

creasing order of their arrival time. Two further, disambiguating restrictions are imposed: any sequence of symbols

arriving simultaneously in one of the two words being concatenated appears as a subsequence of the result, and any

symbol arriving at some timet in the second word being concatenating appears after all the symbols that arrive at time

t in the first word. The timestamps of all the symbols in the result of a concatenation are the original timestamps of the

respective symbols in the two words being concatenated. Given two timedω-languagesL1 andL2, the concatenation

of L1 andL2 is L1L2 = {w1w2|w1 ∈ L1, w2 ∈ L2}. The notation
∏n

i=1 wi [
∏n

i=1 Li] is a shorthand forw1w2 · · ·wn

[L1L2 . . . Ln]. It has been argued (and well supported) [1] that well-behaved timedω-languages model exactly all the

real-time computations, so we henceforth assume this to be the case.

A real-time algorithmA consists in afinite control, internal storage, an input tapethat always contains a timed

ω-word, and anoutput tapecontaining symbols from some alphabet∆. The input tape has the same semantics as a

timedω-word. During any time unit,A may add at most one symbol to the output tape. The content of the output tape

of A working onw is denoted byO(A,w). There exists a designated symbolf ∈ ∆. A real-time algorithmA accepts

the timedω-languageL if, on any inputw, |O(A,w)|f = ω iff w ∈ L (where|x|a denotes as usual the number of

occurrences ofa in x). When a real-time algorithm is run in a multi-processor environment the finite state control is

understood to encompass all the processors and their interconnections. Similarly the internal storage is the ensemble

of all the storage available to individual processors. The input of the machine is the sequence of symbols from the

input tape, that are made available to the machine at moments in time determined by the associated time sequence.

Let w = (σ, τ) be some timedω-word. Fori0 = 0 and anyj > 0, let sj = σij−1+1σij−1+2 . . . σij , such that (a)

τij−1+1 = τij−1+2 = · · · = τij , and (b) τij+1 6= τij . Then, the size|w| of w is |w| = maxj>0 |sj | (the maximum

number of symbols arriving simultaneously). Given a total functionf : IN → IN, and some model of parallel

computationM , the class rt-PROCM (f) includes exactly all the well-behaved timedω-languagesL for which there

exists a real-time algorithm running onM that acceptsL and uses no more thanf(n) processors on any input of size

n. By convention, the class rt-PROCM (1) of sequential real-time algorithms is invariant withM .

Pursuit and evasion on a ring The languagesLk, k > 0, modeling thek-dimensional version of the pursuit and

evasion on a ring problem are developed in [3]. These languages are somehow a special case of real-time problems, as

their real time qualifier is given by the input that arrives in real time, whereas no explicit deadline is imposed on the

output. They also make for an interesting real-time computation as they form an infinite hierarchy with respect to the

number of processors used to accept them. We shall give here a rather brief overview of these languages, directing the

interested reader to [3].

Fix k, p > 0, r > 2p, r′ = kr. PutLo = {(σ, τ)|σ ∈ {a, b}r′ , τi = 0, 1 ≤ i ≤ r′}. Let INk = {enc(i)|1 ≤ i ≤
k}, whereenc is a suitable encoding function fromIN to {I}∗. DefineLt = {(uhuduc, τ) | uh ∈ INk, ud ∈ {+,−},
uc ∈ {a, b}j−1, τi = t for all 1 ≤ i ≤ |uhuduc|}. Let Lu =

∏
i>0 Lci, for a given constantc > 0.

For somew ∈ {a, b}r′ , let w = w(1)w(2) . . . w(k), |w(i)| = r, 1 ≤ i ≤ k (w(i) is a segmentof w), and let

u = uhuduc = detime(x) for somex ∈ Lt, as above. The wordu will be “inserted” intow at some positioni

and contains three components:uh gives the segment ofw in which the insertion takes place,ud specifies whether

3

the insertion happens to the left or to the right, anduc is the actual word to be inserted. Then the insertion has the

effect of replacing symbols to the left or to the right (depending whetherud is − or +) of index i in the specified

segment ofw with the content ofuc in a circular fashion. The result of the operation is a pair(w′, i′), wherew′

is the modifiedw andi′ is the index immediately following the last modified index inw. Denote this operation by

(w, i)⊗ u. For somew ∈ LoLu (w = w0
∏

i>0 wi, with w0 ∈ Lo, andwi ∈ Lci), and for somei0, 0 ≤ i0 ≤ r − 1,

let s(w, t) = fst((σ0, i0)
⊗

ci≤t σi), whereσi = detime(wi), i ≥ 0.

Let A be an algorithm that considerss(w, t)(j) and usesπ processors,π ≥ 1. A may inspect (i.e., read from

memory) the symbols stored at some indices ins(w, t)(j). Many processors may inspect different indices in parallel.

For each processorq, let ιqt be the most recent index inspected by processorq up to time t. If some processor

inspects no symbols froms(w, t)(j), thenιqt = −1. Let Iq
t be the “history” of inspected symbols up to timet, i.e.,

Iq
t =

⋃
t′≤t ιqt′ \ {−1}. Let lo = min1≤q≤π(ιqt), hi = max1≤q≤π(ιqt), andI =

⋃
1≤q≤π Iq

t . Then, we define

z(w(j), t) as follows: if lo = −1 thenz(w(j), t) = {i|0 ≤ i < r}; if lo 6= −1 and there existsj 6∈ I, j > hi or

j < lo thenz(w(j), t) = {i|0 ≤ i < r, i 6= lo}; otherwisez(w(j), t) = {i|lo ≤ i ≤ hi}; if, at time t, some processor

inspects an index outsides(w(j), t), thenιqt (j) = −1 andIq
t (j) = ∅. Finally, letz(w, t) =

⋃k
j=1 z(w(j), t), and call

z(w, t) the acceptable insertion zone at timet.

With z′i(w) the set of indices whose values are modified by the subwordwi ∈ Lci of w, Lk = {w ∈ LoLu| for

i > 0, z′i(w) ⊆ z′(w, ci), and there existst > 0 andi0, 0 ≤ i0 < r, s. t. |s′(w, t)|a = |s′(w, t)|b}.
In order to eliminate the ambiguity generated by the somehow generic notations used in [3], we shall denote

henceforthLk by PURSUITk, for anyk > 0.

2.2 Models with reconfigurable buses

Two main models with reconfigurable buses have been developed in the literature: thereconfigurable network(or RN

for short) [6] and thereconfigurable multiple bus machine(or RMBM) [7].

The reason for such a choice of computational model (with reconfigurable buses) is the fact that the concept of

reconfigurable buses is both powerful (our constructions do use the power of reconfiguration) and feasible [6, 7] at

the same time—indeed, similar constructs are already present in VLSI circuits [8]. Note that their directed variants

(defined below) are just as feasible, considering that the switches that connect buses to processors contain active

components anyway [6, 8].

The reconfigurable multiple bus machine An RMBM [9, 7] consists of a set ofp processorsandb buses. For each

processori and busb there exists aswitchcontrolled by processori. Using these switches, a processor has access to

the buses by being able to read or write from/to any bus. A processor may be able tosegmenta bus, obtaining thus two

independent, shorter buses, and it is allowed tofuseany number of buses together by using afuse lineperpendicular to

and intersecting all the buses. DRMBM, thedirectedvariant of RMBM, is identical to the undirected model, except

for the definition of fuse lines: Each processor features two fuse lines (downandup). Each of these fuse lines can

be electrically connected to any bus. Assume that, at some given moment, busesi1, i2, ..., ik are all connected to the

down [up] fuse line of some processor. Then, a signal placed on busij is transmitted in one time unit to all the buses

4

il such thatil ≥ ij [il ≤ ij].If some RMBM [DRMBM] is not allowed to segment buses, then this restricted variant is

denoted by F-RMBM [F-DRMBM] (for “fusing” RMBM/DRMBM). Thebus widthof some RMBM (DRMBM, etc.)

denotes the maximum size of a word that may be placed (and read) on (from) any bus in one computational step.

For CRCW (concurrent read, concurrent write; as opposed to CREW for concurrent read, exclusive write)

RMBMs, the most realistic conflict resolution rule is Collision, where two values simultaneously written on a bus

result in the placement of a special, “collision” value on that bus. We consider for completeness other conflict reso-

lution rules such as Common, Arbitrary, Priority, and Combining. However, we find that all of these rules are in fact

equivalent to the seemingly less powerful Collision rule (see Theorem 3.5(3)). We restrict only the Combining mode,

requiring that the combining operation be associative and computable in nondeterministic linear space.

An RMBM (DRMBM, F-DRMBM, etc.) familyR = (Rn)n≥1 is a set containing one RMBM (DRMBM, F-

DRMBM, etc.) construction for eachn > 0. A family R solves a problemP if, for any n, Rn solves all inputs for

P of sizen. We say that some RMBM familyR is auniform RMBM familyif there exists a Turing machineM that,

givenn, produces the description ofRn usingO(log(p(n)b(n))) cells on its working tape. We henceforth drop the

“uniform” qualifier, with the understanding that any RMBM family described in this paper is uniform. Assume that

some familyR = (Rn) solves a problemP , and that eachRn, n > 0, usesp(n) processors,b(n) buses, and has a

running timet(n). We say then thatP ∈ RMBM(p(n), b(n), t(n)) (or P ∈ F-DRMBM(p(n), b(n), t(n)), etc.), and

thatR hassize complexityp(n)b(n) andtime complexityt(n).

It should be noted that a directed RMBM can simulate a nondirected RMBM by simply keeping all the up and

down fuse lines synchronized with each other:

Observation 1 X Y RMBM(x(n), y(n), z(n)) ⊆ X Y DRMBM(x(n), y(n), z(n)) for anyx, y, z : IN → IN, X ∈
{CRCW,CREW}, andY ∈ {F-, ε}.

The reconfigurable network An RN [6] is a connected graph whose vertices are the processors and whose edges

represent fixed connections between processors. Each edge incident to a processor corresponds to a (bidirectional)

port of the processor. A processor can internally partition its ports such that all the ports in the same block of that

partition are electrically connected (or fused) together. Two or more edges that are connected together by a processor

that fuses some of its ports form a bus. DRN, thedirectedRN is similar to the general RN, except that the edges are

directed. The concept of (uniform) RN family is identical to the concept of RMBM family. The classRN(s(n), t(n))

[DRN(s(n), t(n))] is the set of problems solvable by RN [DRN] uniform families withs(n) processors (s(n) is also

called thesize complexity) andt(n) running time.

3 RMBM and NL computations

Lemma 3.1 GAP1,n ∈ CRCW F-DRMBM((n2 − n)/2, n, 2) with Collision resolution rule and bus width1.

Proof. The following RMBM algorithm is a variant of the algorithm that computes the shortest path in a directed

graph [10]. Denote each processor bypij , 1 ≤ i < j ≤ n, and letpij know the value of bothIij andIji, whereI is

5

the incidence matrix. The algorithm works as follows:(a) Eachpij , 1 ≤ i < j ≤ n directionally fuses busesi andj

iff Iij = True; simultaneously,pij fuses busesj andi iff Iji = True. (b) Then,p13 places a signal on bus1, andp12

listens to busn; p12 reports1 True if it receives some signal (the original or the collision one), andFalse otherwise.

It is easily proved by induction overn that, for anys, t, 1 ≤ s, t ≤ n, a signal placed on buss reaches bust iff vertex

t is accessible from vertexs. The content of the emitted signal is immaterial, so a bus width1 suffices. ¤
It is worth mentioning that the algorithm presented in [9] uses a CREW DRMBM (as opposed to the CRCW F-

DRMBM used in Lemma 3.1). Furthermore, this algorithm computes the shortest path between two vertices. There-

fore, it implicitly computesGAP1,n. This lets us conclude thatGAP1,n ∈ CREW DRMBM(2mn,n2, O(1)) (where

m is the number of edges in the given graph). However, in what follows, we will use the result based on the CRCW

F-DRMBM since, on one hand, it uses resources more efficiently, and, on the other hand, we believe that a Collision

conflict resolution rule is just as realistic as exclusive write.

Consider now some languageL ∈ NL. There exists a nondeterministic Turing machineM = (K, Σ, δ, s0) that

acceptsL and usesO(log n) working space. Without loss of generality, consider that the working (and input) alphabet

of M is Σ = {0, 1}. Let k be the number of states ofM , i.e., k = |K|. The transition function is denoted byδ,

δ : (K × Σ × Σ) → 2(K∪{h})×(Σ∪{L,R})×{L,R} (with h the halting state), and the initial state bys0. M accepts an

input stringx iff M halts onx. A configurationof M working on inputx is defined as a tuple(s, i, w, j), wheres

is the state,i andj are the positions of the heads on input and working tape, respectively, andw is the content of the

working tape. For two configurationsv1 andv2, we writev1 ` v2 iff v2 can be obtained by applyingδ exactly once

onv1.

The set of possible configurations ofM working onx forms a directed graphG(M,x) = (V,E) as follows:V

contains one vertex for each and every possible configuration ofM working onx, and(v1, v2) ∈ E iff v1 ` v2.

It is clear thatx ∈ L iff some configuration(h, ih, wh, jh) is accessible inG(M, x) from the initial configuration

(s0, i0, w0, j0). For any configuration(s, i, w, j), i can taken = |x| values; since|w| = O(log n), there are at

mostpoly(n) possible contents of the working tape. There are thuspoly(n) possible configurations ofM . For any

languageL ∈ NL and for anyx, determining whetherx ∈ L can be reduced to the problem of computingGAP1,|V |

for G(M,x) = (V,E), whereM is some nondeterministic, logarithmic space bounded Turing machine decidingL

(we consider without loss of generality that the initial state is represented by vertex1 and the final state by vertexn in

G(M, x)).

Lemma 3.2 LetM = (K, Σ, δ, s0) be anNL Turing machine that acceptsL ∈ NL. Then, given some wordx, |x| = n,

there exists aCREW or CRCW F-DRMBM algorithm that computesG(M, x) (as an incidence matrixI) in O(1)

time, and usingpoly(n) processors andpoly(n) buses of width1.

Proof. Put n′ = |V | (n′ = poly(n)). The RMBM algorithm uses(n + (n′2 − n′)/2) processors: The firstn

processorspi, 1 ≤ i ≤ n, containx, i.e., eachpi containsxi, thei-th symbol ofx; pi does nothing but writexi on

bus i. We shall refer to the remaining(n′2 − n′)/2 processors aspij , 1 ≤ i < j ≤ n′. Eachpij assembles first

1In fact, neitherp13 norp12 have any special characteristics, and any pair of distinct processors will do.

6

the configurations corresponding to verticesvi andvj of G(M, x) and then considers the potential edges(vi, vj) and

(vj , vi) corresponding toIij andIji, respectively. If such edge(s) exist,pij writesTrue to Iij and/orIji as appropriate,

andFalse otherwise. There is no interprocessor communication between processorspij , thus any RMBM model is

able to carry on this computation.

Clearly, given a configurationvi, pij can compute in constant time any configurationvl accessible in one step from

vi, as this implies the computation of at most a constant number (O(2k)) of configurations. The whole algorithm runs

thus in constant time. ¤
Some comments on the RMBM algorithm developed in the proof of Lemma 3.2 are in order. One can note that the

constant running time of this algorithm may be quite large (Θ(24(k+1)); furthermore it depends on the number of states

in the initial Turing machine). On the other hand, the subsequent use of Lemma 3.2 will emphasize the need for the

RMBM algorithm to be as fast as possible. Thus, even if theoretically sound, the dependency of the running time to the

number of states is not a desirable feature. However, given some nondeterministic Turing machineM = (K, Σ, δ, s0),

one can build using standard manipulation of states an equivalent Turing machineM ′ = (K ′, Σ′, δ′, s0) such that

|δ′(s)| ≤ 2 for any s ∈ K ′. One can now construct the algorithmA from Lemma 3.2 based onM ′ instead ofM .

Then, althoughG(M, x) may grow (still, |V | remainspoly(n)), the running time ofA is now upper bounded by a

very small constant, which no longer depends on the number of states ofM (or M ′ for that matter).

Lemma 3.3 NL ⊆ CRCW F-DRMBM(poly(n), poly(n), O(1)), with Collision resolution rule and bus width1.

Proof. Given some languageL ∈ NL, let M be anNL Turing machine acceptingL. For any inputx, the F-DRMBM

algorithm that acceptsL works as follows: Using Lemma 3.2, it obtains the graphG(M, x) of the configurations of

M working onx (by computing in effect the incidence matrixI corresponding toG(M,x)). Then, it applies the

algorithm from Lemma 3.1 in order to determine whether vertexn (halting state) is accessible from vertex1 (initial

state) inG(M, x), and accepts or rejectsx accordingly. In addition, note that the valuesIij andIji stored atpij after

the algorithm from Lemma 3.2 are in the right place as input forpij in the algorithm from Lemma 3.1. It is immediate

given the mentioned lemmas that the resulting algorithm acceptsL within the prescribed time and space bounds.¤
Conforming to Lemma 3.3, anyNL language can be accepted in constant time by a directed RMBM. In fact, the

relation between directed RMBMs andNL languages is even stronger:

Lemma 3.4 CRCW DRMBM(poly(n), poly(n), O(1)) ⊆ NL, for any write conflict resolution rule and any bus

width.

Proof. Consider someR ∈ CRCW DRMBM(poly(n), poly(n), O(1)) performing stepd of its computation(d ≤
O(1)). We need to find anNL Turing machineMd that generates the description ofR after stepd usingO(log n) space,

and thus [11] anNL Turing machineM ′
d that receivesn′ (the number of processors inR) and somei, 1 ≤ i ≤ n′, and

outputs the (O(log n) long) description for processori instead of the whole description. We establish the existence of

Md (and thusM ′
d) by induction overd, and thus we complete the proof; indeed, once we have the machinesMd, we

start withM0 (that receives the input of the algorithm) which in turn usesM ′
0 to generate (as detailed below) and run

repeatedlyM ′
1 and so on [11].

7

M0 exists by the definition of a uniform RMBM family. We assume the existence ofMd−1, M ′
d−1 and show how

Md is constructed. For each processorpi and each busk read bypi during stepd, Md performs (sequentially) the

following computation:Md maintains two wordsb andρ, initially empty. For everypj , 1 ≤ j ≤ poly(n), Md deter-

mines whetherpj writes on busk. This implies the computation ofGAPj,i (clearly computable in nondeterministic

O(log n) space since it isNL-complete [12]). The local configurations of fused and segmented buses at each processor

(i.e., the edges of the graph forGAPj,i) are obtained by calls toM ′
d−1. The computation ofGAPj,i is necessary

to ensure that we takepj into account even whenpj does not write directly to busk but instead to another bus that

reaches busk through fused buses.

If pj writes on busk, thenMd usesM ′
d−1 to determine the valuev written bypj , and updatesb andρ as follows:

(a) If b is empty, then it is set tov (pj is currently the only processor that writes to busk), andρ is set toj. Otherwise:

(b.1) If R uses the Collision resolution rule, the collision signal is placed inb. (b.2) When the Common rule is used,

Md comparesb andv. If they are different, the input is rejected.(b.3) If the conflict resolution rule is Priority,ρ and

j are compared; if the latter denotes a processor with a larger priority, thenb is set tov andρ is set toj, otherwise,

neitherb norρ are modified; the Arbitrary rule is handled similarly.(b.4) Finally, if R uses the Combining resolution

rule with◦ as combining operation,b is set to the result ofb ◦ v (since the operation◦ is associative, the final content

of b is indeed the correct combination of all the values written on busk).

Once the content of busk has been determined, the configuration ofpi is updated accordingly,b andρ are reset

to the empty word, and the same computation is performed for the next bus read bypi or for the next processor. The

whole computation ofMd clearly takesO(log n) space. ¤
Given Observation 1 and thatNL = DRN(poly(n), O(1)) [6], Lemmas 3.3 and 3.4 imply the following results:

Theorem 3.5 1. CRCW DRMBM(poly(n), poly(n), O(1)) = NL = CRCW F-DRMBM(poly(n), poly(n), O(1))

with Collision resolution rule and bus width1.

2. DRMBM(poly(n), poly(n), O(1)) = DRN(poly(n), O(1)).

3. For any problemP solvable in constant time by some (directed or nondirected) RMBM family usingpoly(n)

processors andpoly(n) buses,P ∈ CRCW F-DRMBM(poly(n), poly(n), O(1)) with Collision resolution

rule and bus width1.

Part of Theorem 3.5 is an expected result. Indeed, a similar result for DRNs exists [6], and it is known that

(nondirected) RNs are as powerful as (nondirected) RMBMs [7] (and the two models using polynomially bounded

resources solve in constant time exactly all the problems inL). It is thus expected that such properties hold for the

directed variants of the two models (this time combined with nondeterministic Turing machines, as formally shown in

Theorem 3.5). The other part of Theorem 3.5 on the other hand is very interesting: For constant time computations on

DRMBM, bus width does not matter; any problem can be solved using buses of width1. As is the case of (undirected)

RMBMs, it follows from Theorem 3.5(3) that segmenting buses does not add computational power over fusing buses,

and that the collision rule is the most powerful write conflict resolution method.

8

4 Small space computations are real-time

We have now all the necessary ingredients to state our main result linking real time with logarithmic space computa-

tions. First though, we have to make an additional assumption: We henceforth consider that the deadlines imposed

on real-time computations are reasonably large compared to the processor clock frequency, so that any deadline en-

compasses a constant (and small) number of processor cycles. For instance a processor operating at 1GHz will not

need to accommodate deadlines measured in single-digit nanoseconds (but will cope well with say 100 nanoseconds

deadlines). We believe that this is a reasonable assumption, for indeed we are not aware of any real-time application

that requires such exceedingly small deadlines. In addition, such an assumption is not even necessary throughout the

paper, but only for Theorem 4.1 and the subsequent Claim 1.

Note now that the potential existence of adeadlinecan be modeled as a well-behaved timedω-word [1] by

Wd = (σ, τ), with the following semantics: A special symbolν is present whenever the current time does not ex-

ceed the deadline; if the deadline passed, then the symbols that arrive as input are all another designated symbolχ.

If the computation is completed at a moment in which the input symbol isν, then it has met the associated deadline;

otherwise, the deadline has passed.

With this definition ofWd, we have the following relation linkingNL with real-time computations.

Theorem 4.1 Consider the timedω-word w = (σ, τ)Wd with Wd some timed word modeling a deadline,σ some

input for some problemP ∈ NL, andτ1 = τ2 = · · · = τ|σ|. Thenw ∈ rt-PROCCRCW F-DRMBM(poly(|σ|)) for any

w thus constructed.

Proof. We note that the size complexity of an RMBM withpoly(n) processors andpoly(n) buses ispoly(n). Then

all the processing implied by Theorem 3.5 takes constant time, and thus accommodates any reasonable time sequence

τ associated with the computation. ¤
The relation betweenNL and real-time computations can be informally stated as follows: Suppose we have an input

for a problem inNL. We impose some (any) deadline for this input, and we feed it to some machine. If that machine

happens to be a CRCW F-DRMBM, then it is able to produce the results while meeting the respective deadline.

In some sense, one may argue that the inclusion relation from Theorem 4.1 is in fact an equality, conforming

to Theorem 3.5. Indeed,NL computations arethe onlycomputations in the classical sense that can be performed

in constant time by DRMBMs, no matter how many processors and buses are used; thus, given any deadline (in

effect imposing a constant upper bound on the running time), no computation outsideNL can be successfully carried

out. However, there might exist real-time computations (for example, not exhibiting explicit deadlines and thus not

necessarily having constant time constraints) that are not inNL but can still be performed within the given resource

bounds. Indeed, one candidate for such computations can be the family of timedω-languagesPURSUITk, k ≥ 1,

presented in [3] and summarized in Section 2.1. We shall try to see what is the classical computation corresponding

to this problem.

In Theorem 4.1, weaddeddeadlines (that is, real-time constraints) to problems. We face now the reversed problem,

namely how can oneeliminatethe real-time qualifier from the specification of some problem. Analyzing the form of

9

the wordWd modeling deadlines offers the clue. Indeed, one can notice that, from some time on, the symbols from

Wd no longer represent the input. Instead, they consist of symbolsν andχ that model the timing constraints imposed

on the computation. Similarly, in a real-time problem for which the input is infinite, a prefix of that input represents

the same problem, except that in the case of such a prefix, the input “stops coming” at some time. This is the most

general restriction to a classical environment one can model, since the input is finite in such an environment.

Definition 4.1 Consider some well-behaved timedω-languageL; i > 0 is a progression pointfor (σ, τ) ∈ L iff 2

τi 6= τi+1. Let now Ls = {σ′| there exists some (finite) progression pointn s.t. (σ, τ) ∈ L andσ′ = σ1...n}
(each word inLs is constructed by taking a word fromL, restricting its length to a finiten, and discarding the time

sequence). IfLs ∈ C for some complexity classC, we say thatL ∈ C/rt. Ls solves the same problem asL, but

without real-time constraints; we thus say thatL is thereal-time counterpartof Ls, or Ls is thestatic versionof L.

Note in passing that Definition 4.1 not only allows us to study the pursuit problem in the context of Theorem 4.1,

but it offers a more concise formulation of Theorem 4.1 itself:

Theorem 4.2 NL/rt ⊆ rt-PROCCRCW F-DRMBM(poly(n)).

We now show that pursuing something is easy outside the real-time paradigm:

Theorem 4.3 For anyk > 0, PURSUITk ∈ L/rt.

Proof. A word ws, |ws| = n, in the static version ofPURSUITk contains:(a) an initial wordw0 ∈ {a, b}r, r ≤ n (the

initial configuration), and(b) m moves by the pursuee (denoted bywi ∈ Lci, 1 ≤ i ≤ m; each such a move changes

a maximum ofp < r symbols fromw0).

Let M be a deterministic Turing machine accepting the static version ofPURSUITk. M keeps two countersCa

andCb, one fora’s and the other forb’s. As w0 is scanned, the two counters are incremented accordingly. Once the

end ofw0 is reached,M performs the following step for eachwi, 1 ≤ i ≤ m: M identifies that portion ofw0 which is

changed bywi. Then,M scans this portion, decrementingCa or Cb for eacha or b it encounters. Finally,M identifies

that portion ofwi that changesw0 and scans it, incrementingCa and/orCb accordingly. At the end of stepm of such

a computation,Ca andCb contain precisely the number ofa’s andb’s that are present inw0 as it is changed by all

wi. When the end of the input is reached,M comparesCa andCb and accepts the input iff they are identical. All the

counters (Ca, Cb, two more pair of counters needed to delimit the currentwi and the portion of interest inw0) clearly

takeO(log n) space. Manipulating these counters involves simple arithmetic operations on indices (that is, numbers

bounded above byn), hence they are computable inL. The space required by the whole computation isO(log n). ¤
Theorem 4.3 is an interesting result: even ifPURSUITk requires a lot of computational effort (in particular, it

cannot be solved at all if less than2k processors are available [3]), it becomes a very simple problem (not only inNL,

but even inL) once the real-time constraints are eliminated. Thus, Theorem 4.3 justifies the following conjecture:

Claim 1 NL/rt = rt-PROCCRCW F-DRMBM(poly(n)).
2One does not want to split a bunch of symbols arriving at the same time, since such a bunch often represents a nondivisible piece of the input. . .

10

algorithm GREEDYMAX (E, ind; sg)
1. let(e1, e2, . . . , en) be an ordering

of E with c(ei) ≥ c(ei+1)
2. sg ← ∅
3. for i← 1 . . . n do
3.1. if ind(sg ∪ {ei}) then

sg ← sg ∪ {ei}

algorithm PARALLEL GREEDYMAX (E, ind; sg)
1. sortE, obtaining(e1, e2, . . . , en)

s.t. c(ei) ≥ c(ei+1)
2. sg ← ∅; r0 ← 0
3. for i← 1 . . . n do in parallel
3.1. ri ← ur{e1, e2, . . . , ei}
3.2. if ri−1 < ri then sg ← sg ∪ {ei}

(a) (b)

Figure 1: Greedy algorithms for maximization problems.

5 Independence systems and real-time computation

We focus our attention now to optimization problems. In this context, we identify the class of such problems that can

be computed in parallel real time. Based on this identification, we extend previous results [4].

S ⊆ 2E is a set (offeasible solutions) with elements from a finite setE. A mappingc : E → IR is defined, and

then extended toc : S → IR, c(s) =
∑

i∈s c(i). Consider theoptimization (maximization) problemoverS of finding

max{c(s)|s ∈ S}. Without loss of generality letc(i) ≥ 0, for all i ∈ E. The set of optimal solutions to the problem

is thus not changed if one replacesS by its hereditaryclosureS∗ defined asS∗ = S ∪ {s|s ⊆ s′, s′ ∈ S}. (E,S∗)

is anindependence system. The (algorithmic) input for a search problem can be considered in multiple ways [13]. In

particular, the setS can be quite large and is thus impractical to give explicitly as input; so we consider instead that

the input for a search problem is the setE (together with the associated weights), plus an “independence oracle”ind

such thatind(s) = true iff s ∈ S. The transition from an optimization problem to an equivalent language is standard

[11], so we say by abuse of notation that a certain optimization problem is or is not inNL.

Definition 5.1 [14] Let E be a finite set andS ⊆ 2E , such thatS has themonotonicity property: s1 ⊆ s2 ∈ S ⇒
s1 ∈ S. Then,(E, S) is anindependence system, and members ofS are said to beindependent.

Let (E, S) be an independence system. For eachF ⊆ E, the lower rank lr(F) [upper rankur(F)] of F (with

respect toS) is defined as the cardinality of the smallest [largest] maximal independent subsets ofF : lr(F) =

min{|s||s ∈ S; s ⊆ F ands ∪ {e} 6∈ S for all e ∈ F \ {s}}; ur(F) = max{|s||s ∈ S; s ⊆ F}.
An independence system(E, S) is called amatroid if, for any F ⊆ E, it holds thatlr(F) = ur(F).

A greedy algorithmfor maximization problems on general independence systems [14] is given in Fig. 1(a). The

algorithm contains one statement which depends on the actual independence system being considered (the condition

on line 3.1).

Let (E,S) be an arbitrary independence system, and consider a maximization problem withsg the solution

returned byGREEDYMAX , and s∗ the optimal solution. Then [14] for any weight functionc : E → IR+,

minF⊆E
lr(F)
ur(F) ≤

c(sg)
c(s∗) ≤ 1. It follows that algorithmGREEDYMAX on a matroid(E, S) yields the optimal so-

lution for a maximization problem for all objective functionsc : E → IR+.

11

5.1 A real-time perspective

To put the definition of matroids in another way [15, 11], matroids are independence systems with the additional

property that all the maximal independent subsets have the same size (therefore, sincec(i) ≥ 0, 1 ≤ i ≤ n, the greedy

algorithm obtains the optimal solution). In light of this formulation, the parallel implementation ofGREEDYMAX ,

shown in Fig. 1(b), is immediate [11]. The algorithm uses arank oracle: The functionur{e1, e2, . . . , ei} introduced

by Definition 5.1 and used at step 3.2 gives the size of some (hence, whenever(E, S) is a matroid, any) maximal

independent set over{e1, e2, . . . , ei}.

Lemma 5.1 Supposeur{e1, e2, . . . , ei} ∈ DRMBM(poly(i), poly(i), t(i)) (i.e., ur{e1, e2, . . . , ei} can be com-

puted by a DRMBM in timet(i) using a polynomially bounded number of processors and buses). Then,

PARALLEL GREEDYMAX ∈ DRMBM(poly(n), poly(n), O(t(n))).

In particular, if t(i) = O(1), thenPARALLEL GREEDYMAX ∈ DRMBM(poly(n), poly(n), O(1)).

Proof. The initial sorting (step 1) can be achieved in constant time on a DRMBM with polynomially bounded

resources [16] and thus in constant time on a DRMBM usingpoly(n) processors and buses by Theorem 3.5(3).

Steps 2 and 3.2 are trivially computable in constant time with polynomially bounded resources. Each of the

calls to ur in step 3.1 can be performed int(n) time by usingn independent copies of the RMBM computing

ur. Finally, each of then RMBMs communicate with one other processor. Thesen new processors implement

step 3.2 and report the result. Since both the argument ofur and the result returned by this function are poly-

nomial in size,poly(n) buses suffice for such a communication. All the resources are polynomially bounded,

and thusPARALLEL GREEDYMAX ∈ DRMBM(poly(n), poly(n), O(t(n))), as desired. It is then immediate that

PARALLEL GREEDYMAX ∈ DRMBM(poly(n), poly(n), O(1)) if t(i) = O(1). ¤

Lemma 5.2 Let (E, S) be some independence system,E = {e1, e2, . . . , en}, and letA be an algorithm solving a

maximization problem over(E,S). Denote bytA(n) [tur(n)] the running time ofA [the time required to compute

ur(E)] on a DRMBM using a polynomially bounded number of processors and buses. Then,tur(n) is a lower bound

for tA(n).

Proof. Let s∗ = {s1, s2, . . . , sk} be the solution computed byA. Sinces∗ is an optimal solution, it follows that

ur(E) = k. Givens∗, k can be computed in constant time on a DRMBM: Assume without loss of generality that

the elements ofs∗ are stored in the registers ofn processorspi, 1 ≤ i ≤ n, such that exactlyk processors hold

one element froms∗ each. Then, each processorpi sets a designated registervi such thatvi = 1 if pi holds a value

from s∗ andvi = 0 otherwise. Then, a prefix sum overvi, 1 ≤ i ≤ n, computesk. It follows that |s∗| (and thus

ur(E)) can be computed in constant time givens∗, since prefix sum takes constant time on RMBM [9]. Therefore,

tur(n) = O(tA(n)) (or tA(n) = Ω(tur(n))), as desired. ¤

Theorem 5.3 Let M be the class of maximization problems that can be described as a matroid and for which

ur ∈ DRMBM(poly(i), poly(i), O(1)). Let P be some maximization problem over some independence sys-

12

tem (E,S). Then P ∈ M iff P ∈ DRMBM(poly(n), poly(n), O(1)) (equivalent in turn toP ∈ NL and

{P}/rt ⊆ rt-PROCCRCW F-DRMBM(poly(n)))

Proof. In light of Lemmas 5.1 and 5.2 the only thing that needs further consideration is showing thatP ∈
DRMBM(poly(n), poly(n), O(1)) implies that(E, S) is a matroid. This is however a direct consequence of the

lower bounds on optimization problems over independence systems that are not matroids [11, 13], which place these

problems outsideNL (and thus outsideDRMBM(poly(n), poly(n), O(1))). ¤
By Theorem 5.3 we have precisely identified—among those optimization problems that can be expressed as in-

dependence systems—the class of such problems solvable in parallel real time. We believe that this result may be

of interest for at least two reasons: On one hand, consider those independence systems—or problems that can be

formulated as such—not inM (with M as defined in Theorem 5.3). For these problems, finding an exact solution in

real time is asymptotically impossible, even if a parallel machine is available (in the sense that the running time of any

(poly(n)-processor) algorithm solving such a problem exceeds for large enough input size any (implicit or explicit)

constant deadline). In such a case, one should probably look for either further restricting the problem (in order to

bring it withinM), or find a reasonable approximation algorithm that is inNL. On the other hand, Theorem 5.3 easily

extends previous results, as we shall show in what follows.

5.2 Beyond speedup, revisited

The problem of computing theminimum-weight spanning tree(MST) of a connected, undirected, and weighted graph

in real time is investigated in [4], where it is shown that the best approximate solution to the MST problem returned

by a sequential algorithm can be arbitrarily worse than the solution obtained by a parallel algorithm (which actually

returns the optimal solution). We shall not, however restrict ourselves to connected graphs, since the extension to

unconnected ones (when the tree becomes a forest) is immediate.

MST can be trivially transformed into a maximization problem: just negate all the edge weights and add to every

weight the absolute value of the maximum weight. It is also immediate that the MST problem can be expressed as a

matroid [15]. Thus, using Theorem 5.3 we can both tighten and extend the result from [4].

For one thing, the result in [4] is not tight: Time up tonε, for some0 < ε < 1, is allowed for each (parallel

or sequential) real-time computation leading to the result. This running time asymptotically exceeds any (however

large) constant deadline imposed to the computation by some real-time environment, so the settings used in [4] are

too permissive for our environment. Fortunately, we are able to obtain precisely the same result for true real-time

computations. Indeed, we show in what follows that, for any real-time environment one can encounter, a parallel

algorithm can solve MST arbitrarily better than a sequential one. That is, while the parallel implementation is able to

return an optimal solution, even an optimal sequential algorithm can only report an approximate result in the limited

time which is available due to the real-time constraints. This result, an immediate consequence of Theorem 5.3, is

given in Lemma 5.4 below.

Lemma 5.4 Let MST denote the problem of computing the minimum-weight spanning forest on undirected and

weighted graphs. Then,MST ∈ DRMBM(poly(n), poly(n), O(1)) (and thusMST ∈ NL, {MST}/rt ⊆

13

rt-PROCCRCW F-DRMBM(poly(n))), and the best approximate solution to any problem from{MST}/rt returned by a

sequential algorithm is arbitrarily worse than the solution obtained by a parallel RMBM algorithm with polynomially

bounded resources.

Proof. Function ur for MST can be computed in logarithmic space (and thus in real-time on RMBM):

ur{e1, e2, . . . , ei} is simply i minus the number of connected components in the graph induced by{e1, e2, . . . , ei},
and can thus be computed by performing a reflexive and transitive closure (which is anNL-complete problem [12]).

By Theorem 5.3, it follows that MST can be computedexactlyin real time on an RMBM, no matter how tight the

deadlines are. However [4], an optimal sequential algorithm solving the same problem has a running time that cannot

accommodate even the most generous deadline, and thus a sequential algorithm to some real time variant of MST can

only guesssomesolution; the guess can be arbitrarily bad. ¤
In fact, the second part of the proof of Lemma 5.4 also proves that this type of behavior (namely a parallel algorithm

being able to compute an arbitrarily better solution than the optimal sequential one) is not an exclusive feature of the

MST problem, but it applies to many more real-time computations instead. Indeed, the proof of Lemma 5.4 requires

thatur is NL (clearly applicable to the whole classM), that the underlying independence system is a matroid (ditto),

plus the result from [4] (which immediately holds for any problem that does not admit a sequential algorithm with

constant running time [4]; however no optimization problem can be solved in constant sequential time since at the

very least the weights of all the elements ofE need to be inspected). Therefore:

Corollary 5.5 WithM as in Theorem 5.3 and for anyP ∈M, the best approximate solution to a problem in{P}/rt

returned by a sequential algorithm is arbitrarily worse than the solution obtained by a parallel RMBM algorithm with

polynomially bounded resources.

In other words, the results from [4] do hold even for the tightest real time environment. In addition, these results

are not applicable only to the MST, but to a whole class of problems instead, namelyM from Theorem 5.3. That is,

there exists not only a problem, but a whole family of them for which a parallel implementation can do something

other than speeding up computation, namely improve the offered solution.

6 Conclusions

We addressed previously a number of questions associated with real-time computations featuring implicit deadlines

[3]. In this paper, we focused our attention on computations with explicit deadlines. Given any language inNL,

we showed in Theorem 4.1 that such a language can be accepted by a parallel machine with polynomially bounded

resources, in the presence ofany(i.e., however tight) real-time constraints.

According to Theorem 4.3, even a language likePURSUITk, whose acceptance requires considerable computational

effort, can be accepted in logarithmic space once the real-time constraints are dropped. This allows us to state Claim 1,

which offers a nice counterpart of the parallel computation thesis [11]. In this thesis, NC is conjectured to contain

exactly all the computations that admit efficient parallel implementations; by contrast, we conjecture thatNL contains

exactly all the computations that admit efficient real-time parallel implementations.

14

As well, we considered the class of maximization problems over independence systems, showing that a problem

pertaining to this class is solvable in real time iff it is a matroid and the size of an optimal solution is computable in

real-time. Given this result, we showed that there exists not only a problem but a whole family of them for which

a parallel implementation can do something other than speeding up computation, namely unboundedly improve the

offered solution.

In light of Claim 1, the following research direction becomes useful: Which are those problems that, although

possibly not solvable in the real-time environment imposed by some real-time application, admit “good” approximate

solutions provably achievable in any real-time environment? Do they form a well-defined complexity class? If so,

which are the problems pertaining to such a class? This paper offers a solid basis for the pursuit of this direction, since

we identify here a class of candidates for approximating algorithms. In addition, this class of candidates is eitherNL or

F-DRMBM(poly(n),poly(n),O(1)), whichever is more natural for the given problem, since they are in fact identical

as shown by Theorem 3.5.

We also determined the computational power of DRMBM running in constant time. We showed that DRMBM

and DRN with constant running time have the same computational power. In addition, we showed that no conflict res-

olution rule is more powerful than Collision. According to this result, the discussion regarding the practical feasibility

of rules like Priority or Combining on spatially distributed resources such as a buses is no longer of interest. Indeed,

such rules are not only of questionable feasibility, but not necessary too. Finally, we identified a gap in the complexity

hierarchy of RMBM computations as well: As far as constant time computations are concerned, there is no need for a

large bus width; instead, buses composed of single wires are sufficient.

Another interesting open problem naturally arises from the characterization described in the above paragraph: does

a form of Theorem 3.5(3) hold for other models of parallel computations? On one hand, we showed that unrealistic

rules like Priority and Combining do not add computational power. However, this result is obtained for the restricted

class of DRMBMs running in constant time. Thus, we wonder whether such a result holds for(a) DRMBMs in

general, not only those with constant running time, and(b) for other models of parallel computation (RN, PRAM,

etc.). On the other hand, we wonder whether the bus width can be bounded for DRNs running in constant time as it

has been bounded in the case of DRMBMs. In other words, can the bus width in a DRN be bounded by a constant?

Acknowledgement

This research was supported by the Natural Sciences and Engineering Research Council of Canada.

References

[1] Stefan D. Bruda and Selim G. Akl. Real-time computation: A formal definition and its applications.International

Journal of Computers and Applications, 25(4):247–257, 2003.

[2] Hisao Yamada. Real-time computation and recursive functions not real-time computable.IRE Transactions on

Electronic Computers, EC-11:753–760, 1962.

15

[3] Stefan D. Bruda and Selim G. Akl. Pursuit and evasion on a ring: An infinite hierarchy for parallel real-time

systems.Theory of Computing Systems, 34(6):565–576, 2001.

[4] Selim G. Akl and Stefan D. Bruda. Parallel real-time optimization: Beyond speedup.Parallel Processing Letters,

9:499–509, 1999.

[5] Eric Allender, Michael C. Loui, and Kenneth W. Regan. Complexity classes. In Mikhail J. Atallah, editor,

Algorithms and Theory of Computation Handbook, pages 27–1–27–23. CRC Press LLC, 1999.

[6] Y. Ben-Asher, K.-J. Lange, D. Peleg, and A. Schuster. The complexity of reconfiguring network models.Infor-

mation and Computation, 121:41–58, 1995.

[7] Jerry L. Trahan, Ramachandran Vaidyanathan, and Ratnapuri K. Thiruchelvan. On the power of segmenting and

fusing buses.Journal of Parallel and Distributed Computing, 34:82–94, 1996.

[8] J. P. Gray and T. A. Kean. Configurable hardware: A new paradigm for computation. In C. L. Seitz, editor,

Proceedings of the Tenth Carltech Conference on VLSI, pages 279–295, Cambridge, MA, March 1989. MIT

Press.

[9] Jerry L. Trahan, Ramachandran Vaidyanathan, and Chittur P. Subbaraman. Constant time graph algorithms on

the reconfigurable multiple bus machine.Journal of Parallel and Distributed Computing, 46:1–14, 1997.

[10] Naya Nagy. The maximum flow problem: A real-time approach. Master’s thesis, Department of Computing and

Information Science, Queen’s University, January 2001.

[11] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzo.Limits to Parallel Computation: P-Completeness

Theory. Oxford University Press, New York, NY, 1995.

[12] Andrzej Szepietowski.Turing Machines with Sublogarithmic Space. Springer Lecture Notes in Computer Sci-

ence 843, 1994.

[13] R. M. Karp, E. Upfal, and A. Wigderson. Are search and decision programs computationally equivalent? In

Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, pages 464–475. ACM Press,

December 1985.

[14] Ravi Kannan and Bernhard Korte. Approximative combinatorial algorithms. In Richard W. Cottle, Milton L. Kel-

manson, and Bernard Korte, editors,Mathematical Programming, pages 195–248. Elsevier Science Publishers,

Amsterdam, The Nederlands, 1981.

[15] Thomas H. Cormen, Charles E. Leiserson, and Clifford Stein.Introduction to Algorithms. MIT press, Cambridge,

MA, 2 edition, 2001.

[16] Selim G. Akl. Parallel Computation: Models and Methods. Prentice-Hall, Upper Saddle River, NJ, 1997.

16

