
6 Preorder Relations
∗

Stefan D. Bruda

Department of Computer Science
Bishop’s University
Lennoxville, Quebec J1M 1Z7, Canada
Email: bruda@cs.ubishops.ca

6.1 Introduction

The usefulness of formalisms for the description and the analysis of reactive systems
is closely related to the underlying notion of behavioral equivalence. Such an equiva-
lence should formally identify behaviors that are informally indistinguishable from each
other, and at the same time distinguish between behaviors that are informally different.

One way of determining behavioral equivalences is by observing the systems we
are interesting in, experimenting on them, and drawing conclusions about the behavior
of such systems based on what we see. We refer to this activity as testing. We then
consider a set of relevant observers (or tests) that interact with our systems; the tests
are carried out by human or by machine, in many different ways (i.e., by using various
means of interaction with the system being tested).

In this context, we may be interested in finding out whether two systems are equiva-
lent; for indeed two equivalent (sub)systems can then be replaced with each other with-
out affecting the overall functionality, and we may also want to compare the specifica-
tion of a system with its implementation to determine whether we actually implemented
what we wanted to implement. We could then create an equivalence relation between
systems, as follows: two systems are equivalent (with respect to the given tests) if they
pass exactly the same set of tests. Such an equivalence can be further broken down into
preorder relations on systems, i.e., relations that are reflexive and transitive (though
not necessarily symmetric).

Preorders are in general easier to deal with, and one can reconstruct an equivalence
relation by studying the preorder that generates it. Preorders are also more convenient—
indeed, more meaningful—than equivalences in comparing specifications and their im-
plementation: If two systems are found to be in a preorder relation with each other, then
one is the implementation of the other, in the sense that the implementation is able to
perform the same actions upon its computational environment as the other system (by
contrast with equivalences the implementation may be now able to perform more ac-
tions, but this is immaterial as far as the capacity to implement is concerned). Preorders
can thus be practically interpreted as implementation relations.

Recall from the first paragraph that we are interested in a formal approach to systems
and their preorders. We are thus not interested how this system is built, whether by
system we mean a reactive program or a protocol, they are all representable from a

∗
This work was supported by the Natural Sciences and Engineering Research Council of
Canada, and by the Fond québécois de recherche sur la nature et les technologies.

134 Stefan D. Bruda January 12, 2005

behavioral point of view by a common model. We shall refer to the behavior of a system
as a process, and we start this chapter by offering a formal definition for the notion of
process.

Depending on the degree of interaction with processes that we consider allowable,
many preorder relations can be defined, and many have been indeed defined. In this
chapter we survey the most prominent preorder relations over processes that have been
developed over time. We leave the task of actually using these preorders to subsequent
chapters.

Preorders are not created equal. Different preorders are given by varying the ability
of our tests to examine the processes we are interested in. For example we may restrict
our tests and only allow them to observe the processes, but we may also allow our tests
to interact with the process being observed in some other ways. By determining the
abilities of the tests we establish a testing scenario, under the form of a set of tests. By
varying the testing scenario—i. e., the capabilities of tests to extract information about
the process being tested—we end up with different preorders. We start with a generic
testing scenario, and then we vary it and get a whole bunch of preorders in return.

It is evident that one testing scenario could be able to extract more information about
processes (and thus to differentiate more between them). It is however not necessarily
true that more differentiation between processes is better, simply because for some par-
ticular application a higher degree of differentiation may be useless. It is also possible
that one testing scenario may be harder to implement1 than another. In our discussion
about various testing scenarios and their associated preorders we shall always keep in
mind these practical considerations, and compare the preorders in terms of how much
differentiation they make between processes, but also in terms of the practical realiza-
tion of the associated testing scenario. In other words, we keep wondering how difficult
is to convince the process being tested to provide the information or perform the actions
required by the testing scenario we have in mind. For instance, it is arguably harder to
block possible future action of the process under test (as we need to do in the testing
scenario inducing the refusal preorder and presented in Section 6.6 on page 152) than to
merely observe the process and write down the actions that have been performed (as is
the case with the testing scenario inducing trace preorders presented in Section 6.3 on
page 142). The increase in differentiation power of refusal preorder over trace preorder
comes thus at a cost which may or may not be acceptable in practice.

One reason for which practical considerations are of interest is that preorders are a
key element in conformance testing [Tre94]. In such a framework we are given a for-
mal specification and a possible implementation. The implementation is treated as a
black box (perhaps somebody else wrote a poorly commented piece of code) exhibiting
some external behavior. The goal is then to determine by means of testing whether the
implementation implements correctly the specification. Such a goal induces naturally
an implementation relation, or a preorder. Informally, the practical use of a preorder
relation v consists then in the algorithmic problem of determining whether s v i for

1 Implementing a testing scenario means implementing the means of interaction between a pro-
cess and a test within the scenario. Implementing a preorder then means implementing an algo-
rithm that takes two processes and determines whether they are in the given preorder relation
or not by applying tests from the associated testing scenario.

6 Preorder Relations 135

two processes i (the implementation) and s (the specification) by means of applying on
the two processes tests taken from the testing scenario associated with v. If the relation
holds then i implements (or conforms to) s (according to the respective testing sce-
nario). The formal introduction of conformance testing is left to the end of this chapter,
namely to Section 6.9 on page 159 to which we direct the interested reader for details.
For now we get busy with defining preorders and analyzing their properties.

Where we go from here We present in the next section the necessary preliminaries re-
lated to process representation and testing (including a first preorder to compare things
with). Sections 6.3 to 6.8 are then the main matter of this chapter; we survey here the
most prominent preorders and we compare them with each other. We also include a
presentation of conformance testing in Section 6.9.

6.1.1 Notations and Conventions

It is often the case that our definitions of various sets (and specifically inductive defi-
nitions) should feature a final item containing a statement along the line that “nothing
else than the above constructions belong to the set being defined.” We consider that the
presence of such an item is understood and we shall not repeat it over and over. “Iff”
stands for “if and only if.” We denote the empty string, and only the empty string by ε.

We present a number of concepts throughout this chapter based on one particular
paper [vG01] without citing it all the time, in order to avoid tiresome repetitions.

Many figures show processes that are compared throughout the paper using various
preorders. We show parenthetically in the captions of such figures the most relevant
relations established between the depicted processes. Parts of these parenthetical re-
marks do not make sense when the figures are first encountered, but they will reveal
themselves as the reader progresses through the chapter.

6.2 Process Representation and Testing

Many formal descriptions for processes have been developed in the past, most no-
tably under the form of process algebraic languages such as CCS [Mil80] and LOTOS
[BB87]. The underlying semantics of all these descriptions can be described by labeled
transition systems. We will use in what follows the labeled transition system as our se-
mantical model (feeling free to borrow concepts from other formalisms whenever they
simplify the presentation).

Our model is a slight variation of the model presented in Appendix 22 in that we
need a notion of divergence for processes, and we introduce the concept of derived
transition system; in addition, we enrich the terminology in order to blend the semantic
model into the bigger picture on an intuitive level. For these reasons we also offer here a
short presentation of labeled transition systems [vG01, Abr87]. Our presentation should
be considered a complement to, rather than a replacement for Appendix 22.

136 Stefan D. Bruda January 12, 2005

6.2.1 Processes, States, and Labeled Transition Systems

Processes are capable of performing actions from a given, countable set Act. By action
we mean any activity that is a conceptual entity at a given, arbitrary level of abstraction;
we do not differentiate between, say input actions and output actions. Different activities
that are indistinguishable on the chosen level of abstraction are considered occurrences
of the same action.

What action is taken by a process depends on the state of the process. We denote
the countable set of states by Q. A process goes from a state to another by performing
an action. The behavior of the process is thus given by the transition relation −→ ⊆
Q × Act ×Q.

Sometimes a process may go from a state to another by performing an internal
action, independent of the environment. We denote such an action by τ, where τ < Act.

The existence of partially defined states stem from (and facilitate) the semantic of
sequential computations (where Ω is often used to denote a partial program whose be-
havior is totally undefined). The existence of such states is also useful for reactive pro-
grams. They are thus introduced by a divergence predicate ↑ ranging over Q and used
henceforth in postfix notation; a state p for which p ↑ holds is a “partial state,” in the
sense that its properties are undefined; we say that such a state diverges (is divergent,
etc.). The opposite property (that a state converges) is denoted by the postfix operator
↓.

Note that divergence (and thus convergence) is a property that is inherent to the
state; in particular, it does not have any relation whatsoever with the actions that may
be performed from the given state. Consider for example state x from Figure 6.4 on
page 145 (where states are depicted by nodes, and the relation −→ is represented by
arrows between nodes, labeled with actions). It just happens that x features no outgo-
ing actions, but this does not make it divergent (though it may be divergent depending
on the definition of the predicate ↑ for the respective labeled transition system). Di-
vergent states stand intuitively for some form of error condition in the state itself, and
encountering a divergent state during testing is a sure sign of failure for that test.

To summarize all of the above, we offer the following definition:

Definition 6.1. A labeled transition system with divergence (simply labeled transi-
tion system henceforth in this chapter) is a tuple (Q,Act ∪ {τ}, −→ , ↑), where Q is a
countable set of states, Act is a countable set of (atomic) actions, −→ is the transition
relation, −→ ⊆ Q × (Act ∪ {τ}) × Q, and ↑ is the divergence predicate. By τ we denote
an internal action, τ < Act.

For some state p ∈ Q we write p ↓ iff ¬ (p ↑). Whenever (q , a , p) ∈ −→ we write
p a−−→ q (to be read “p offers a and after executing a becomes q”). We further extend
this notation to the reflexive and transitive closure of −→ as follows: p ε−−→ p for any
p ∈ Q; and p σ−−→ q , with σ ∈ Q∗, iff σ = σ1σ2 and there exists q ′ ∈ Q such that
p σ1−−−→ q ′ σ2−−−→ q . ut

We use the notation p σ−−→ as a shorthand for “there exists q ∈ Q such that p σ−−→ q ,”
and the notation −−→/ as the negation of −→ (p

a−−−→/ q iff it is not the case that p a−−→ q ,
etc.).

6 Preorder Relations 137

Assume now that we are given a labeled transition system. The internal action τ is
unobservable. In order to formalize this unobservability, we define an associated derived
transition system in which we hide all the internal actions; the transition relation ⇒ of
such a system ignores the actions τ performed by the system. Formally, we have:

Definition 6.2. Given a transition system B = (Q,Act∪ {τ}, −→ , ↑B), its derived tran-
sition system is a tuple D = (Q,Act ∪ {ε}, ⇒ , ↑), where ⇒ ⊆ Q × (Act ∪ {ε}) × Q
and is defined by the following relations:

p
a⇒ q iff p τ∗a−−−→ q

p
ε⇒ q iff p τ∗−−→ q

The divergence predicate is defined as follows: p ↑ iff there exists q such that q ↑B and

p
ε⇒ q , or there exists a sequence (pi)i≥0, such that p0 = p and for any i > 0 it holds

that pi
τ−−→ pi+1. ut

In passing, note that we deviate slightly in Definition 6.2 from the usual definition of

⇒ (p
a⇒ q iff p τ∗aτ∗−−−−−→ q , see Appendix 22), as this allows for a clearer presentation.

Also note that a state can diverge in two ways in a derived transition system: it can
either perform a number of internal actions and end up in a state that diverges in the
associated labeled transition system, or evolve perpetually into new states by perform-
ing internal actions. Therefore this definition does not make distinction between dead-
lock (first case) and livelock (second variant). We shall discuss in subsequent sections
whether such a lack of distinction is a good or a bad thing, and we shall distinguish
between these variants using the original labeled transition system (since the derived
system is unable to make the distinction).

It is worth emphasizing once more (this time using an example) that the definition
of divergence in a derived transition system is different from the correspondent defini-
tion in a labeled transition system. Indeed, consider state y from Figure 6.6 on page 147
(again, states are depicted by nodes, and the relation −→ is represented by arrows be-
tween nodes, labeled with actions). It may be the case that y is a nice, convergent state
in the respective labeled transition system (i.e., y ↓B). Still, it is obviously the case that
y ↑ in the derived transition system (we refer to this as “y may diverge” instead of “y
diverges,” given that y may decide at some time to perform action b and get out of the
loop of internal actions).

Again, we shall use in what follows natural extensions of the relation ⇒ such as

p
a⇒ and ; . We also use by abuse of notation the same operator for the reflexive

and transitive closure of ⇒ (in the same way as we did for −→).
A transition system gives a description of the actions that can be performed by a

process depending on the state that process is in. A process does in addition start from
an initial state. In other words, a process is fully described by a transition system and
an initial state. In most cases we find it convenient to fix a global transition system for
all the processes under consideration. In this setting, a process is then uniquely defined
by its initial state. We shall then blur the distinction between a process and a state, often
referring to “the process p ∈ Q.”

Finally, a process can be represented as a tree in a natural way: Tree nodes represent
states. The root node is the initial state. The edges of the tree will be labeled by actions,

138 Stefan D. Bruda January 12, 2005

a c

b c

b c

b c

b . . .

(a)

a

b

c

(b)

Fig. 6.1. Representation of infinite process trees: an infinite tree (a), and its graph representation
(b).

and there exists an edge between nodes p and q labeled with a iff it holds that p a−−→ q in

the given transition system (or that p
a⇒ q if we talk about a derived transition system).

We shall not make use of this representation except when we want to represent a process
(or part thereof) graphically for illustration purposes. Sometimes we find convenient to
“abbreviate” tree representation by drawing a graph rather than a tree when we want
to represent infinite trees with states whose behavior repeats over and over (in which
case we join those states in a loop). The reader should keep in mind that this is just a
convenient representation, and that in fact she is in front of a finite representation of an
infinite tree. As an example, Figure 6.1 shows such a graph together with a portion of
the unfolded tree represented by the graph.

Two important properties of transition systems are image-finiteness and sort-finite-
ness. A transition system is image-finite if for any a ∈ Act, p ∈ Q the set {q ∈ Q |
p a−−→ q} is finite, and is sort-finite if for any p ∈ Q the set {a ∈ Act | ∃σ ∈ Act∗,∃ q ∈
Q such that p σ−−→ q a−−→} is finite. This definition also applies to derived transition sys-
tems.

In all of the subsequent sections we shall assume a transition system (Q,Act ∪
{τ}, −→ , ↑B) with its associated derived transition system (Q,Act ∪ {τ}, ⇒ , ↑), appli-
cable to all the processes under scrutiny; thus a process shall be identified only by its
initial state.

6.2.2 Processes and Observations

As should be evident from the need of defining derived transition systems, we can
determine the characteristics of a system by performing observations on it. Some ob-
servations may reveal the whole internal behavior of the system being inspected, some
may be more restricted.

In general, we may think of a set of processes and a set of relevant observers (or
tests). Observers may be thought of as agents performing observations. Observers can
be viewed themselves as processes, running in parallel with the process being observed
and synchronizing with it over visible actions. We can thus represent the observers as
labeled transition systems, just as we represent processes; we prefer however to use a
different, “denotational” syntax for observers in our presentation.

6 Preorder Relations 139

Assume now that we have a predefined set O of observers. The effect of observers
performing tests is formalized by considering that for every observer o and process p

there exists a set of runs R(o, p). If we have r ∈ R(o, p) then the result of o

testing p may be the run r .
We take the outcomes of particular runs of a test as being success or failure [Abr87,

dNH84] (though we shall differentiate between two kinds of failure later). We then
represent outcomes as elements in the two-point lattice

O
def
=

>
|
⊥

The notion of failure incorporates divergence, so for some observer o and some process
p, the elements of O have the following meaning:

• the outcome of o testing p is > if there exists r ∈ R(o, p) such that r is success-
ful;

• the outcome of o testing p is ⊥ if there exists r ∈ R(o, p) such that either r

is unsuccessful, or r contains a state q such that q ↑ and q is not preceded by a
successful state.

Note that for the time being we do not differentiate between runs with a deadlock (i.e.,
in which a computation terminates without reaching a successful state) and runs that
diverge; the outcome is ⊥ in both cases.

Processes may be nondeterministic, so there may be different runs of a given test
on a process, with different outcomes. In effect, the (overall) outcome of an observer
testing a process is a set, and therefore we are led to use powerdomains of O. In fact,
we have three possible powerdomains:

Pmay
def
=

{>} = {⊥,>}
|
{⊥}

Pconv
def
=

{>}
|

{⊥,>}
|
{⊥}

Pmust
def
=

{>}
|
{⊥} = {⊥,>}

The names of the three powerdomains are not chosen haphazardly. By considering Pmay

as possible outcomes we identify processes that may pass a test in order to be considered
successful. Similarly, Pmust identifies tests that must be successful, and by using Pconv

we combine the may and must properties. The partial order relations induced by the
lattices Pmay, Pmust, and Pconv shall be denoted by ⊆may, ⊆must, and ⊆conv, respectively.

We also need to introduce the notion of refusal. A process refuses an action if the
respective action is not applicable in the current state of the process, and there is no
internal transition to change the state (so that we are sure that the action will not be
applicable unless some other visible action is taken first).

Definition 6.3. Process p ∈ Q refuses action a ∈ Act, written p ref a , iff p ↓B , p
τ−−−→/ ,

and p
a−−−→/ . ut

140 Stefan D. Bruda January 12, 2005

We thus described the notions of test and test outcomes. We also introduce at this
point a syntax for tests. In fact tests are as we mentioned just processes that interact with
the process under test, so we can represent tests in the same way as we represent pro-
cesses. Still, we find convenient to use a “denotational” representation for tests since we
shall refer quite often to such objects. We do this by defining a set O of test expressions.

While we are at it, we also define the “semantics” of tests, i.e., the way tests are
allowed to interact with the processes being tested. Such a semantics for tests is defined
using a function obs : O ×Q → P, where P ∈ {Pmay,Pconv,Pmust} such that obs(o, p) is
the set of all the possible outcomes.

To concretize the concepts of syntax and semantics, we introduce now our first
testing scenario (i.e., set of test expressions and their semantics), of observable test-
ing equivalence2[Abr87]. This is a rather comprehensive testing model, which we will
mostly restrict in order to introduce other models—indeed, we shall restrict this sce-
nario in all but one of our subsequent presentations. A concrete model for tests also
allows us to introduce our first preorder.

For the remainder of this section, we fix a transition system (Q,Act ∪ {τ}, −→ , ↑B)
together with its derived transition system (Q,Act ∪ {ε}, ⇒ , ↑).

Definition 6.4. The set O of test expressions inducing the observable testing equiva-
lence contains exactly all of the following constructs, with o, o1, and o2 ranging over
O:

o
def
= S (6.1)

| F (6.2)

| ao for a ∈ Act (6.3)

| ão for a ∈ Act (6.4)

| εo (6.5)

| o1 ∧ o2 (6.6)

| o1 ∨ o2 (6.7)

| ∀ o (6.8)

| ∃ o (6.9)

ut

Intuitively, Expressions (6.1) and (6.2) state that a test can succeed or fail by reach-
ing two designated states S and F, respectively. A test may check whether an
action can be taken when into a given state, or whether an action is not possible at
all; these are expressed by (6.3) and (6.4). We can combine tests by means of boolean
operators using expressions of form (6.6) and (6.7). By introducing tests of form (6.5)
we allow a process to “stabilize” itself through internal actions. Finally, we have uni-
versal and existential quantifiers for tests given by (6.8) and (6.9). Nondeterminism is
introduced in the tests themselves by the Expressions (6.7) and (6.9), the latter being a
generalization of the former.

2 Just testing equivalence originally [Abr87]; we introduce the new, awkward terminology be-
cause the original name clashes with the names of preorders introduced subsequently.

6 Preorder Relations 141

∧ ⊥ >
⊥ ⊥ ⊥
> ⊥ >

∧ {⊥} {⊥,>} {>}
{⊥} {⊥} {⊥} {⊥}
{⊥,>} {⊥} {⊥,>} {⊥,>}
{>} {⊥} {⊥,>} {>}

∀
{⊥} {⊥}
{⊥,>} {⊥}
{>} {>}

∨ ⊥ >
⊥ ⊥ >
> > >

∨ {⊥} {⊥,>} {>}
{⊥} {⊥} {⊥,>} {>}
{⊥,>} {⊥,>} {⊥,>} {>}
{>} {>} {>} {>}

∃
{⊥} {⊥}
{⊥,>} {>}
{>} {>}

Fig. 6.2. Semantics of logical operators on test outcomes.

Definition 6.5. With the semantics of logical operators as defined in Figure 6.2, the
function obs inducing the observable testing equivalence, obs : O × Q → Pconv, is
defined as follows:

obs(S, p) = {>}
obs(F, p) = {⊥}

obs(ao, p) =
⋃
{obs(o, p′) | p a⇒ p′} ∪ {⊥ | p ↑} ∪ {⊥ | p ε⇒ p′, p′ ref a}

obs(ão, p) =
⋃
{obs(o, p′) | p a⇒ p′} ∪ {⊥ | p ↑} ∪ {> | p ε⇒ p′, p′ ref a}

obs(εo, p) =
⋃
{obs(o, p′) | p ε⇒ p′} ∪ {⊥ | p ↑}

obs(o1 ∧ o2, p) = obs(o1, p) ∧ obs(o2, p)

obs(o1 ∨ o2, p) = obs(o1, p) ∨ obs(o2, p)

obs(∀ o, p) = ∀ obs(o, p)

obs(∃ o, p) = ∃ obs(o, p)

ut

The function from Definition 6.5 follows the syntax of test expressions faithfully,
so most cases should need no further explanation. We note that tests of form (6.3)
are allowed to continue only if the action a is available to, and is performed by the
process under test; if the respective action is not available, the test fails. In contrast,
when a test of form (6.4) is applied to some process, we record a success whenever
the process refuses the action (the primary purpose of such a test), but then we go
ahead and allow the action to be performed anyway, to see what happens next (i.e.,
we remove the block on the action; maybe in addition to the noted success we get a
failure later). As we shall see in Section 6.7 such a behavior of allowing the action to be
performed after a refusal is of great help in identifying crooked coffee machines (and
also in differentiating between processes that would otherwise appear equivalent).

As a final thought, we note again that tests can be in fact expressed in the same
syntax as the one used for processes. A test then moves forward synchronized with the
process under investigation, in the sense that the visible action performed by the process
should always be the same as the action performed by the test. This synchronized run
is typically denoted by the operator |, and the result is itself a process. We thus obtain
an operational formulation of tests, which is used as well [Abr87, Phi87] and is quite

142 Stefan D. Bruda January 12, 2005

intuitive. Since we find the previous version more convenient for this presentation, we
do not insist on it and direct instead the reader elsewhere [Abr87] for details.

6.2.3 Equivalence and Preorder Relations

The semantics of tests presented in the previous section associates a set of outcomes
for each pair test–process. By comparing these outcomes (i.e., the set of possible obser-
vations one can make while interacting with two processes, or the observable behavior
of the processes) we can define the observable testing preorder3 v. Given the preorder
one can easily define the observable testing equivalence '.

Definition 6.6. The observable testing preorder is a relation v⊆ Q×Q, where p v q

iff obs(o, p) ⊆ obs(o, q) for any test o ∈ O. The observable testing equivalence is a
relation '⊆ Q ×Q, with p ' q iff p v q and q v p. ut

If we restrict the definition of O (and thus the definition of the function obs), we
obtain a different preorder, and thus a different equivalence. In other words, if we change
the set of possible tests that can be applied to processes (the testing scenario), then we
obtain a different classification of processes.

We will present in what follows various preorder relations under various testing
scenarios. These preorders correspond to sets of changes imposed on O and obs, and
we shall keep comparing various scenarios with the testing scenario presented in Sec-
tion 6.2.2. As it turns out, the changes we impose onO are in all but one case restrictions
(i.e., simplification of the possible tests).

We will in most cases present an equivalent modal characterization corresponding to
these restrictions. Such a modal characterization (containing a set of testing formulae
and a satisfaction operator) will in essence model exactly the same thing, but we are
able to offer some results that are best shown using the modal characterization rather
than other techniques.

When we say that a preorder vα makes more distinction than another preorder vβ
we mean that there exist processes that are distinguishable under vα but not under vβ.
This does not imply that vα and vβ are comparable, i.e., it could be possible that vα
makes more distinction than vβ and that vβ makes more distinction than vα. Whenever
vα makes more distinction than vβ but not the other way around we say that vα is
coarser than vβ, or that vβ is finer than vα.

6.3 Trace Preorders

We thus begin our discussion on preorder and equivalence relations with what we be-
lieve to be the simplest assumption: we compare two processes by their trace, i.e., by
the sequence of actions they perform. In this section we follow roughly [vG01, dN87].

We consider that the divergence predicate ↑B of the underlying transition system is
empty (no process diverges). The need for such a strong assumption will become clear
later, when we discover that trace preorders do not cope well with divergence.

3 Recall that this was originally named testing preorder [Abr87], but we introduce the new name
because of name clashes that developed over time.

6 Preorder Relations 143

p

a

b c

q

a a

b c

r

a a

b c

Fig. 6.3. Three sample processes (p 'CT q 'CT r ; q 6vB p).

The trace preorder is based on the following testing scenario: We view a process as
a black box that contains only one interface to the real world. This interface is a window
displaying at any given moment the action that is currently carried out by the process.
The process chooses its execution path autonomously, according to the given transition
system. As soon as no action is carried out, the display becomes empty. The observer
records a sequence of actions (a trace), or a sequence of actions followed by an empty
window (a complete trace). Internal moves are ignored (indeed, by their definition they
are not observable). We regard two processes as equivalent if we observe the same
complete trace using our construction for both processes.

Specifically, σ ∈ Act∗ is a trace of a process p iff there exists a process q such that

p
σ⇒ q . A complete trace σ ∈ Act∗ is a trace such that p

σ⇒ q and q ; .
The set LCT of complete trace formulae is inductively defined as follows:

• > ∈ LCT (> marks the end of a trace);
• 0 ∈ LCT (0 marks the end of a complete trace);
• if ψ ∈ LCT and a ∈ Act then aψ ∈ LCT .

A modal characterization for trace formulae is given by the satisfaction operator ²⊆
Q × LCT inductively defined by:

• p ² > for all p ∈ Q;
• p ² 0 if p ; ;
• p ² aψ if p

a⇒ q and q ² ψ for some q ∈ Q.

We can now define the complete trace preorder vCT and implicitly the complete
trace equivalence 'CT :

Definition 6.7. p vCT q iff p ² ψ implies q ² ψ for any ψ ∈ LCT . ut

The complete trace preorder induces the equivalence used in the theory of automata
and languages. Indeed, consider the processes as language generators and then the trace
preorder is given by the inclusion of the language of complete traces generated by one
process into the language of complete traces generated by the other process. Take for
instance the processes shown in Figure 6.3. We notice that p 'CT q since they both
generate the language {>, a>, ab0, ac0}, and that q vCT r (since r generates the larger
language {>, a>, ab0, ac0, a0}).

144 Stefan D. Bruda January 12, 2005

We note in passing that an even weaker (in the sense of making less distinction)
preorder relation can be defined [vG01] by eliminating the distinction between traces
and complete traces (by putting > whenever we put 0). Under such a preorder (called
trace preorder), the three processes in Figure 6.3 are all equivalent, generating the
language {>, a>, ab>, ac>}. (We note however that the complete trace preorder is quite
limited so we do not find necessary to further elaborate on an even weaker preorder.)

For one thing, trace preorder (complete or not) does not deal very well with diverg-
ing processes. Indeed, we need quite some patience in order to determine whether a
state diverges or not; no matter how long we wait for the action to change in our display
window, we cannot be sure that we have a diverging process or that we did not reach
the end of an otherwise finite sequence of internal moves. We also have the problem of
infinite traces. This is easily fixed in the same language theoretic spirit that does not pre-
clude an automaton to generate infinite words, but then we should arm ourselves with
the same immense amount of patience. Trace preorders imply the necessity of infinite
observations, which are obviously impractical.

Despite all these inconveniences, trace preorders are the most elementary preorders,
and perhaps the most intuitive (that’s why we chose to start our presentation with them).
In addition, such preorders seem to capture the finest differences in behavior one would
probably like to distinguish (namely, the difference between observable sequences of
actions). Surprisingly, it turns out that other preorders make an even greater distinction.
Such a preorder is the subject of the next section.

6.4 Observation Preorders and Bisimulation

As opposed to the complete trace preorder that seems to capture the finest observable
differences in behavior, the observation preorder [Mil80, HM80], the subject of this
section, is the finest behavioral preorder one would want to impose; i.e., it incorporates
all distinctions that could reasonably be made by external observation. The additional
discriminating power is the ability to take into account not only the sequences of actions,
but also some of the intermediate states the system goes through while performing the
respective sequence of actions. Indeed, differences between intermediate states can be
exploited to produce different behaviors.

It has also been argued that observation equivalence makes too fine a distinction,
even between behaviors that cannot be really differentiated by an observer. Such an
argument turns out to be pertinent, but we shall postpone such a discussion until we
introduce other preorder relations and have thus something to compare.

The observation preorder vB is defined using a family of preorder relations vn ,
n ≥ 0 [Abr87]:

(1) it is always the case that p v0 q ;
(2) p vn+1 q iff, for any a ∈ Act it holds that

• for any p′ such that p
a⇒ p′ there exists q ′ such that q

a⇒ q ′ and p′ vn q ′,
and

• if p ↓ then (i) q ↓ and (ii) for any q ′ such that q
a⇒ q ′ there exists p′ such that

p
a⇒ p′ and p′ vn q ′;

6 Preorder Relations 145

p

u

x

a

b c

q

v w

a a

b c

Fig. 6.4. Processes not equivalent under observation preorder (p 6'B q ; p 'CT q ; p 'R q).

(3) p vB q iff for any n ≥ 0 it holds that p vn q .

The equivalence 'B induced by vB (p 'B q iff p vB q and q vB p) is called obser-
vation equivalence.

The observation equivalence is often called (weak) bisimulation equivalence, hence
the B subscript (the other logical–and often used–subscript O having the inconvenience
of being easily confused with a zero).

It is clear that the observation preorder makes more distinction than trace preorders.
Consider the processes p and q from Figure 6.3, shown again in Figure 6.4 this time
with names for some of the extra states. It is immediate that v v1 u , and that w v1 u .
It follows that q v2 p. However, it is not the case that u v1 v , and thus q 6v2 p. We
have a strict implementation relation between q and p. Recall however that these two
processes are equivalent under trace preorders.

Observation preorder corresponds to a testing scenario identical with the general
scenario presented in Definitions 6.4 and 6.5 (in Section 6.2.2). As is the case with
trace preorder we can inspect the sequence of actions performed by the process under
scrutiny. This is given by expressions of form (6.1), (6.2), and (6.3).

As a side note, we mentioned at the beginning of this section that observation pre-
order makes more distinction than trace preorder. The expressions we allow up to this
point are enough to show this: Then the tests only have the form a1a2 . . . anS or
a1a2 . . . anF for some n ≥ 0. This way we can actually distinguish between pro-
cesses such as p and q from Figure 6.4. Indeed, we notice that

obs(abS, p) = {>}

whereas

obs(abS, q) = {>,⊥}

(we can start on the ac branch of q , which will produce ⊥). In other words, we are able
to distinguish between distinct paths in the run of a process, not only between different
sequences of actions.

We close the side remark and go on with the description of the testing scenario for
observation preorder. The addition of expressions of form (6.4) introduces the concept
of refusals, which allow one to obtain information about the failure of the process to

146 Stefan D. Bruda January 12, 2005

p

τ τ

a a

b c

q

a a

b c

Fig. 6.5. More processes not equivalent under observation preorder (p 6'B q ; p 'CT q ; p 'must q ;
p 'R q).

perform some action (as opposed to its ability to perform something). The expressions
of form (6.6) and (6.7) allows us to copy the process being tested at any time during
its execution, and to further test the copies by performing separate tests. Global testing
is possible given expressions of form (6.8) and (6.9). This is a generalization of the
two copy operations, in the sense that information is gathered independently for each
possible test, and the results are then combined together. Finally, nondeterminism is
introduced in the tests themselves by Expression (6.5). Such a nondeterminism is how-
ever controlled by the process being tested; indeed, if the process is convergent then we
will eventually perform test o from an εo construction. By this mechanism we allow
the process to “stabilize” before doing more testing on it.

Proposition 6.8. With the setO of tests as defined in the above testing scenario, p vB q

iff obs(o, p) ⊆ obs(o, q) for any test o ∈ O.

In other words, observation preorder and observable testing preorder are the same,
i.e., observation equivalence corresponds exactly to indistinguishability under testing.

A modal characterization of observation equivalence can be given in terms of the
set LHM of Hennessy-Milner formulae:

• >,⊥ ∈ LHM ;
• if φ, ψ ∈ LHM then φ ∧ ψ, φ ∨ ψ, [a]ψ, 〈a〉φ ∈ LHM for some a ∈ Act.

The satisfaction operator ²∈ Q × LHM is defined in the following manner:

• p ² > is true;
• p ² ⊥ is false;
• p ² φ ∧ ψ iff p ² φ and p ² ψ;
• p ² φ ∨ ψ iff p ² φ or p ² ψ;

• p ² [a]φ iff p ↓ and for any p′ such that p
a⇒ p′ it holds that p′ ² φ;

• p ² 〈a〉φ iff there exists p′ such that p
a⇒ p′ and p′ ² φ.

The following is then the modal characterization of the observation equivalence [Abr87]:

Proposition 6.9. In an underlying sort-finite derived transition system, p vB q iff p ²

ψ implies q ² ψ for any ψ ∈ LHM .

6 Preorder Relations 147

s
a b

t

y
a b

τ

Fig. 6.6. Processes equivalent under observation preorder (s 'B t ; s 'R t ; s 6'must t ; s 'fmust t).

The translation between expressions in LHM and tests is performed by the function
(·)∗ : LHM → O defined as follows [Abr87]:

(>)∗ = S (⊥)∗ = F
(ψ ∧ φ)∗ = (ψ)∗ ∧ (φ)∗ (ψ ∨ φ)∗ = (ψ)∗ ∨ (φ)∗

([a]ψ)∗ = ∀ ã(ψ)∗ (〈a〉ψ)∗ = ∃ a(ψ)∗

([ε]ψ)∗ = ∀ ε(ψ)∗ (〈ε〉ψ)∗ = ∃ ε(ψ)∗

(6.10)

Essentially all the testing techniques from the general testing scenario are combined
together in a rather comprehensive set of testing techniques to create observation pre-
order. The comprehensiveness of the testing scenario itself is a problem. While it has an
elegant proof theory (which is not presented here, the interested reader is directed else-
where [Abr87]), observation preorder induces a too complex testing scenario. We have
constructed indeed a very strong notion of observability; most evidently, according to
Expressions (6.8) and (6.9) we assume the ability to enumerate all possible operating
environments, so as to guarantee that all the nondeterministic branches of the process
are inspected. The number of such branches is potentially infinite. It is not believed that
global testing is really acceptable from a practical point of view. Preorder relations that
will be presented in what follows place restrictions in what we can observe, and thus
have a greater practical potential.

It is also the case that observation preorder makes too much of a distinction between
processes. One example of distinction not made in trace preorder has been given in
Figure 6.4. One can argue that such a distinction may make sense in some cases, but
such an argument is more difficult in the case of processes shown in Figure 6.5, which
are slight modifications of the processes from Figure 6.4. Under (any) trace preorder the
two processes p and q are equivalent, and we argue that this makes sense; for indeed
by the very definition of internal moves they are not manifest to the outside world, and
besides internal moves the two processes behave similarly. However, it is not the case
that q 'B p. Indeed, notice that q ref b, whereas it is not the case that p ref b (since p

can move ahead by means of internal actions, and thus the refusal does not take place
according to Definition 6.3). Then the test b̃S introduces a > outcome in q but not
in p according to Definition 6.5; the non-equivalence follows. This certainly looks like
nitpicking; we shall introduce below preorders that are not that sensitive to internal
moves.

We observe on the other hand that the processes s and t from Figure 6.6 are equiv-
alent under observation preorder. We saw observation preorder giving too much weight
to internal moves; now we see the same preorder ignoring this kind of moves altogether.
The reason for this is that the internal move never changes the state, so no matter how
many times we go through it we end where we left from. Still, the τ-loop is not without

148 Stefan D. Bruda January 12, 2005

significance in practice since such a loop may produce divergence (if the process keeps
iterating through it). However, it can also be argued that the τ-loop is executed an arbi-
trary but finite number of times and so the process executes b eventually (under some
notion of fairness). We shall actually argue back and forth about these two processes
as we go along with the description of other preorder relations, so you do not have to
make up your mind just yet.

6.5 Testing Preorders

Testing preorders [dNH84] are coarser than observation preorder. Essentially, testing
preorders differentiate between processes based on differences in deadlock behavior. We
may differentiate by the ability to respond positively to a test, or the ability to respond
negatively to a test, or both. In practical cases this is often sufficient.

Recall the concept of outcome of a test presented in Section 6.2.2. For a test o and a
process p the result of applying o to p is the set of runs R(o, p) with outcomes from
the set {⊥,>}. Also recall the lattices Pmay, Pmust, and Pconv over the powerset of {⊥,>},
together with the corresponding partial order relations.

We then have the following testing scenario for testing preorders: We run a test in
parallel to the process being tested, such that they perform the same actions. If the test
reaches a success state, then the test succeeds; if on the other hand the process reaches
a deadlock state (i.e., a state with no way out), or if the process diverges before the test
has reached a success state, the test fails. Sometimes we are interested in running the
same test repeatedly and collect all of the possible outcomes; we need this when we
want to make sure that a test succeeds no matter what.

Formally, we change in what follows (simplify in fact) the semantics of Expres-
sion (6.3) from Definition 6.4 on page 140 to

obs(ao, p) =
⋃
{obs(o, p′) | p a⇒ p′} ∪ {⊥ | p ↑} ∪ {⊥ | p ; } (6.11)

Then we look at two alternative ways to restrict the set of tests O:

(1) Let Omay be defined only by expressions of form (6.1), (6.3), and (6.5). We do not
need any test that signifies failure; instead, failure under test happens whenever we
reach a deadlock, according to Expression (6.11). Indeed, we are not allowed to
combine different testing outcomes at all (there are no boolean operators such as
∧, ∨ on outcomes), so a test that fails does not differentiate between anything (it
fails no matter what); therefore these tests are excluded as useless. According to the
same Expression (6.11) we do not differentiate between deadlock and divergence—
both constitute failure under test.
Incidentally, the inability to combine test outcomes makes sense in practice; for
indeed recall our criticism with respect to the “global testing” allowed in the obser-
vation preorder and that we considered impractical. As it turns out it may also be a
too strong restriction, so we end up introducing it again in our next set of tests.

(2) We are now interested in all the possible outcomes of a test. First, let Omust be
defined only by expressions of form (6.1), (6.2), (6.3), and (6.5). This time we
do like to combine tests, but only by taking the union of the outcomes without

6 Preorder Relations 149

combining them in any smarter way. This is the place where we deviate from (i.e.,
enhance) our generic testing scenario, and we add the following expression to our
initial set of tests O:

o = o1 + o2 (6.12)

with the semantics

obs(o1 + o2, p) = obs(o1, p) ∪ obs(o2, p)

(3) A combination between these two testing scenarios is certainly possible, so put
O = Omay ∪ Omust.

In order to complete the test scenario, we define the following relations between
processes and tests:

Definition 6.10. Process p may satisfy test o, written p may o iff > ∈ obs(o, p). Pro-
cess p must satisfy test o, written p must o iff {>} = obs(o, p). ut

The two relations introduced in Definition 6.10 correspond to the lattices Pmay and
Pmust, respectively. When we use the may relation we are happy with our process if it
does not fail every time; if we have a successful run of the test, then the test overall is
considered successful. Relation must on the other hand considers failure catastrophic;
here we accept no failure, all the runs of the test have to be successful for a test to be
considered a success. An intuitive comparison with the area of sequential programs is
that the may relation corresponds to partial correctness, and the must relation to total
correctness. We have one lattice left, namely Pconv; this obviously corresponds to the
conjunction of the two relations.

Based on this testing scenario, and according to our discussion on the relations may
and must we can now introduce three testing preorders4 vmay,vmust,vconv⊆ Q ×Q:

(1) p vmay q if for any o ∈ Omay, p may o implies that q may o.
(2) p vmust q if for any o ∈ Omust, p must o implies that q must o.
(3) p vconv q if p vmay q and p vmust q .

The equivalence relations corresponding to the three preorders are denoted by 'may,
'must, and 'conv, respectively. We shall use vT (for “testing preorder”) instead of vconv

in subsequent sections.
Note that the relation vconv is implicitly defined in terms of observers from the set

O = Omay∪Omust. Also note that actually we do not need three sets of observers, since all
the three preorders make sense under O. The reason for introducing these three distinct
sets is solely for the benefit of having different testing scenarios for the three testing
preorders (that are also tight, i.e., they contain the smallest set of observers possible),
according to our ways of presenting things (in which the testing scenario defines the
preorder).

The most discerning relation is of course vconv. It is also the case that in order to
see whether two processes are in the relation vconv we have to check both the other

4 These preorders were given numerical names originally [dNH84]. We choose here to give
names similar to the lattices they come from in order to help the intuition.

150 Stefan D. Bruda January 12, 2005

τ

Fig. 6.7. Processes equivalent under 'may.

u

τ

τ

τ

a

b

c

v

τ

τ τ

τ

b c

b a

a c

Fig. 6.8. Two processes not equivalent under testing preorder (u 6'must v ; u 'CT v).

relations, so our subsequent discussion will deal mostly the other two preorders (since
the properties of vconv will follow immediately).

One may wonder what we get out of testing preorders in terms of practical consider-
ations. First, as opposed to trace preorders, we no longer need to record the whole trace
of a process; instead we only distinguish between success and failure of tests. It is also
the case that we do not need to combine all the outcomes of test runs as in observation
preorder. We still have a notion of “global testing,” but the combination of the outcomes
is either forbidden (in vmay) or simplified. In all, we arguably get a preorder that is more
practical. We also note that, by contrast to trace preorders we can have finite tests (or
observers) even if the processes themselves consist in infinite runs. Indeed, in trace pre-
orders a test succeeds only when the end of the trace is reached, whereas we can now
stop our test whenever we are satisfied with the behavior observed so far (at which time
we simply insert a S or F in our test).

In terms of discerning power, recall first the example shown in Figure 6.5 on page 146,
where the two processes p and q are not equivalent under observation preorder. We ar-
gued that this is not necessarily a meaningful distinction. According to this argument
testing preorders are better, since they do not differentiate between these two processes.
Indeed, p and q always perform an action a followed by either an action b or an action
c, depending on which branch of the process tree is taken (recall that the distinction
between p and q under observation preorder was made in terms of nitpicking refusals,
that are no longer present in testing preorders). We thus revert to the “good” properties
of trace preorders.

Recall now our argument that the processes from Figure 6.6 on page 147 should
be considered the same. We also argued the other way around, but for now we stick

6 Preorder Relations 151

α β

a
a

α β α β

a
a

a

Fig. 6.9. Processes equivalent under any testing preorder.

p′

τ b

a

p′′

τ τ

a a b

Fig. 6.10. More processes equivalent under testing preorders (p ′ 'T p′′; p′ 6'R p′′).

with the first argument because we also have s 'may t . Indeed, it is always the case
that processes such as the ones depicted in Figure 6.7 are equivalent under 'may, and
the equivalence of s and t follows. In other words, we keep the “good” properties of
observation preorder.

In general, 'may ignores the tree structure of processes, which shows that this pre-
order is a very weak relation. This is not the case with 'must. It is now the time to argue
that the two processes depicted in Figure 6.6 should be considered different. They are
so under 'must, for indeed one branch of t diverges while no divergent computations are
present in s . A suitable test such as abS will exploit this property under the must
operator. In general, the presence of divergence in the form of an infinite path of inter-
nal moves will ruin a test under 'must. Whether this is desired or not depends on one’s
interpretation of such an infinite path of internal moves.

Continuing with examples for 'must, consider the processes shown in Figure 6.8. No
matter what internal move is chosen by v , it can always perform either a or b. It follows
that v must (aS + bS). On the other hand, at its point of choosing which way to
go, u has the choice of performing c. It thus follow that u may (aS + bS), but it
is not the case that u must (aS + bS). In general, it is easy to see that u 'may v ,
but that u 6'must v . Incidentally, these processes are equivalent in trace preorders.

We should emphasize that, though 'must takes into consideration the tree structure
of the process under scrutiny, it does so in a more limited way. This was shown in our
discussion based on Figure 6.5. More generally, the processes depicted in Figure 6.9
are equivalent under any testing preorder.

Finally, an example that will come in handy when we compare testing preorders
with refusal preorders (that is the subject of the next section) is given by the two pro-
cesses shown in Figure 6.10, which are equivalent under vconv.

All of the examples presented here allow us to conclude the following: The preorder

152 Stefan D. Bruda January 12, 2005

vmay is a very weak relation, but has the advantage of needing no global testing. The
other testing preorders do make use of global testing, but in a restricted way compared
with observation preorder. The distinctions they make are not as rich as in the case of
observation preorder, but they are nonetheless quite rich. On the principle that the most
distinction we can make between processes the better we are, one now wonders whether
we can do better in distinctions without the complexity of observation preorder.

Since vconv is clearly the testing preorder that makes the most distinctions, we shall
henceforth understand this preorder when we refer simply to testing preorder. Recall
that we also decided to denote it by vT in subsequent sections (with 'T as the name of
the induced equivalence).

6.6 Refusal Testing

The only reasonable way in which one can obtain information about a process is by
communicating with it by means of actions. This is precisely what we modeled in all
this chapter. For example, we just inspect the actions performed by a process in trace
preorders; we then take it one step further in the testing preorder, where we request
sequences of actions that depend on the information gained about the process as the
test progresses. In our generic testing scenario presented in Section 6.2.2 we go even
further by adding to tests the ability of refusing actions. This is an interesting feature,
that looks powerful and arguably practically feasible. Recall on the other hand that we
definitely did not see observation preorder (the only preorder involving the concept of
refusals) as practical, at least not as practical as testing preorders.

So on one hand we have refusals, that look promising (and practical enough), and
on the other hand we have testing preorders, that look practical. We now combine them.
While we are at it, we also differentiate between failure by deadlock (no outgoing ac-
tions) and divergence. We thus obtain the refusal preorders [Phi87].

Refusal preorders rely on the following testing scenario: We start from the scenario
of complete trace semantics, i.e., we view a process as a black box with a window that
displays the current action and becomes empty when a deadlock occurs. We now equip
our box with one switch for each possible action a ∈ Act. By flipping the switch for
some action a to “on” we block a; the process continues to choose its execution path
autonomously, but it may only start by executing actions that are not blocked by our
manipulation of switches. The configuration of switches can be changed at any time
during the execution of the process.

Formally, we restrict our set of tests O introduced in Definition 6.4 on page 140
by allowing only expressions of form (6.1)–(6.5), and a restricted variant of (6.12 on
page 149) as follows:

o = ao1 + ão2 (6.13)

The semantics of this kind of expressions is immediately obtained by the semantics of
Expressions (6.12) and (6.4) (since we are starting here from the scenario of the testing
preorder, the semantics of tests of form (6.4) is given by Expression (6.11)). This is our
“switch” that we flip to blocks a (and then we follow with o2) or not.

6 Preorder Relations 153

We also differentiate between deadlock and divergence. We did not make such a
differentiation in the development of previous preorders, because we could not do this
readily (and in those cases when we could, we would simply express this in terms of
the divergence predicate). However, now that we talk about refusals we will need to
distinguish between tests that fail because of divergent processes, and tests that fail
because all the actions are blocked. We find it convenient to do this explicitly, so we
enrich our set of test outcomes to {>, 0,⊥}, with ⊥ now signifying only divergence,
while 0 stands for deadlock. In order to do this, we alter the semantics of expressions
of form (6.2), (6.3), and (6.4) to

obs(F, p) = {0}
obs(ao, p) =

⋃
{obs(o, p′) | p a−−→ p′} ∪ {⊥ | p ↑} ∪ {0 | p a−−−→/ }

obs(ão, p) =
⋃
{obs(o, p) | p a−−−→/ , p

τ−−−→/ } ∪ {⊥ | p ↑} ∪ {0 | p a−−→ or p τ−−→}

Note that in the general testing scenario we count a failure whenever we learn about a
refusal. In this scenario, a refusal generates a failure only when no other action can be
performed. Also note that this scenario imposes further restrictions on the applicable
tests by restricting the semantics of the allowable test expressions. As a further restric-
tion, we have the convention that test expressions of form (6.5) shall be applied with the
highest priority of all the expressions (i.e., internal actions are performed before any-
thing else, such that the system is allowed to fully stabilize itself before further testing
is attempted—this is also the reason for replacing relation ⇒ with the stronger −→ in
the semantics of the tests ao and ão).

It should be mentioned that the original presentation of refusal testing [Phi87] al-
lows initially to refuse sets of actions, not only individual actions. In this setting we
can flip sets of switches as opposed to one switch at a time as we allow by the above
definition of O. However, it is shown later in the same paper [Phi87] that refusing sets
of actions is not necessary, hence our construction. Now that the purpose of our test
scenario is clear, we shall further restrict the scenario. Apparently this restriction is
less expressive, but the discussion we mentioned above [Phi87] shows that—against
intuition—we do not lose anything; although the language is smaller, it is equally ex-
pressive. In the same spirit as for testing preorders, we restrict our set of tests in two
ways, and then we introduce a new version of the operators may and must.

(1) Let the set O1 contain exactly all the expressions of form (6.1) and a restricted
version of form (6.13) where either o1 = F or o2 = F.
Let then p may o iff > ∈ obs(p, o).

(2) Let the set O2 contain exactly all the expressions of form (6.2) and a restricted
version of form (6.13) where either o1 = S or o2 = S.
Let then p must o iff {>} = obs(p, o).

(3) As usual, put O = O1 ∪ O2.

In other words, at any given time we either block an action and succeed or fail (as
the case may be), or we follow the action we would have blocked otherwise and move
forward; no other test involving blocked actions is possible. One may wonder about
the cause of the disappearance of form (6.5). Well, this expression was not that “real”

154 Stefan D. Bruda January 12, 2005

p

a a

b a a a

a

q

a a

b a a

a

Fig. 6.11. Processes not equivalent under refusal preorder (p 6'R q ; p 'T q).

to begin with (we never wrote ε down in our test expressions, we provided it instead
to allow the process to “stabilize” itself), and we can now replace the expression εo

by eF + ẽo, where e is a new action we invent outside Act (thus knowing that the
process will never perform it).

With these helper operators and sets of tests we now define the refusal preorder vR

as follows: p vR q iff (a) p may o implies q may o for any o ∈ O1, and (b) p must o

implies q must o for any o ∈ O2. The induced refusal equivalence 'R is defined in the
usual way.

The alert reader has noticed that the refusal preorder is by far the most restricted
preorder we have seen. Let us now take a look at its power of discrimination. Since it
has been shown that the generic refusal testing scenario (that we started with) and our
restricted variant are in fact equally expressive, we shall feel free to use either of them
as it suits our needs.

We now compare refusal preorder with the testing preorder. First, it is immediate
that processes depicted in Figures 6.4 on page 145, 6.5 on page 146, and 6.9 on page 151
continue to be equivalent under refusal preorders.

On the other hand, consider the processes shown in Figure 6.10 on page 151 which
are equivalent under testing preorder. We then notice that under refusal preorder we
have obs(bS, p′) = {0}, for indeed the internal action is performed first to stabi-
lize the process, and after this no b action is possible. However, it is immediate that
obs(bS, p′′) = {>, 0}. We do not even use refusals here, the two processes become
non-equivalent because our convention that test expressions of form (6.5) shall always
be performed first.

Even in the absence of such a convention we have a more precise preorder. Consider
for instance the processes from Figure 6.11. They are immediately equivalent under test-
ing preorder, but not so under refusal preorder. Indeed, it holds that obs(ab̃aãS, p) =
{>, 0} and obs(ab̃aãS, q) = {0} (the path circled in the figure is the only successful
path under this test).

It is then apparent that refusal preorder makes more distinction than the testing pre-
order. We shall tackle the reverse comparison by giving a precise comparison of refusal

6 Preorder Relations 155

preorder with the observation preorder. Such a comparison is possible by developing a
modal characterization for the refusal preorder. As it turns out, this characterization can
also be given in terms of a subset of LHM (which is the set of formulae corresponding
to observation preorder). This subset (denote it by LR) is the domain of the following
partial function (·)∗ : LHM → O translating between expressions in LHM and tests and
given by:

(>)∗ = S (⊥)∗ = F
([a]ψ)∗ = a(ψ)∗ ([a]ψ)∗ = ã(ψ)∗

(〈ε〉([a]⊥ ∧ [ε]ψ))∗ = ã(ψ)∗ ([ε](〈a〉> ∨ 〈ε〉ψ))∗ = a(ψ)∗
(6.14)

For succinctness we abbreviated ao + ãF by ao, aF + ão by ão, ao + ãS by
ao, and aS + ão by ão. We have [Phi87]:

Proposition 6.11. For any process p ∈ Q and for any expression ψ ∈ LR, it holds that
p ² ψ iff p may (ψ)∗, and that p ² ψ iff p must (ψ)∗. It then follows that p vR q iff p ² ψ

implies q ² ψ for any expression ψ ∈ LR.

It then follows that:

Theorem 6.12. For any two processes p and q , p vB q implies p vR q , but not the
other way around.

Proof. The implication is immediate from Proposition 6.11 given that LR is a strict
subset ofLHM . That observation preorder is strictly finer than refusal preorder is shown
by the example depicted in Figure 6.5 on page 146. ut

So we find that refusal preorder is coarser than observation preorder. This also al-
lows us to compare refusal and testing preorders. Indeed, recall that the infinite pro-
cesses shown in Figure 6.6 on page 147 are equivalent under observation preorder (and
then according to Proposition 6.12 under refusal preorder). We have shown in the pre-
vious section that these processes are not equivalent under testing preorder. Given that
on the other hand refusal preorder distinguishes between processes indistinguishable in
testing preorder, we have

Corollary 6.13. The preorders vT and vR are not comparable.

We note here an apparent contradiction with results given elsewhere [Phi87] that
the two preorders are comparable. This contradiction turns out to be caused by the
unfortunate (and incorrect) terminology used in [Phi87].

In practical terms, refusal preorder is clearly more appealing than observation pre-
order. Arguably, it is also more appealing than testing preorder, because of the simplicity
of tests; indeed, we eliminated all nondeterminism from the tests in O1 and O2 (and thus
in O). The only possible practical downside (of refusal preorder compared with testing
preorder) is that we need the ability to block actions.

156 Stefan D. Bruda January 12, 2005

e

coin

coin

c

coin

coin τ

coin

coffee

Fig. 6.12. Two vending machines (e vR c; e 6vFT c).

6.7 Failure Trace Testing

In refusal testing, whenever we observe a process that cannot continue because we
blocked all of its possible actions we have a failed test. This seems a reasonable testing
strategy, but we end up with surprising preorder relations because of it. Consider for
example the rather instructive example [Lan90] of the two vending machines c and e

depicted in Figure 6.12. Machine c may give us coffee if we insert two coins, while
machine e eats up our money, period. In terms of refusal preorder, it is immediate that
c passes strictly more tests than e, so e vR c. In other words, e is an implementation
of c! Clearly, this contradicts most people’s idea of a working coffee machine.

Such a strange concept of correct implementation is corrected by the failure trace
preorder [Lan90]. This preorder is based on the following testing scenario: We have
the same black box we did in the testing scenario for refusal preorder. The only differ-
ence is in our actions; when we observe the deadlock (by the empty window) we record
such an occurrence (as a failure) and then we are allowed to flip switches off to allow
the process to continue.

Formally, we allow exactly the same test expressions for the set O as we did initially
in the previous section, but we revert the semantics of expressions of form (6.4) to its
original form (continuing to make the distinction between failure as deadlock versus
failure as divergence), i.e.,

obs(ão, p) =
⋃
{obs(o, p′) | p a⇒ p′} ∪ {⊥ | p ↑} ∪ {0 | p ε⇒ p′, p′ ref a}

We then define the operators may and must exactly as we did in the previous sec-
tion, i.e., p may o iff > ∈ obs(p, o), and p must o iff {>} = obs(p, o). Finally, the
failure trace preorder vFT is defined as p vFT q iff for all o ∈ O it holds that
p may o implies q may o and p must o implies q must o. As usual, the failure trace
preorder induces the failure trace equivalence 'FT .

6 Preorder Relations 157

Let us go back to our vending machines from Figure 6.12, and consider the test

o = coin c̃oin coin coffee S

As opposed to refusal testing, we now have obs(o, e) = {0} (the action “coffee” is not
available for the test), whereas obs(o, c) = {>, 0} (we record a failure when we block
action “coin” and then we move on to obtain a successful test on the right side branch).
We thus notice that c may o but that it is not the case that e may o; a machine that
does not give us coffee does not pass this test. Our two vending machines become thus
incomparable (and justly so).

Failure trace preorder thus makes more distinction than refusal preorder. It is also
easy to see that refusal preorder does not distinguish between processes that are not
distinguishable under failure trace. Indeed, it is enough to place a F test after each
action that is blocked in the tests and those tests become tests for the refusal preorder.

It is immediate to see that observation preorder is strictly finer than failure trace
preorder. Indeed, we introduced on top of refusal order a semantics that is otherwise
included in the semantics of observation preorder. So we have:

Proposition 6.14. For any two processes p and q , p vB q implies p vFT q (but not
the other way around), and p vFT q implies p vR q (but not the other way around).

Using the failure trace preorder we can make distinctions that cannot be made using
refusal preorder. However, this increase does not necessarily come for free. Indeed,
the tests in the sets O1 and O2 described in the previous sections are sequential, in the
sense that unions always occur between a test whose result that is immediately available
(S or F) and some other, possibly longer test. In testing preorders as well as in
failure trace preorder we need to copy the process while it runs; indeed, we may need
to combine the outcomes of two (or more) different runs of the process, which means
that we need to run two copies of the process to obtain these outcomes independently
from each other. Because of the sequential tests used by refusal preorder copying is
no longer necessary (but it becomes necessary once more in failure trace preorder).
This being said, the definition of the must operator from refusal preorder implies that
processes need to be copied anyway (since we have to apply many tests on them), so
the failure trace testing scenario is not that bad after all.

6.8 Fair Testing

Recall the processes depicted in Figure 6.6 on page 147 and our back and forth argument
that they should be considered equivalent (or not). When we considered them under
the testing preorder, s and t were not equivalent, whereas they are so under the other
preorders. Testing preorder, with its habit that the presence of divergence may ruin a
test, will differentiate between these two processes as opposed to all the other preorders
we have seen so far. As we mentioned, whether such a behavior is a good or bad thing
depends on one’s opinion about divergences.

For those who prefer to ignore divergences as long as there is a hope that the pro-
cess will continue with its visible operation, i.e., for those who prefer to consider the
processes shown in Figure 6.6 equivalent, fair testing is available [BRV95].

158 Stefan D. Bruda January 12, 2005

We have the same testing scenario for fair testing as the one used in Section 6.5,
except that the operator must is enhanced, such that it chooses a visible action whenever
such an action is available. With the same set O of observers as the one used to define
the testing preorder, the new operator fmust is defined as follows:

p fmust o iff for any σ ∈ Act∗ and o′ ∈ O with o = σo′, it holds that:

obs(o′, p′) = obs(o, p) for some p′ ∈ Q, p
σ⇒ p′, implies that there exists

a ∈ Act ∪ {S} such that o′ = ao′′, o′′ ∈ O ∪ {ε}.

The preorder vfmust, as well as the equivalence 'fmust induced by the operator fmust
are defined in the usual manner.

The operator fmust is the “fair” variant of the operator must of testing preorder
lineage. It ignores the divergences as long as there is a visible action (a in the above
definition) accessible to the observer. The following characterization of vfmust in terms
of other preorders is easily obtained from the results presented elsewhere [BRV95]:

Proposition 6.15. For any two processes p and q , p vR q implies p vfmust q (but not
the other way around), and p vmust q implies p vfmust q (but not the other way around).

The modification of the testing preorder introduced by the preorder vfmust brings us
back into the generic testing scenario. In the following we go even further and tackle
a problem that we did not encounter up to this point, but that is common to many
preorders. This problem refers to the process of hiding a set of actions.

Given a transition system B = (Q,Act ∪ {τ}, −→ , ↑B) and some set A ⊆ Act, the
result of hiding A is a transition system B/A = (Q,Act \A∪ {τ}, −→ h , ↑B), where −→ h

is identical to −→ except that all the transitions of form p a−−→ q for some a ∈ A are
replaced by p τ−−→ hq .

Under a suitable transition system B , consider now the processes depicted in Fig-
ure 6.13, and the equivalent processes in B/{a}; the processes become non-equivalent
under vR. Similar examples can be found for the other preorders presented in this chap-
ter. These preorders are not pre-congruence relations under hiding.

A preorder based on the testing preorder and that is pre-congruent can also be in-
troduced [BRV95]. Call such a preorder should-testing. The testing scenario is again
the same as the one presented in Section 6.5, with the exception that the operators must
and may are replaced by the operator should defined as follows (again, we have the
same set O of observers as the one used to define the testing preorder):

p should o iff for any σ ∈ Act∗ and o′ ∈ O with o = σo′, it holds that:

obs(o, p) = obs(o′, p′) for some p′ ∈ Q, p
σ⇒ p′, implies that there exists

σ′ ∈ Act∗ such that o′ = σ′S and > ∈ obs(o′, p′).

The preorder and the equivalence induced by the should operator are denoted by
vshould and 'should, respectively.

The idea of should-testing is that in a successful test there is always a reachable
successful state, so if the choices are made fairly that state will eventually be reached.
Fair testing states that a system passing the test may not deadlock unless success has

6 Preorder Relations 159

p

a a

b c

a

a

q

a a

b c

a a

Fig. 6.13. Processes different after hiding {a}.

been reported before; should-testing requires a stronger condition in that a successful
state must be reached from every state in the system.

It is immediate that vshould is coarser than vfmust (since the success condition is
stronger). This relationship is even stronger for processes with only finite visible runs:

Proposition 6.16. For any two processes p and q , p vshould q implies p vfmust q (but
not the other way around); for any two processes p and q for which all the visible runs
are finite p vshould q iff p vfmust q .

In addition vshould is a pre-congruence under hiding—as well as under prefixing and
synchronization [BRV95]; in fact we have:

Proposition 6.17. The relation vshould is the largest relation contained in vfmust that is
a pre-congruence under synchronization and hiding.

6.9 Conformance Testing, or Preorders at Work

This section is different from the previous ones, because it does not introduce new test-
ing scenarios and new preorders. Instead, it puts the existing scenarios in a formalization
of the concept of conformance testing [Tre94]. The description of such an environment
in which preorders are put to good use is indeed a nice wrap up of our presentation.

We mentioned at least two times that preorders can be interpreted as implementation
relations. In this sections we elaborate on this idea. We thus present here the application
of everything we talked about before.

Conformance testing consists in testing the implementation of a system against that
system’s specification. Formally, we are given a formal specification language LFDT

(such as CCS [Mil80] or even labeled transition systems), and we have to determine for
some specification s ∈ LFDT what are the implementations that conform to s (i.e., are
a correct implementation of s). Of course, implementations are physical objects, so we
analyze their properties by means of formal models of such implementations, that are
also members of LFDT . We assume that any concrete implementation can be modeled
in LFDT .

160 Stefan D. Bruda January 12, 2005

There usually are more than one correct implementation of some specification, so
we actually work with a set CONFORMs of implementations conforming to a specifi-
cation s . This set can be defined using either a behavior (or model-based) specification,
or a requirement (or logical) specification.

In the behavior specification approach the set CONFORMs is defined by means of
an implementation relation imp, such that i imp s iff i conforms to s:

CONFORMs = {i ∈ LFDT | i imp s}.

In the requirement specification approach we define the set CONFORMs by giving all
the properties that should hold for all of its elements. Such properties, or requirements
are specified in a formal language LRQ , and if an implementation i has property r we
say that i satisfies r and we write i sat r . A conforming implementation will have to
satisfy all the properties from a set R ⊆ LRQ , so we have:

CONFORMs = {i ∈ LFDT | for all r ∈ R, i sat r }.

If a suitable specification language has been chosen, we can define a specification re-
lation spec ⊆ LFDT × LRQ which expresses the requirements that are implicitly
specified by a behavior specification. Our definition for CONFORMs then becomes:

CONFORMs = {i ∈ LFDT | for all r ∈ LRQ , s spec r implies i sat r }.

Both these approaches to the definition of CONFORMs are valid and they can be
used independently from each other. They are both useful too: if we want to check an
implementation against a specification the behavioral specification is appropriate; if on
the other hand we want to determine conformance by testing the implementation, it is
typically more convenient to derive requirements from the specification and then test
them.

Of course, the two descriptions of CONFORMs should be compatible to each other,
i.e., they should define the same set. We then have the following restriction on the
relations imp, sat, and spec:

for all i ∈ LFDT , i imp s iff (for all r ∈ LRQ , s spec r implies i sat r).

We note that the formal specification s is in itself not enough to allow for confor-
mance testing. We need instead either a pair s and imp, or the combination of s , LRQ ,
sat, and spec.

Consider now our definition of processes, tests, and preorders, and pick one partic-
ular preorder vα. We clearly have a specification language LFDT given by the set of
processes and the underlying transition system. We then model s using our language
and we obtain a specification. Then the relation imp is precisely given by the preorder
vα. The preorder gives us the tools for conformance testing using the behavior specifi-
cation. If we provide a modal characterization for the preorder we can do testing using
requirement specification too. Indeed, the set LRQ is the set of formulae that consti-
tute the modal characterization, the relation sat is our satisfaction predicate ², and the
function (·)∗ defines the relation spec.

6 Preorder Relations 161

v ←→ vB −→ vFT −→ vR −→ vfmust −→ vshould

↗
vT

Fig. 6.14. Relations between preorders. The arrows vα−→vβ stand for “p v α q implies p vβ q ,
but not the other way around.”

It turns out that our theory of preorders has an immediate application in confor-
mance testing. Indeed, all we did in this section was to translate the notation used
elsewhere [Tre94] into the notation that we used in this chapter, and presto, we have
a framework for formal conformance testing.

However, our framework is not fully practical because of the number of tests one
needs to apply in order to check for conformance, which is often countably infinite.
Elegant proof systems are not enough from a practical point of view, we also need to test
implementations in a reasonable amount of time. We come back to our discussion on
practical considerations. The observation preorder for instance, with its strong notion of
observability, is unlikely in our opinion to create a realistic framework for conformance
testing.

In any case, testing and test case generation in particular are also the subject of
subsequent chapters, so our discussion about applications ends here.

6.10 Summary

We now conclude our presentation of preorder relations. We have surveyed quite a
number of preorders, so before going any further a summary is in order. We have talked
throughout this chapter about the following preorders:

v the observational testing preorder, as a general framework pre-
sented in Section 6.2.3

vCT the complete trace preorder, presented in Section 6.3;
vB observation preorder, the subject of Section 6.4;
vT (aka vconv, together with vmay and vmust), surveyed in Section 6.5;
vR refusal preorder, presented in Section 6.6;
vFT failure trace preorder, in Section 6.7;
vfmust fair testing preorder, the subject of Section 6.8;
vshould should-testing preorder, a variant of vfmust, also a pre-congruence.

In addition, we have defined a generic testing scenario and the associated observ-
able testing preorder v. There exist preorders we did not consider specifically, such as
Darondeau’s preorder, because they were shown to coincide with preorders presented
here [dN87]. We introduced trace preorders only because we had to start with some-
thing (and we decided to start with something simple), and because sometimes they
make for useful comparison tools. However, trace preorders are awkward to work with,
so we do not give too much thought to them henceforth.

One of the comparison criteria between preorders is their power of discrimination.
In this respect, the observation preorder has been shown to coincide with the generic

162 Stefan D. Bruda January 12, 2005

preorder v. The remaining preorders are strictly less discriminating and arrange them-
selves in a nice hierarchy. The only exception is the testing preorder, which is not com-
parable with the observation, failure trace, and refusal preorders. This is one reason
for the introduction of vfmust, which has its place in the hierarchy allright. This com-
parison has been shown throughout the chapter by examples and propositions, and is
summarized in Figure 6.14.

The relation vfmust was also introduced because of fairness considerations (hence
the name fair testing preorder). Specifically, the testing preorder deals unfairly with
divergence, in the sense that divergence is reported as failure. In contrast, the fair inter-
pretation of divergence implies that the tests succeed in presence of divergences as long
as the system has a chance to eventually perform a visible action despite divergences.
Since vfmust is not a pre-congruence relation, the variant vshould (which is the largest
pre-congruence included in vfmust) has also been defined.

Of course, the presence of fairness, or the greater power of discrimination are not
an a priori good thing; it all depends on the desired properties one is interested in. The
unfair interpretations of divergence in particular are useful in differentiating between
livelock and deadlock, i.e., in detecting whether the system under test features busy-
waiting loops and other such behaviors that are not deadlocked but are nonetheless
unproductive (and undetectable under the fair testing scenario).

In terms of power of discrimination, we have noticed in Section 6.4 that the most
discriminating preorder differentiates between processes that are for all practical pur-
poses identical (see for example the processes shown in Figures 6.4 on page 145 and 6.5
on page 146). This is not to say that more differentiation is bad either, just look at the
coffee machine examples from Figure 6.12 on page 156, which are in a strange imple-
mentation relation under refusal testing (only a crooked merchant would accept this)
but are not comparable under failure trace preorder.

Another comparison of preorders can be made in terms of the complexity of the tests
and their practical feasibility. It is no surprise that the most discriminating preorder,
namely the observation preorder, appears to be the least practical of them all. In this
respect the award of the most practically realizable preorder seems to go to refusal
preorder. This is the only preorder based exclusively on sequential tests. This being
said, we are not necessarily better off since in the general case we need a number of
tests to figure out the properties of the system, so that the advantage of the tests being
sequential pales somehow.

Another practical issue in refusal preorder is the concept of refusal itself. One can
wonder how practical such a concept is. Recall that actions are an abstraction; in partic-
ular, they do not necessarily represent the acceptance of input. So how does one refuse
an action without modifying the process under scrutiny itself? This does not seem real-
izable in the general case (whenever we cannot access the internals of the process under
test). Do we take away the award from refusal preorder?

In all, practical considerations do differentiate between the preorders we talked
about, especially for the observation preorder which combines results in a more com-
plex way than other preorders (that simply take the union of the results of various runs
and tests) and requires a rather unrealistic concept of global testing. However, when
testing systems we are in the realm of the halting problem, so practical considerations

6 Preorder Relations 163

cannot ever make an a priori distinction. The utility of various preorders should thus be
estimated by taking all of their features into consideration.

In the same line of thought, namely practical applications, we have presented a
practical framework for conformance testing based on the theory of preorders.

Finally, it is worth pointing out that our presentation has been made in terms of la-
beled transition systems, as opposed to most of the literature, in which process algebraic
languages such as CCS, LOTOS, and variants thereof are generally used. Labeled tran-
sition systems define however the semantics of all these languages, so the translation of
the results surveyed here into various other formalisms should not be a problem. The
upside of our approach is the uniform and concise characterization of the preorders,
although we lose some expressiveness in doing so (however the literature cited therein
always offers a second, most of the time process algebraic view of the domain).

As well, we did not pay attention to contexts. Contexts admit however a relatively
straightforward approach once the rest of the apparatus is in place.

Literature

AB99. Paul Ammann and Paul E. Black. A specification-based coverage metric to evaluate
test sets. In Proceedings of the 4th IEEE International Symposium on High-Assurance
Systems Engineering (HASE 1999), pages 239–248. IEEE Computer Society Press,
1999. [344]

ABD+79. A. Acree, T. Budd, R. DeMillo, R. Lipton, and F. Sayward. Mutation analysis. Tech-
nical Report GIT-ICS-79/08, School of Information and Computer Science, Georgia
Institute of Technology, September 1979. [21]

ABM98. Paul Ammann, Paul E. Black, and William Majurski. Using model checking to gen-
erate tests from specifications. In Proceedings of the 2nd IEEE International Confer-
ence on Formal Engineering Methods (ICFEM 1998), pages 46–54. IEEE Computer
Society Press, 1998. [344]

Abr87. Samson Abramsky. Observation equivalence as a testing equivalence. Theoretical
Computer Science, 53:225–241, 1987. [135, 139, 140, 141, 142, 144, 146, 147]

Abr96. J-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996. [336]

ACH+95. R. Alur, C. Courcoubetis, T. Henzinger, P. Ho, X. Nicollin, A. Olivero, J. Sifakis,
and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer
Science, 138:3–34, 1995. A preliminary version appeared in Guy Cohen, editor, Pro-
ceedings of 11th International Conference on Analysis and Optimization of Systems
(ICAOS 1994): Discrete Event Systems, volume 199 of Lecture Notes in Control and
Information Science, pages 331–351. Springer-Verlag, 1994. [365, 366]

AD94. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994. [215, 217, 218, 219, 226, 229, 351, 358, 362]

ADE+01. R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivančić, V. Kumar, I. Lee, P. Mishra,
G. Pappas, and O. Sokolsky. Hierarchical hybrid modeling of embedded systems. In
T. A. Henzinger and C. M. Kirsch, editors, Proceedings of the 1st International Work-
shop on Embedded Software (EMSOFT 2001), volume 2211, pages 14–31. Springer-
Verlag, 2001. [365, 367]

ADE+03. R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivančić, V. Kumar, I. Lee, P. Mishra, G. Pap-
pas, and O. Sokolsky. Hierarchical hybrid modeling and analysis of embedded sys-
tems. Proceedings of the IEEE, 91(1):11–28, January 2003. [365, 367]

ADG+03. C. Artho, D. Drusinsky, A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu, G. Roşu,
and W. Visser. Experiments with test case generation and run-time analysis. In
E. Börger, A. Gargantini, and E. Riccobene, editors, Proceedings of the 10th Inter-
national Workshop on Abstract State Machines (ASM 2003), volume 2589 of Lecture
Notes in Computer Science, pages 87–107, Taormina, Italy, 2003. Springer-Verlag.
Invited paper. [534, 535]

ADLU91. A. Aho, A. Dahbura, D. Lee, and Ü. Uyar. An optimization technique for protocol
conformance test generation based on uio sequences and rural chinese postman tours.
IEEE Transactions on Communications, 39(11):1604–1615, November 1991. [88, 89,
118, 121]

AFH94. Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata: A deter-
minizable class of timed automata. In Proceedings of the 16th International Con-
ference on Computer-aided Verification (CAV 1994), volume 818 of Lecture Notes in
Computer Science, pages 1–13. Springer-Verlag, 1994. [219, 362]

596 Literature

AGE. AGEDIS homepage. http://www.agedis.de. [416, 417]
AGLS01. Rajeev Alur, Radu Grosu, Insup Lee, and Oleg Sokolsky. Compositional refinement

for hierarchical hybrid systems. In Maria Domenica Di Benedetto and Alberto L.
Sangiovanni-Vincentelli, editors, Proceedings of the 4th International Workshop on
Hybrid Systems: Computation and Control (HSCC 2001), volume 2034 of Lecture
Notes in Computer Science, pages 33–48. Springer-Verlag, 2001. [365, 367]

AGW77. Roy Adler, L. Wayne Goodwyn, and Benjamin Weiss. Equivalence of topological
Markov shifts. Israel Journal of Mathemtics, 27(1):49–63, 1977. [52]

AH97. Rajeev Alur and Thomas A. Henzinger. Real-time system = discrete system + clock
variables. International Journal on Software Tools for Technology Transfer, 1(1–
2):86–109, 1997. [215]

AHB03. C. Artho, K. Havelund, and A. Biere. High-level data races. Software Testing, Verifi-
cation and Reliability, 03(4):207–227, December 2003. Extended version of a paper
in P. T. Isaı́as, F. Sedes, J. C. Augusto, and U. Ultes-Nitsche, editors, New Technolo-
gies for Information Systems: Proceedings of the 3rd International Workshop on New
Developments in Digital Libraries (NDDL 2003) and the 1st International Workshop
on Validation and Verification of Software for Enterprise Information Systems (VVEIS
2003); in conjunction with the 5th International Conference on Enterprise Informa-
tion Systems, pages 82–93. ICEIS Press, 2003. [535]

AHP99. Pavel Atanassov, Stefan Haberl, and Peter Puschner. Heuristic worst-case execution
time analysis. In Proceedings of the 10th European Workshop on Dependable Com-
puting, pages 109–114. Austrian Computer Society (OCG), May 1999. [374]

AHU74. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974. [590, 591]

Ald90. Rudie Alderden. COOPER – the compositional construction of a canonical tester.
In Son T. Vuong, editor, Proceedings of the IFIP TC/WG6.1 2nd International Con-
ference on Formal Description Techniques for Distributed Systems and Communica-
tion Protocols (FORTE 1989), pages 13–17, Vancouver, BC, Canada, 1990. North-
Holland. [405, 407]

Alu99. Rajeev Alur. Timed automata. In Nicolas Halbwachs and Doron Peled, editors, Pro-
ceedings of the 11th Internation Conference on Computer Aided Verification (CAV
1999), volume 1633 of Lecture Notes in Computer Science, pages 8–22. Springer-
Verlag, 1999. [216, 218, 220]

ÁMHS01. Erika Ábrahám-Mumm, Ulrich Hannemann, and Martin Steffen. Verification of hy-
brid systems: Formalization and proof rules in PVS. In Proceedings of the 7th Inter-
national Conference on Engineering of Complex Computer Systems (ICECCS 2001),
pages 48–57. IEEE Computer Society Press, 2001. [365]

Amt00. Peter Amthor. Structural Decomposition of Hybrid Systems. Number 13 in Mono-
graphs of the Bremen Institute of Safe Systems. University of Bremen, 2000. [366]

Ang87. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75:87–106, 1987. [507, 563, 573, 578]

ASMa. ASM homepage. http://www.eecs.umich.edu/gasm/. [403]
ASMb. AsmL download. http://research.microsoft.com/fse/asml/. [403]
Aus99. T. M. Austin. DIVA: A reliable substrate for deep submicron microarchitecture de-

sign. In Proceedings of the 32nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 1999), pages 196–207, November 1999. [511]

BB87. Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO specification language
LOTOS. Computer Networks, 14:25–29, 1987. [135, 177, 407, 413]

BBHP03. Kirsten Berkenkötter, Stefan Bisanz, Ulrich Hannemann, and Jan Peleska. Hy-
bridUML profile for UML 2.0. In Proceedings of the Workshop on Specification

Literature 597

and Validation of UML models for Real Time and Embedded Systems (SVERTS)
in conjunction with the 〈〈UML〉〉 2003 Conference, October 2003. Available at
http://www-verimag.imag.fr/EVENTS/2003/SVERTS. [365, 367]

BC85. Gérard Berry and Laurent Cosserat. The ESTEREL synchronous programming lan-
guage. In Stephen D. Brookes, A. W. Roscoe, and Glynn Winskel, editors, Proceed-
ings of the Seminar on Concurrency, 1984, volume 197 of Lecture Notes in Computer
Science, pages 389–448. Springer-Verlag, 1985. [387]

BC00. M. Bernardo and R. Cleaveland. A theory of testing for Markovian processes. In
C. Palamidessi, editor, Proceedings of the 11th International Conference on Concur-
rency Theory (CONCUR 2000), number 1877 in Lecture Notes in Computer Science,
pages 305–319. Springer-Verlag, 2000. [246, 256, 268, 275, 276, 278, 279]

BCG+00. Dahananjay S. Brahme, Steven Cox, Jim Gallo, Mark Glasser, William Grundmann,
C. Norris Ip, William Paulsen, John L. Pierce, John Rose, Dean Shea, and Karl Whit-
ing. The transaction-based verification methodology. Technical report, Cadence De-
sign Systems, Inc., August 2000. [444]

BCGM00. Simon Burton, John A. Clark, Andy J. Galloway, and John A. McDermid. Automated
V&V for high integrity systems, a target formal methods approach. In C. Michael Hol-
loway, editor, Proceedings of the 5th NASA Langley Formal Methods Workshop (Lfm
2000), number NASA/CP-2000-210100 in NASA Conference Publications, pages
129–140, 2000. [327]

BCK03. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-
Wesley, 2nd edition, 2003. [11]

BCL92. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with partitioned
transition relations. In A. Halaas and P. B. Denyer, editors, Proceedings of the In-
ternational Conference on Very Large Scale Integration (VLSI 1991), volume A-1 of
IFIP Transactions, pages 49–58, Edinburgh, Scotland, 1992. North-Holland. [548]

BCM00. Simon Burton, John A. Clark, and John A. McDermid. Testing, proof and automa-
tion. An integrated approach. In Proceedings of the 1st International Workshop of
Automated Program Analysis, Testing and Verification (WAPATV 2000), pages 57–63,
2000. In Conjunction with the 22nd International Conference on Software Engineer-
ing (ICSE 2000). [324]

BCM01. Simon Burton, John A. Clark, and John A. McDermid. Automatic generation of
tests from Statechart specifications. In Ed Brinksma and Jan Tretmans, editors, Pro-
ceedings of the 1st International Workshop on Formal Approaches to Testing of Soft-
ware (FATES 2001), number BRICS NS-01-4 in Basic Research in Computer Science
(BRICS) Notes Series, pages 31–46, 2001. [327]

BCMD90. J. R. Burch, E. M. Clarke, K. L. McMillan, and David L. Dill. Sequential circuit
verification using symbolic model checking. In Proceedings of the 27th ACM/IEEE
Conference on Design Automation Conference (DAC 1990), pages 46–51. ACM Press,
1990. [548]

BCMS01. O. Burkart, D. Caucal, F. Moller, and Bernhard Steffen. Verification on infinite struc-
tures. In S. Smolka J. Bergstra, A. Pons, editor, Handbook on Process Algebra. North-
Holland, 2001. [542]

BDGW94. J. L. Balcázar, J. Dı́az, R. Gavaldà, and O. Watanabe. The query complexity of learn-
ing DFA. New Generation Computing, 12:337–358, 1994. [578]

BDGW97. J. L. Balcázar, J. Dı́az, R. Gavaldà, and O. Watanabe. Algorithms for learning finite
automata from queries: A unified view. In Ding-Zhu Du, Ker-I Ko, and Dingzhu
Du, editors, Advances in Algorithms, Languages, and Complexity. Kluwer Academic,
February 1997. In Honor of Ronald V. Book. [558, 570, 575]

Bei95. B. Beizer. Black-Box Testing. John Wiley & Sons, 1995. [484]

598 Literature

Bel57. R. Bellman. Dynamic programming. Princeton University Press, 1957. [220]
BFdV+99. A. Belinfante, J. Feenstra, R. G. de Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw,

and L. Heerink. Formal test automation: A simple experiment. In G. Csopaki,
S. Dibuz, and K. Tarnay, editors, Proceedings of the 12th International Workshop on
Testing of Communicating Systems (IWTCS 1999), volume 147 of IFIP Conference
Proceedings, pages 179–196. Kluwer Academic, 1999. [410, 413, 424, 426, 429,
433, 436, 437, 438, 445, 448]

BFG+99. Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu, Susanne Graf, Jean-Pierre
Krimm, and Laurent Mounier. IF: An intermediate representation and validation envi-
ronment for timed asynchronous systems. In Jeannette M. Wing, Jim Woodcock, and
Jim Davies, editors, Proceedings of the World Congress on Formal Methods in the De-
velopment of Computing Systems, Volume I (FM 1999), volume 1708 of Lecture Notes
in Computer Science, pages 307–327, Toulouse, France, 1999. Springer-Verlag. [409,
410]

BFMW01. D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim. Jass – Java with assertions. In
Klaus Havelund and Grigore Rosu, editors, Runtime Verification (RV 2001), volume
55(2) of Electronic Notes in Theoretical Computer Science. Elsevier Science Publish-
ers, 2001. [537]

BG96. M. Bernardo and R. Gorrieri. Extended markovian process algebra. In U. Montanari
and V. Sassone, editors, Proceedings of the 7th International Conference on Concur-
rency Theory (CONCUR 1996), volume 1119 of Lecture Notes in Computer Science,
pages 315–330. Springer-Verlag, 1996. [254]

BGHM96. N. H. Bshouty, S. A. Goldman, T. R. Hancock, and S. Matar. Asking queries to mini-
mize errors. Journal of Computer and Systems Science, 52:268–286, 1996. [578]

BGK+02. K. Bhargavan, C. A. Gunter, M. Kim, I. Lee, D. Obradovic, O. Sokolsky, and
M. Viswanathan. Verisim: Formal analysis of network simulations. IEEE Trans-
actions on Software Engineering, 28(2):129–145, February 2002. [535]

BGM91. Gilles Bernot, Marie-Claude Gaudel, and Bruno Marre. Software testing based on
formal specifications: A theory and a tool. Software Engineering Journal, 6(6):387–
405, 1991. [291, 327, 328, 329]

BGN+03. Mike Barnett, Wolfgang Grieskamp, Lev Nachmanson, Wolfram Schulte, Nikolai Till-
man, and Margus Veanes. Towards a tool environment for model-based testing with
AsmL. In Proceedings of the 3rd International Workshop on Formal Approaches to
Testing of Software (FATES 2003), volume 2931 of Lecture Notes in Computer Sci-
ence, pages 252–266. Springer-Verlag, 2003. [404, 405]

BGS84. B. Boehm, T. Gray, and T. Seewaldt. Protoyping versus specifying: A multiproject
experiment. IEEE Transactions on Software Engineering, SE-10(3):290–303, 1984.
[11]

BH89. Ferenc Belina and Dieter Hogrefe. The CCITT Specification and Description Lan-
guage SDL. Computer Networks and ISDN Systems, 16(4):311–341, March 1989.
[23]

BHKW03. Christel Baier, Holger Hermanns, Joost-Pieter Katoen, and Verena Wolf. Compara-
tive branching time semantics for Markov chains. In Proceedings of the 14th Interna-
tional Conference on Concurrency Theory (CONCUR 2003), volume 2761 of Lecture
Notes in Computer Science, pages 492–507. Springer-Verlag, 2003. [255, 282]

BIĆP99. Stojan Bogdanović, Balázs Imreh, Miroslav Ćirić, and Tatjana Petković. Directable
automata and their generalizations. Novi Sad Journal of Mathematics, 29(2):29–69,
1999. [28, 51]

Bin99. R. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison
Wesley, 1999. [3]

Literature 599

BJLS03. Therese Berg, Bengt Jonsson, Martin Leucker, and Mayank Saksena. Insights to An-
gluin’s learning. In Proceedings of the International Workshop on Software Verifica-
tion and Validation (SVV 2003), Electronic Notes in Theoretical Computer Science,
December 2003. To appear. [576]

BLL+95. Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
U – A tool suite for automatic verification of real-time systems. In Proceedings
of the 3rd DIMACS/SYCON Workshop on Hybrid Systems: Verification and Control,
volume 1066 of Lecture Notes in Computer Science, pages 232–243. Springer-Verlag,
October 1995. [236, 238]

Blua. Bluetooth Project, http://www.iti.uni-luebeck.de/Research/MUC/EKG/.
[491]

Blub. Bluetooth Special Interest Group. Specification of the Bluetooth System (version 1.1).
http://www.bluetooth.com. [491]

BPDG98. Béatrice Bérard, Antoine Petit, Volker Diekert, and Paul Gastin. Characterization of
the expressive power of silent transitions in timed automata. Fundamenta Informati-
cae, 36(2–3):142–182, November 1998. [218]

BPR93. L. Boullier, M. Phalippou, and A. Rouger. Experimenting test selection strategies. In
Proceedings of the 6th SDL Forum, 1993, pages 267–278. Elsevier Science Publishers,
1993. [212]

BR87. P. Berman and R. Roos. Learning one-counter languages in polynomial time. In
Proceedings of the 28th IEEE Symposium on the Foundations of Computer Science
(FOCS 1987), pages 61–67, Los Alamitos, CA, 1987. IEEE Computer Society Press.
[578]

Bri89. E. Brinksma. A theory for the derivation of tests. In S. Aggarwal and K. Sabnani,
editors, Proceedings of the 8th IFIP Symposium on Protocol Specification, Testing
and Verification (PSTV 1988). North-Holland, 1989. [167, 168, 176, 212, 405, 407]

Bro86. F. Brooks. No silver bullet. In H.-J. Kugler, editor, Information Processing – Pro-
ceedings of the 10th IFIP World Computer Congress (WCC 1986), pages 1069–1076.
North-Holland/IFIP, 1986. [5]

BRRdS96. Amar Bouali, Anni Ressouche, Valérie Roy, and Robert de Simone. The  user
manual. Technical report, INRIA Sophia Antipolis, April 1996. [226]

BRV95. Ed Brinksma, Arend Rensink, and Walter Vogler. Fair testing. In Insup Lee and
Scott A. Smolka, editors, Proceedings of the 6th International Conference on Concur-
rency Theory (CONCUR 1995), volume 962 of Lecture Notes in Computer Science,
pages 313–327. Springer-Verlag, 1995. [157, 158, 159]

Bry85. R. E. Bryant. Symbolic manipulation of boolean functions using a graphical represen-
tation. In Proceedings of the 22nd ACM/IEEE Design Automation Conference (DAC
1985), pages 688–694. IEEE Computer Society Press, June 1985. [389]

BS01a. Mike Barnett and Wolfram Schulte. Spying on components: A runtime verification
technique. In Proceedings of the OOPSLA 2001 Workshop on Specification and Ver-
ification of Component-Based Systems (SAVBS 2001), 2001. Published as Technical
Report ISU TR #01-09a, Iowa State University. [515]

BS01b. M. Broy and K. Stølen. Specification and Development of Interactive Systems – Focus
on Streams, Interfaces, and Refinement. Springer-Verlag, 2001. [5]

Büc62. J. R. Büchi. On a decision method in restricted second-order arithmetic. In E. Nagel,
P. Suppes, and A. Tarski, editors, Proceedings of the 1st International Congress for
Logic, Methodology, and Philosophy of Science (LMPS 1960), pages 1–12. Stanford
University Press, 1962. [541, 548]

Bur00. Simon Burton. Automated testing from Z specifications. Technical Report YCS-
2000-329, University of York, 2000. [324, 327]

600 Literature

Bur02. Simon Burton. Automated Generation of High Integrity Test Suites from Graphical
Specifications. PhD thesis, University of York, March 2002. [324, 327]

BvdLV95. Tommaso Bolognesi, Jeroen van de Lagemaat, and Chris Vissers, editors. LOTOS-
phere: Software Development with LOTOS. Kluwer Academic, 1995. [405]

BY01. Luciano Baresi and Michal Young. Test oracles. Technical Report CIS-TR-01-02,
University of Oregon, Deptartment of Computer and Information Science, Eugene,
Oregon, U.S.A., August 2001. [514]

CC91. Linda Christoff and Ivan Christoff. Efficient algorithms for verification of equiva-
lences for probabilistic processes. In Kim Guldstrand Larsen and Arne Skou, edi-
tors, Proceedings of the 3rd International Conference on Computer Aided Verifica-
tion (CAV 1991), volume 575 of Lecture Notes in Computer Science, pages 310–321.
Springer-Verlag, 1991. [286]

CCG+02. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-
tiani, and A. Tacchella. NuSMV Version 2: An opensource tool for symbolic model
checking. In E. Brinksma and K. Guldstrand Larsen, editors, Proceedings of the 14th
International Conference on Computer-Aided Verification (CAV 2002), volume 2404
of Lecture Notes in Computer Science, pages 359–364, Copenhagen, Denmark, July
2002. Springer-Verlag. [556]

CCG+03. Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Modu-
lar verification of software components in C. In Proceedings of the 25th International
Conference on Software Engineering (ICSE 2003), pages 385–395. IEEE Computer
Society Press, 2003. [319]

CEP95. CEPSCO. GSM 11.11, Digital cellular telecommunications systems (phase2+); Spec-
ifications of the subscriber identity module – mobile equipment (SIM-ME) interface
(GSM 11.11), 1995. [434]

CEP00. CEPSCO. Common electronic purse specification: Technical specification, 2000.
http://www.cepsco.org. [434]

Čer64. Ján Černý. Poznámka k. homogénnym experimentom s konecnými automatmi.
Matematicko-fysikalny Casopis SAV, 14:208–215, 1964. [40, 51]

CGPT96. M. Clatin, R. Groz, M. Phalippou, and R. Thummel. Two approaches linking test
generation with verification techniques. In A. Cavalli and S. Budkowski, editors, Pro-
ceedings of the 8th International Workshop on Protocol Test Systems (IWPTS 1996).
Chapman & Hall, 1996. [212, 213, 401, 402]

Che02. Albert M. K. Cheng. Real-Time Systems; Scheduling, Analysis, and Verification. John
Wiley & Sons, 2002. [351]

Cho78. Tsun S. Chow. Testing software design modeled by finite-state machines. IEEE Trans-
actions on Software Engineering, 4(3):178–187, May 1978. Special collection based
on the 2nd International Computer Software and Applications Conference (COMP-
SAC 1978). [111, 113, 125, 126, 127, 173, 233, 361, 573, 578]

Chr90. Ivan Christoff. Testing equivalences and fully abstract models for probabilistic pro-
cesses. In Proceedings of the 1st International Conference on Concurrency Theory
(CONCUR 1990), volume 458 of Lecture Notes in Computer Science, pages 126–140.
Springer-Verlag, 1990. [245, 256, 258, 261, 275, 276, 278, 279]

CJR96. Zhou Chaochen, Wang Ji, and Anders P. Ravn. A formal description of hybrid sys-
tems. In Rajeev Alur and Thomas A. Henzinger, editors, Proceedings of the DIMAC-
S/SYCON 1995 Workshop on Hybrid Systems III: Verification and Control, volume
1066 of Lecture Notes in Computer Science, pages 511–530. Springer-Verlag, 1996.
[365]

CJRZ01. Duncan Clarke, Thierry Jéron, Vlad Rusu, and Elena Zinovieva. Automated test and
oracle generation for Smart-Card applications. In Smart Card Programming and

Literature 601

Security. Proceedings of the International Conference on Research in Smart Cards
(E-smard 2001), volume 2140 of Lecture Notes in Computer Science, pages 58–70.
Springer-Verlag, 2001. [414, 416, 429, 434, 436, 437, 438, 439, 445, 446, 448]

CJRZ02. D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. STG: A symbolic test generation tool.
In Proceedings of the 8th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2002), volume 2280 of Lecture Notes
in Computer Science, pages 470–475. Springer-Verlag, 2002. [413, 414, 415, 416]

CJSP93. H. Cho, S.-W. Jeong, F. Somenzi, and C. Pixley. Multiple observation time single
reference test generation using synchronizing sequences. In Proceedings of the Eu-
ropean Conference on Design Automation (EDAC 1993) with the European Event in
ASIC Design, pages 494–498. IEEE Computer Society Press, February 1993. [29, 52]

CKK02. Karel Culik, Juhani Karhumäki, and Jarkko Kari. A note on synchronized automata
and road coloring problem. In Werner Kuich, Grzegorz Rozenberg, and Arto Salo-
maa, editors, Proceedings of the 5th International Conference on Developments in
Language Theory (DLT 2001), volume 2295 of Lecture Notes in Computer Science,
pages 175–185. Springer-Verlag, 2002. [28, 52]

CL95. Duncan Clarke and Insup Lee. Testing real-time constraints in a process algebraic
setting. In Proceedings of the 17th International Conference on Software Engineering
(ICSE 1995), pages 51–60. ACM Press, 1995. [355]

CL97a. Duncan Clarke and Insup Lee. Automatic generation of tests for timing constraints
from requirements. In Proceedings of the 3rd International Workshop on Object-
Oriented Real-Time Dependable Systems (WORDS 1997), pages 199–206. IEEE
Computer Society Press, 1997. [355]

CL97b. Duncan Clarke and Insup Lee. Automatic test generation for the analysis of a real-
time system: Case study. In Proceedings of the 3rd IEEE Real-Time Technology and
Applications Symposium (RTAS 1997), pages 112–124. IEEE Computer Society Press,
1997. [355, 357]

Cla76. Lori A. Clarke. A system to generate test data and symbolically execute programs.
IEEE Transactions on Software Engineering, SE-2(3):215–222, September 1976.
[332, 336]

CLRS01. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms. MIT Press and McGraw-Hill Book Company, Cambridge,
MA, 2 edition, 2001. [37]

CO00. Rachel Cardell-Oliver. Conformance tests for real-time systems with timed automata
specifications. Formal Aspects of Computing, 12(5):350–371, 2000. [235, 238, 242,
243, 358]

COG98. Rachel Cardell-Oliver and Tim Glover. A practical and complete algorithm for testing
real-time systems. In A. P. Ravn and H. Rischel, editors, Proceedings of the 5th Inter-
national Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT 1998), volume 1486 of Lecture Notes in Computer Science, pages 251–261.
Springer-Verlag, 1998. [235, 241]

Coh. S. Cohen. JTrek. Compaq, http://www.compaq.com/java/download/jtrek.
[525]

CPB98. S. Barbey C. Peraire and D. Buchs. Test selection for object-oriented software based
on formal specifications. In D. Gries and W. P. de Roever, editors, Proceedings of
the International Conference on Programming Concepts and Methods (PROCOMET
1998), volume 125 of IFIP Conference Proceedings, pages 385–403. Chapman and
Hall, 1998. [340]

CPHP87. P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A declarative language
for programming synchronous systems. In Conference Record of the 14th Annual

602 Literature

ACM Symposium on Principles of Programming Languages (POPL 1987), pages 178–
188, Munich, Germany, January 21–23, 1987. ACM SIGACT-SIGPLAN, ACM Press.
[386]

ČPR71. Ján Černý, Alica Pirická, and Blanka Rosenauerová. On directable automata. Kyber-
netika, 7(4):289–298, 1971. [28, 51]

CPS93. R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A semantics-
based verification tool for finite state systems. ACM Transactions on Programming
Languages and Systems (TOPLAS), 15(1):36–72, January 1993. [556]

CS92. Rance Cleaveland and Bernhard Steffen. A linear-time model-checking algorithm for
the alternation-free modal mu-calculus. In Kim G. Larsen and Arne Skou, editors,
Proceedings of the 3rd Conference on Computer Aided Verification (CAV 1991), vol-
ume 575, pages 48–58, Berlin, Germany, 1992. Springer-Verlag. [547]

CSE96. J. Callahan, F. Schneider, and S. Easterbrook. Specification-based testing using model
checking. In Proceedings of the 2nd SPIN Workshop 1996, pages 193–207, 1996.
[344]

CSZ92. R. Cleaveland, S. Smolka, and A. Zwarico. Testing preorders for probabilistic pro-
cesses. In W. Kuich, editor, Proceedings of the 19th International Colloquium on
Automata, Languages and Programming (ICALP 1992), volume 623 of Lecture Notes
in Computer Science, pages 708–719. Springer-Verlag, 1992. [245, 256, 258, 263,
274, 276, 278]

DAV93. K. Drira, P. Azéma, and F. Vernadat. Refusal graphs for conformance tester genera-
tion and simplification: A computational framework. In A. Danthine, G. Leduc, and
P. Wolper, editors, Proceedings of the 8th International Symposium on Protocol Spec-
ification, Testing and Verification (PSTV 1993), volume C-16 of IFIP Transactions,
pages 257–272. North-Holland, 1993. [181, 184]

Dav02. Gordon B. Davis. Anytime/anyplace computing and the future of knowledge work.
Communications of the ACM, 45(12):67–73, December 2002. [509]

DBG01. Julia Dushina, Mike Benjamin, and Daniel Geist. Semi-formal test generation with
Genevieve. In Proceedings of the Design Automation Conference (DAC 2001), pages
617–622. ACM Press, 2001. [429, 432, 433, 434, 437, 438, 439, 443, 444, 445, 446,
447, 448]

dBORZ99. Lydie du Bousquet, Farid Ouabdesselam, Jean-Luc Richier, and N. Zuanon. Lutess:
A specification-driven testing environment for synchronous software. In Proceedings
of the 21st International Conference on Software Engineering (ICSE 1999), pages
267–276. ACM Press, 1999. [386, 388, 390]

dBRS+00. L. du Bousquet, S. Ramangalahy, S. Simon, C. Viho, A. Belinfante, and R. G.
de Vries. Formal test automation: The conference protocol with TGV/Torx. In
H. Ural, R. L. Probert, and G. von Bochmann, editors, Proceedings of the IFIP 13th
International Conference on Testing of Communicating Systems (TestCom 2000), vol-
ume 176 of IFIP Conference Proceedings, pages 221–228. Kluwer Academic, 2000.
[410, 411, 413, 424, 426, 433]

dBZ99. L. du Bousquet and N. Zuanon. An overview of Lutess, a specification-based tool for
testing synchronous software. In Proceedings of the 14th IEEE International Confer-
ence on Automated Software Engineering (ASE 1999), pages 208–215. IEEE Com-
puter Society Press, October 1999. [424]

Den91. Richard Denney. Test-case generation from Prolog-based specifications. IEEE Soft-
ware, 8(2):49–57, 1991. [327, 329]

DF93. Jeremy Dick and Alain Faivre. Automating the generation and sequencing of test
cases from model-based specifications. In Jim C. P. Woodcock and Peter G. Larsen,
editors, Proceedings of the 1st International Symposium of Formal Methods Europe:

Literature 603

Industrial-Strength Formal Methods (FME 1993), volume 670 of Lecture Notes in
Computer Science, pages 268–284. Springer-Verlag, 1993. [321]

DGJV01. S. Dudani, J. Geada, G. Jakacki, and D. Vainer. Dynamic assertions using TXP. In
K. Havelund and G. Roşu, editors, Proceedings of the 1st Workshop on Run-time Ver-
ification (RV 2001), volume 55(2) of Electronic Notes in Theoretical Computer Sci-
ence. Elsevier Science Publishers, 2001. [537]

DGN02. Z. R. Dai, J. Grabowski, and H. Neukirchen. Timed TTCN-3 – A Real-Time Exten-
sion for TTCN-3. In I. Schieferdecker, H. König, and A. Wolisz, editors, Testing of
Communicating Systems, volume 14, Berlin, March 2002. Kluwer Academic. [491]

DGNP04. Z. R. Dai, J. Grabowski, H. Neukirchen, and H. Pals. From design to test with UML.
In R. Groz and R. Hierons, editors, Proceedings of the 16th IFIP International Confer-
ence on Testing of Communication Systems (TestCom 2004), Lecture Notes in Com-
puter Science, pages 33–49. Springer-Verlag, March 2004. [483]

DH03a. F. Drewes and J. Högberg. Learning a regular tree language from a teacher. In Z. Ésik
and Z. Fülöp, editors, Proceedings of the 7th International Conference on Develop-
ments in Language Theory (DLT 2003), volume 2710 of Lecture Notes in Computer
Science, pages 279–291. Springer-Verlag, 2003. [578]

DH03b. F. Drewes and J. Högberg. Learning a regular tree language from a teacher even more
efficiently. Technical Report 03.11, Umeå University, 2003. [578]

DJ01. M. Ducasse and E. Jahier. Efficient automated trace analysis: Examples with mor-
phine. In K. Havelund and G. Rosu, editors, Proceedings of the 1st Workshop on Run-
time Verification (RV 2001), volume 55(2) of Electronic Notes in Theoretical Com-
puter Science. Elsevier Science Publishers, 2001. [537]

DJC94. Michel Diaz, Guy Juanole, and Jean-Pierre Courtiat. Observer – a concept for formal
on-line validation of distributed systems. IEEE Transactions on Software Engineer-
ing, 20(12):900–913, 1994. [515]

DLP77. R. DeMillo, R. Lipton, and A. Perlis. Social processes and proofs of theorems and
programs. In Conference Record of the 4th ACM SIGACT-SIGPLAN Symposium of
Principles of Programming Languages (POPL 1977), pages 206–214, 1977. [17]

DN84. J. Duran and S. C. Ntafos. An Evaluation of Random Testing. IEEE Transactions on
Software Engineering, SE-10(4):438–444, July 1984. [7, 18, 299, 301, 302, 303]

dN87. Rocco de Nicola. Extensional equivalences for transition systems. Acta Informatica,
24:211–237, 1987. [142, 161]

dNH84. Rocco de Nicola and Matthew Hennessy. Testing equivalences for processes. Theo-
retical Computer Science, 34:83–133, 1984. [139, 148, 149, 245, 270, 276]

DS95. Jim Davies and Steve Schneider. A brief history of timed CSP. Theoretical Computer
Science, 138(2):243–271, 1995. [351]

DS03. D. Drusinsky and M. T. Shing. Monitoring temporal logic specifications combined
with time series constraints. Journal of Universal Computer Science, 9(11):1261–
1276, November 2003. [514]

Duc90. M. Ducasse. Opium: An extendable trace analyser for Prolog. The Journal of Logic
Programming, 39:177–223, 1990. [537]

Duc99. M. Ducasse. Coca: An automated debugger for C. In Proceedings of the 21st In-
ternational Conference on Software Engineering (ICSE 1999), pages 504–513. ACM
Press, 1999. [537]

dVBF02. René G. de Vries, Axel Belinfante, and Jan Feenstra. Automated testing in practice:
The highway tolling system. In Ina Schieferdecker, Harmut König, and Adam Wolisz,
editors, Proceedings of the IFIP 14th International Conference on Testing Communi-
cating Systems (TestCom 2002), volume 210 of IFIP Conference Proceedings, pages
219–234. Kluwer Academic, 2002. [410, 413]

604 Literature

dVT98. R. G. de Vries and J. Tretmans. On-the-fly conformance testing using S. In G. Holz-
mann, E. Najm, and A. Serhrouchni, editors, Proceedings of the 4th Workshop on
Automata Theoretic Verification with the S Model Checker (SPIN 1998), number
98 S 002 in ENST Technical Report, pages 115–128, Paris, France, November 1998.
Ecole Nationale Supérieure des Télécommunications. [213, 413]

ECGN01. Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynami-
cally discovering likely program invariants to support program evolution. IEEE Trans-
actions on Software Engineering, 27(2):99–123, February 2001. [531, 532, 536, 537]

ECla. EClipse. http://www.eclipse.org/. [488]
ECLb. Eclipse constraint logic programming system. http://www.icparc.ic.ac.uk/

eclipse. [396]
Eer94. E. H. Eertink. Simulation Techniques for the Validation of LOTOS Specifications. PhD

thesis, University of Twente, Enschede, Netherlands, March 1994. [413]
EFM97. A. Engels, L. Feijs, and S. Mauw. Test generation for intelligent networks using model

checking. In Ed Brinksma, editor, Proceeedings of the 3rd International Workshop
on Tools and Algorithms for Construction and Analysis of Systems (TACAS 1997),
volume 1217 of Lecture Notes in Computer Science, pages 384–398. Springer-Verlag,
1997. [344]

EGKN99. Michael D. Ernst, William G. Griswold, Yoshio Kataoka, and David Notkin. Dynam-
ically discovering pointer-based program invariants. Technical Report UW-CSE-99-
11-02, University of Washington, Seattle, WA, November 1999. [532]

EH00. K. Etessami and G. J. Holzmann. Optimizing Büchi automata. In C. Palamidessi, edi-
tor, Proceedings of 11th International Conference on Concurrency Theory (CONCUR
2000), volume 1877 of Lecture Notes in Computer Science, pages 153–167. Springer-
Verlag, 2000. [548]

EJ73. J. Edmonds and E. L. Johnson. Matching, Euler tours and the chinese postman. Math-
ematical Programming, 5:88–124, 1973. [110]

EL85. E. Allen Emerson and Chin-Laung Lei. Modalities for model checking (extended ab-
stract): Branching time strikes back. In Conference Record of the 12th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL 1985), pages
84–96. ACM Press, 1985. [547]

Epp90. David Eppstein. Reset sequences for monotonic automata. SIAM Journal on Comput-
ing, 19(3):500–510, June 1990. [28, 29, 37, 38, 46, 51, 52]

EW92. E. H. Eertink and D. Wolz. Symbolic Execution of LOTOS Specifications. In M. Diaz
and R. Groz, editors, Proceedings of the 5th International Conference on Formal De-
scription Techniques (FORTE 1992), pages 295–310. North-Holland, 1992. [413]

Fel68. W. Feller. An Introduction to Probability Theory and Its Applications. John Wiley
and Sons, 1968. [248]

Fet88. J. Fetzer. Program verification: The very idea. Communications of the ACM,
37(9):1048–1063, September 1988. [6, 17]

FGK+96. J-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighire-
anu. CADP: A protocol validation and verification toolbox. In Rajeev Alur and
Thomas A. Henzinger, editors, Proceedings of the 8th International Conference on
Computer Aided Verification (CAV 1996), volume 1102 of Lecture Notes in Computer
Science, pages 437–440. Springer-Verlag, 1996. [408, 409, 410, 413]

FGM+92. J.-C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, and J. Sifakis. A
toolbox for the verification of LOTOS programs. In Proceedings of the 14th Interna-
tional Conference on Software Engineering (ICSE 1992), pages 246–259. ACM Press,
1992. [556]

Literature 605

FHP02. Eitan Farchi, Alan Hartman, and Shlomit Pinter. Using a model-based test generator
to test for standard conformance. IBM Systems Journal, 41(1):89–110, 2002. [429,
433, 436, 437, 438, 439, 443, 445, 446, 447, 448]

FHS96. A. Schmidt F. Huber, B. Schätz and K. Spies. Autofocus – A tool for distributed
systems specification. In Proceedings of the 4th International Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT 1996), volume 1135
of Lecture Notes in Computer Science, pages 467–470. Springer-Verlag, 1996. [336]

FJJV96. J.-C. Fernandez, C. Jard, T. Jéron, and G. Viho. Using on-the-fly verification tech-
niques for the generation of test suites. In Rajeev Alur and Thomas A. Henzinger,
editors, Proceedings of the 8th International Conference on Computer Aided Verifica-
tion (CAV 1996), volume 1102 of Lecture Notes in Computer Science, pages 348–359,
New Brunswick, NJ, USA, 1996. Springer-Verlag. [291, 408]

FK00. D. Freitag and N. Kushmerick. Boosted wrapper induction. In Proceedings of the 17th
National Conference on Artificial Intelligence (AAAI 2000) and 12th Conference on
Innovative Applications of Artificial Intelligence (IAAI 2000), Austin, Texas, August
2000. American Association for Artificial Intelligence, The AAAI Press. Copublished
and distributed by The MIT Press. [533]

FKL99. Lauret Fournier, Anatoly Koyfman, and Moshe Levinger. Developing an architecture
validation suite – application to the PowerPC architecture. In Proceedings of the 36th
ACM Design Automation Conference (DAC 1999), pages 189–194. ACM Press, 1999.
[429, 433, 435, 437, 438, 440, 445, 446, 449]

FKR+93. Y. Freund, M. Kearns, D. Ron, R. Rubinfeld, R. Schapire, and L. Sellie. Efficient
learning of typical finite automata from random walks. In Proceedings of the 25th
ACM Symposium on the Theory of Computing (STOC 1993), pages 315–324, New
York, NY, 1993. ACM Press. [578]

Fou03. Apache Software Foundation. Byte code engineering library (BCEL). http:

//jakarta.apache.org/bcel/, 2003. Subproject of Jakarta. [514]
Fra. France Telecom R&D website. http://www.rd.francetelecom.com/. [401]
Fri90. Joel Friedman. On the road coloring problem. Proceedings of the American Mathe-

matical Society, 110(4):1133–1135, December 1990. [28]
FvBK+91. S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test se-

lection based on finite state models. IEEE Transactions on Software Engineering,
17(6):591–603, June 1991. [114, 115, 118]

FW88. P. G. Frankl and E. J. Weyuker. An applicable family of data flow testing criteria.
IEEE Transactions on Software Engineering, SE-14:1483–1498, October 1988. [18,
294, 297]

FW93. P. G. Frankl and E. J. Weyuker. A formal analysis of the fault-detecting ability of
testing methods. IEEE Transactions on Software Engineering, 19(3):202–213, 1993.
[304]

Gar98. Hubert Garavel. OPEN/CAESAR: An open software architecture for verification,
simulation, and testing. In B. Steffen, editor, Proceedings of the 4th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 1998), volume 1384 of Lecture Notes in Computer Science, pages 68–84.
Springer-Verlag, 1998. [409, 410, 413]

Gei01. M. Geilen. On the construction of monitors for temporal logic properties. In
K. Havelund and G. Roşu, editors, Proceedings of the 1st International Workshop
on Run-time Verification (RV 2001), volume 55(2) of Electronic Notes in Theoretical
Computer Science. Elsevier Science Publishers, 2001. [537]

GG75. John B. Goodenough and Susan L. Gerhart. Toward a theory of test data selection.
IEEE Transactions on Software Engineering, 1(2):156–173, June 1975. [7, 17, 106]

606 Literature

GG93. Matthias Grochtmann and Klaus Grimm. Classification trees for partition testing.
Software Testing, Verification and Reliability, 3(2):63–82, 1993. [323]

GGSV02. Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte, and Margus Veanes. Gener-
ating finite state machines from abstract state machines. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis (ISSTA 2002), pages 112–122.
ACM Press, 2002. [404, 405]

GH99. A. Gargantini and C. Heitmeyer. Using model checking to generate tests from re-
quirements specifications. In O. Nierstrasz and M. Lemoine, editors, Proceedings of
the 7th European Software Engineering Conference, held Jointly with the 7th ACM
SIGSOFT Symposium on the Foundations of Software Enigneegin (ESEC/FSE 1999),
volume 1687 of Lecture Notes in Computer Science, pages 146–163. Springer-Verlag,
1999. [344]

GH03. A. Goldberg and K. Havelund. Instrumentation of java bytecode for runtime analy-
sis. In S. Eisenbach, G. T. Leavens, Peter Müller, A. Poetzsch-Heffter, and E. Poll,
editors, Proceedings of the 5th ECOOP Workshop on Formal Techniques for Java-like
Programs (FTfJP 2003), pages 151–159, July 2003. Technical Report tr 408, ETH
Zürich. [514]

GHHD04. Q. Guo, R. M. Hierons, M. Harman, and K. Derderian. Computing unique input/out-
put sequences using genetic algorithms. In A. Petrenko and A. Ulrich, editors, Pro-
ceedings of the 3rd International Workshop on Formal Approaches to Testing of Soft-
ware (FATES 2003), volume 2931 of Lecture Notes in Computer Science, pages 164–
177. Springer-Verlag, 2004. [101, 102, 103]

GHR93. N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed system design:
The integration of functional specification and performance analysis using stochastic
process algebras. In Lorenzo Donatiello and Randolph D. Nelson, editors, Perfor-
mance Evaluation of Computer and Communication Systems, Joint Tutorial Papers of
Performance 1993 and Sigmetrics 1993, volume 729 of Lecture Notes in Computer
Science, pages 121–146. Springer-Verlag, 1993. [254]

Gil61. Arthur Gill. State-identification experiments in finite automata. Information and Con-
trol, 4(2–3):132–154, September 1961. [33, 45, 51, 56]

Gin58. Seymour Ginsburg. On the length of the smallest uniform experiment which distin-
guishes the terminal states of a machine. Journal of the ACM (JACM), 5(3):266–280,
July 1958. [29, 30, 34, 51]

GJ79. M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory
of NP-completeness. W. H. Freeman and Company, New York, 1979. [46, 48]

GJL04. O. Grinchtein, B. Jonsson, and M. Leucker. Learning of event-recording automata.
Technical report, Uppsala University, 2004. [576, 578]

GJS97. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. The Sunsoft Press
Java Series. Addison-Wesley, New York, 1997. [434]

GL02. Hubert Garavel and Frédéric Lang. NTIF: A general symbolic model for communicat-
ing sequential processes with data. In Doron Peled and Moshe Y. Vardi, editors, Pro-
ceedings on the 22nd IFIP/WG6.1 International Conference on Formal Techniques for
Networked and Distributed Systems (FORTE 2002), volume 2529 of Lecture Notes in
Computer Science, pages 276–291, Houston, Texas, USA, November 2002. Springer-
Verlag. Full version available as INRIA Research Report RR-4666. [416]

GO01. P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In G. Berry,
H. Comon, and A. Finkel, editors, Proceedings of the 13th Conference on Computer
Aided Verification (CAV 2001), volume 2102 of Lecture Notes in Computer Science,
pages 53–65. Springer-Verlag, 2001. [548]

Gog01. Nicolae Goga. Comparing TorX, Autolink, TGV and UIO test algorithms. In Rick
Reed and Jeanne Reed, editors, Meeting UML – Proceedings of the 10th International

Literature 607

SDL Forum, 2001, volume 2078 of Lecture Notes in Computer Science, pages 379–
402. Springer-Verlag, 2001. [422, 423]

Göh98. Wolf Göhring. Minimal initializing word: a contribution to Černý’s conjecture. Jour-
nal of Automata, Languages and Combinatorics, 2(4):209–226, 1998. [28, 51]

Gol89. David E. Goldberg. Genetic Algorithms in Search, Optimization & Machine Learning.
Addison-Wesley, 1989. [373]

Gon01. L. Gong. JXTA: A network programming environment. IEEE Internet Computing,
5(3):88–95, May/June 2001. [511]

GPY02. A. Groce, D. Peled, and M. Yannakakis. Adaptive model checking. In J.-P. Katoen
and P. Stevens, editors, Proceedings of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2002), volume 2280
of Lecture Notes in Computer Science, pages 357–370. Springer-Verlag, 2002. [507,
578, 580, 581]

GRMD01. A. Q. Gates, S. Roach, O. Mondragon, and N. Delgado. DynaMICs: Comprehensive
support for run-time monitoring. In K. Havelund and G. Rosu, editors, Proceedings
of the 1st International Workshop on Runtime Verification (RV 2001), volume 55(2) of
Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers, 2001.
[537]

GRR03. A. Gargantini, E. Riccobene, and S. Rinzivillo. Using Spin to generate tests from ASM
specifications. In E. B̈orger, A. Gargantini, and E. Riccobene, editors, Proceedings of
the 10th International Workshop on Abstract State Machines (ASM 2003), volume
2589 of Lecture Notes in Computer Science, pages 263–277. Springer-Verlag, 2003.
[344]

Gru68. F. Gruenberger. Computers and communication: Toward a computer utility. Prentice-
Hall, 1968. [536]

GS97. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In O. Grumberg,
editor, Proceedings of the 9th International Conference on Computer Aided Verifica-
tion (CAV 1997), volume 1254 of Lecture Notes in Computer Science, pages 72–83,
Haifa, Israel, 1997. Springer-Verlag. [14]

GSDH97. Jens Grabowski, Rudolf Scheuer, Zhen Ru Dai, and Dieter Hogrefe. Applying SAM-
STAG to the B-ISDN protocol SSCOP. In M. Kim, S. Kang, and K. Hong, editors,
Proceedings of the 10th International Workshop on Testing of Communication Sys-
tems (IWTCS 1997). Chapman & Hall, 1997. [420, 422]

GSSL99. D. F. Gordon, W. M. Spears, O. Sokolsky, and Insup Lee. Distributed spatial con-
trol, global monitoring and steering of mobile physical agents. In Proceedings of
the IEEE International Conference on Information, Intelligence, and Systems (ICIIS
1999), pages 681–688. IEEE Computer Society Press, November 1999. [535]

Gur94. Yuri Gurevich. Evolving algebras 1993: Lipari Guide. In Egon Börger, editor, Specifi-
cation and Validation Methods, pages 9–37. Oxford University Press, 1994. [23, 403,
405]

Gut99. W. Gutjahr. Partition testing versus random testing: The influence of uncertainty.
IEEE Transactions on Software Engineering, 25(5):661–674, 1999. [7, 18, 299, 303]

GW98. Mathias Grochtmann and Joachim Wegener. Evolutionary testing of temporal correct-
ness. In Proceedings of the 2nd Software Quality Week Europe (QWE 1998), Brussel,
Belgium, 1998. [374]

Ham94. R. Hamlet. Random testing. In J. J. Marciniak, editor, Encyclopedia of Software
Testing, volume 2. Addison-Wesley, 1994. [7, 18]

Har87. David Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231–274, June 1987. [23]

608 Literature

Har00. Jerry J. Harrow, Jr. Runtime checking of multithreaded applications with visual
threads. In K. Havelund, J. Penix, and W. Visser, editors, SPIN Model Checking and
Software Verification: Proceedings of the 7th International SPIN Workshop, 2000,
volume 1885 of Lecture Notes in Computer Science, pages 331–342. Springer-Verlag,
2000. [517]

HCL+03. Hyoung Seok Hong, Sung Deok Cha, Insup Lee, Oleg Sokolsky, and Hasan Ural. Data
flow testing as model checking. In Proceedings of the 25th International Conference
on Software Engineering (ICSE 2003), pages 232–242. IEEE Computer Society Press,
2003. [344]

HCRP91. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-flow pro-
gramming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, Septem-
ber 1991. [386, 387]

Hen64. F. C. Hennie. Fault detecting experiments for sequential circuits. In Proceedings of the
5th Annual Symposium on Switching Circuit Theory and Logical Design, pages 95–
110, Princeton, New Jersey, 11–13 November 1964. IEEE Computer Society Press.
[45, 118, 121]

Hen88. M. Hennessy. Algebraic Theory of Processes. MIT Press, Cambridge, 1988. [197]
Hen96. Thomas A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th

Annual Symposium on Logic in Computer Science (LICS 1996), pages 278–292. IEEE
Computer Society Press, 1996. [365, 366]

HFT00. L. Heerink, J. Feenstra, and J. Tretmans. Formal Test Automation: The Conference
Protocol with P. In H. Ural, R. L. Probert, and G. von Bochmann, editors, Pro-
ceedings of the 13th IFIP International Conference on Testing of Communicating Sys-
tems (TestCom 2000), pages 211–220. Kluwer Academic, 2000. [400, 401, 424, 426,
433]

HGW04. M. Heimdahl, D. George, and R. Weber. Specification test coverage adequacy cri-
teria = specification test generation inadequacy criteria? In Proceedings of the 8th
IEEE High Assurance in Systems Engineering Workshop (HASE 2004), pages 178–
186. IEEE Computer Society Press, March 2004. [21]

HHK96. R. H. Hardin, Zvi Har’El, and Robert P. Kurshan. COSPAN. In Rajeev Alur and
Thomas A. Henzinger, editors, Proceedings of the 8th International Conference on
Computer Aided Verification (CAV 1996), volume 1102 of Lecture Notes in Computer
Science, pages 423–427. Springer-Verlag, 1996. [556]

HHWT97. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid
systems. Sotftware Tools for Technology Transfer, 1(1–2):110–122, 1997. [415, 416]

Hib61. Thomas N. Hibbard. Least upper bounds on minimal terminal state experiments for
two classes of sequential machines. Journal of the ACM (JACM), 8(4):601–612, Oc-
tober 1961. [29, 35, 42, 51]

Hil96. Jane Hillston. A compositional approach to performance modelling. Cambridge Uni-
versity Press, 1996. [254]

HJGP99. Wai-Ming Ho, Jean-Marc Jézéquel, Alain Le Guennec, and François Pennaneac’h.
UMLAUT: An extendible UML transformation framework. In Proceedings of the
14th IEEE International Conference on Automated Software Engineering (ASE 1999),
pages 275–278, Florida, 1999. IEEE Computer Society Press. [409, 410]

HJL96. C. Heitmeyer, R. Jeffords, and B. Labaw. Automated Consistency Checking of Re-
quirements Specifications. ACM Transactions on Software Engineering and Method-
ology, 5(3):231–261, July 1996. [23]

HJL03. John Hakansson, Bengt Jonsson, and Ola Lundqvist. Generating on-line test oracles
from temporal logic specifications. International Journal on Software Tools for Tech-
nology Transfer, 4(4):456–471, 2003. [537]

Literature 609

HK87. Z. Har’El and R. P. Kurshan. COSPAN User Guide. AT&T Bell Laboratories, October
1987. [556]

HKWT95. Thomas A. Henzinger, Peter W. Kopke, and Howard Wong-Toi. The expressive
power of clocks. In Automata, Languages and Programming, volume 944 of Lec-
ture Notes in Computer Science, pages 417–428. Springer-Verlag, 1995. [217]

HL02a. Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using auto-
matic anomaly detection. In Proceedings of the 24th International Conference on
Software Engineering (ICSE 2002), pages 291–301. ACM Press, 2002. [534, 536]

HL02b. R. Hightower and N. Lesiecki. Java Tools for eXtreme Programming. Wiley Computer
Publishing. John Wiley & Sons, 2002. [487]

HLSU02. H. S. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal logic based theory of test
coverage and generation. In J.-P. Katoen and P. Stevens, editors, Proceedings of the 8th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2002), volume 2280 of Lecture Notes in Computer Science, pages
327–341. Springer-Verlag, 2002. [7, 344]

HM80. M. Henessy and R. Milner. Observing nondeterminism and concurrency. In
J. de Bakker and M. van Leeuwen, editors, Proceedings of the 7th International Col-
loquium on Automata, Languages, and Programming (ICALP 1980), volume 85 of
Lecture Notes in Computer Science, pages 299–309. Springer-Verlag, 1980. [144]

HM85. Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and con-
currency. Journal of the ACM, 32(1):137–161, 1985. [282, 547]

HME03. Michael Harder, Jeff Mellen, and Michael D. Ernst. Improving test suites via opera-
tional abstraction. In Proceedings of the 25th International Conference on Software
Engineering (ICSE 2003), pages 60–71, Portland, Oregon, 2003. IEEE Computer So-
ciety Press. [531]

HMP92. Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What good are digital clocks?
In Proceedings of the 19th International Colloquium on Automata, Languages, and
Programming (ICALP 1992), volume 632 of Lecture Notes in Computer Science,
pages 545–558. Springer-Verlag, 1992. [215]

HN83. M. Hennessy and R. De Nicola. Testing equivalences for processes. In Proceed-
ings of the 10th Interantional Colloquium on Automata, Languages and Programming
(ICALP 1983), 1983. [130, 221, 224]

HN99. A. Hartman and K. Nagin. TCBeans, software test toolkit. In Proceedings of the 12th
International Software Quality Week (QW 1999), 1999. [434, 439]

HNS97. Steffen Helke, Thomas Neustupny, and Thomas Santen. Automating test case gener-
ation from Z specifications with Isabelle. In Jonathan P. Bowen, Michael G. Hinchey,
and David Till, editors, Proceedings of the 10th International Conference of Z Users:
The Z Formal Specification Notation (ZUM 1997), volume 1212 of Lecture Notes in
Computer Science, pages 52–71. Springer-Verlag, 1997. [321, 322, 323, 324]

HNS03. H. Hungar, O. Niese, and B. Steffen. Domain-specific optimization in automata learn-
ing. In W. A. Hunt Jr. and F. Somenzi, editors, Proceedings of the 15th International
Conference on Computer Aided Verification (CAV 2003), Lecture Notes in Computer
Science, pages 315–327. Springer-Verlag, 2003. [575, 577]

HNSY92. Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic
model checking for real-time systems. In Proceedings of the 7th Symposium of Logics
in Computer Science (LICS 1992), pages 394–406, Santa Cruz, California, 1992. IEEE
Computer Scienty Press. [217]

Hoa85. C. A. R. Hoare. Communicating Sequential Processes. International Series in Com-
puter Science. Prentice-Hall, 1985. [351]

610 Literature

Hol91. Gerard J. Holzmann. Design and Validation of Protocols. Prentice-Hall Software
Series, 990157918X. Prentice-Hall, Englewood Cliffs, N. J., 1991. [25, 108, 110,
413]

Hol97. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineer-
ing, 23(5):279–295, 1997. [556]

Hol01. G. Holzmann. From code to models. In Proceedings of the 2nd International Con-
ference on Applications of Concurrency to System Design (ACSD 2001), pages 3–10.
IEEE Computer Society Press, 2001. [14]

Hop71. J. E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In
Z. Kohavi and A. Paz, editors, Proceedings of the International Symposium on Theory
of Machines and Computations, 1971, pages 189–196, New York, 1971. Academic
Press. [84, 85, 590, 591]

How77. W. Howden. Symbolic testing and the dissect symbolic evaluation system. IEEE
Trans. on Software Engineering, SE-3(4):266–278, July 1977. [335]

HPPS03a. G. Hahn, J. Philipps, A. Pretschner, and T. Stauner. Prototype-based tests for hybrid
reactive systems. In Proceedings of the 14th IEEE International Workshop on Rapid
System Prototyping (RSP 2003), pages 78–86. IEEE Computer Society Press, 2003.
[368, 369, 370]

HPPS03b. G. Hahn, J. Phillips, A. Pretschner, and T. Stauner. Tests for mixed discrete-
continuous reactive systems. Technical Report TUM-I0301, Institut für Informatik,
TU München, 2003. [368, 369]

HR01a. K. Havelund and G. Roşu. Monitoring Java programs with Java PathExplorer. In
K. Havelund and G. Roşu, editors, Proceedings of the 1st Workshop on Runtime Veri-
ficaton (RV 2001), volume 55(2) of Electronic Notes in Theoretical Computer Science.
Elsevier Science Publishers, 2001. [537]

HR01b. Klaus Havelund and Grigore Roşu. Java PathExplorer – a runtime verification tool.
In Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics
and Automation in Space (i-SAIRAS 2001): A New Space Odyssey. 2001. Montreal,
Canada. [510, 517]

HR02. K. Havelund and G. Roşu. Synthesizing monitors for safety properties. In J.-P. Katoen
and P. Stevens, editors, Proceedings of the 8th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2002), volume 2280
of Lecture Notes in Computer Science, pages 324–356. Springer-Verlag, 2002. [507,
521]

HR04. K. Havelund and G. Roşu. An overview of the runtime verification tool Java PathEx-
plorer. Formal Methods in System Design, 24(2):189–215, 2004. [519, 534]

HSE97. F. Huber, B. Schätz, and G. Einert. Consistent graphical specification of distributed
systems. In Proceedings of the 4th International Symposium of Formal Methods Eu-
rope (FME 1997), volume 1313 of Lecture Notes in Computer Science, pages 122–
141. Springer-Verlag, 1997. [397]

Hsi71. E. P. Hsieh. Checking experiments for sequential machines. IEEE Transactions on
Computers, C-20:1152–1166, October 1971. [87, 89]

HT90. D. Hamlet and R. Taylor. Partition test does not inspire confidence. IEEE Transactions
on Software Engineering, 16(12):1402–1411, December 1990. [7, 18, 299, 301]

HT92. Dung T. Huynh and Lu Tian. On some equivalence relations for probabilistic pro-
cesses. Fundamenta Informaticae, 17:211–234, 1992. [286]

HU79. J. Hopcroft and J. Ullman. Introduction to automata theory, languages and computa-
tion. Addison-Wesley, 1979. [210]

IBM. IBM. Gotcha users guide – release 4.0.0. [435]
ID84. M. Ito and Jürgen Duske. On cofinal and definite automata. Acta Cybernetica,

6(2):181–189, 1984. [28]

Literature 611

Ins03. ETSI (European Telecommunication Standards Institute). The testing and test control
notation version 3. In Methods for Testing and Specification (MTC). ETSI, 2003. [455,
456, 467, 473, 483, 487]

IS95. Balázs Imreh and Magnus Steinby. Some remarks on directable automata. Acta Cy-
bernetica, 12(1):23–35, 1995. [40, 51]

IS99. Balázs Imreh and Magnus Steinby. Directable nondeterministic automata. Acta Cy-
bernetica, 14(1):105–115, 1999. [52]

ISO88. ISO/IEC. LOTOS – a formal description technique based on the temporal ordering of
observational behaviour. International Standard 8807, International Organization for
Standardization – Information Processing Systems – Open Systems Interconnection,
Genève, September 1988. [176, 407, 413]

ISO94. ISO/IEC. Information technology – open systems interconnection – conformance
testing methodology and framework, 1994. International ISO/IEC multi-part standard
No. 9646. [485]

ISO02. ISO/IEC. Information technology – Z formal specification notation – syntax, type sys-
tem, and semantics. International Organization for Standardization ISO/IEC 13568,
2002. [319, 321]

ITU99. ITU. ITU-T recommendation Z.120: Message sequence charts (MSC). ITU Telecom-
munication Standard Sector, Geneva (Switzerland), 1999. [456]

ITU02. ITU. The evolution of TTCN. http://www.itu.int/ITU-T/studygroups/

com07/ttcn.html, 2002. [453]
Jac01. M. Jackson. Problem Frames: Analyzing and structuring software development prob-

lems. Addison Wesley, 2001. [9]
JBu. JBuilder. http://www.borland.com/jbuilder/personal/index.html. [488]
JG90. F. Jahanian and A. Goyal. A formalism for monitoring real-time constraints at run-

time. In Proceedings of the 20th International Symposium on Fault-Tolerant Comput-
ing Systems (FTCS 1990), pages 148–155, 1990. [514]

JGL91. Bengt Jonsson and Kim Guldstrand Larsen. Specification and refinement of proba-
bilistic processes. In Proceedings of the 6th IEEE International Symposium on Logic
in Computer Science (LICS 1991), pages 266–277. IEEE Computer Society Press,
1991. [246, 281]

JJ02. Claude Jard and Thierry Jéron. TGV: Theory, principles and algorithms. In Proceed-
ings of the 6th World Conference on Integrated Design and Process Technology (IDPT
2002). Society for Design and Process Science, June 2002. [408, 410]

Jon91. Bengt Jonsson. Simulations between specifications of distributed systems. In Pro-
ceedings of the 2nd International Conference on Concurrency Theory (CONCUR
1991), volume 527 of Lecture Notes in Computer Science, pages 346–360. Springer-
Verlag, 1991. [267, 281]

JUn. JUnit. http://www.junit.org/. [487]
JY95. Bengt Jonsson and Wang Yi. Compositional testing preorders for probabilistic pro-

cesses. In Proceedings of the 10th IEEE International Symposium on Logic in Com-
puter Science (LICS 1995), pages 431–441. IEEE Computer Society Press, 1995.
[246, 263, 267, 276]

JY02. Bengt Jonsson and Wang Yi. Testing preorders for probabilistic processes can be
characterized by simulations. Theoretical Computer Science, 282(1):33–51, 2002.
[246, 256, 257, 263, 266, 267, 276, 280, 281]

Kar03. Jarkko Kari. Synchronizing finite automata on eulerian digraphs. Theoretical Com-
puter Science, 295(1–3):223–232, 2003. [51, 52]

KCS98. K. Narayan Kumar, Rance Cleaveland, and Scott Smolka. Infinite probabilistic and
non-probabilistic testing. In Proceedings of the 18th Conference on Foundations

612 Literature

of Software Technology and Theoretical Computer Science (FSTTCS 1998), volume
1530 of Lecture Notes in Computer Science, pages 209–220. Springer-Verlag, 1998.
[246, 256]

Kfo70. Denis J. Kfoury. Synchronizing sequences for probabilistic automata. Studies in
Applied Mathematics, 49(1):101–103, March 1970. [52]

KGHS98. B. Koch, J. Grabowski, D. Hogrefe, and M. Schmitt. AutoLink – a tool for automatic
test generation from SDL specifications. In Proceedings of the IEEE International
Workshop on Industrial Strength Formal Specification Techniques (WIFT 1998), Oc-
tober 1998. [420, 421, 422]

KHMP94. Arjun Kapun, Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Proving safety
properties of hybrid systems. In Hans Langmaack, Willem P. de Roever, and Jan
Vytopil, editors, Proceedings of the 3rd International Symposium on Formal Tech-
niques in Real-Time and Fault-Tolerant Systems (FTRTFT 1994), volume 863 of Lec-
ture Notes in Computer Science, pages 431–454. Springer-Verlag, 1994. [365]

Kin76. James C. King. Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394, July 1976. [331, 334, 335]

KJG99. A. Kerbrat, T. Jéron, and R. Groz. Automated test generation from SDL specifications.
In R. Dssouli, G. von Bochmann, and Y. Lahav, editors, The Next Millennium – Pro-
ceedings of the 9th SDL Forum, 1999), pages 135–152. Elsevier Science Publishers,
1999. [409, 410]

KKL+01. M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-MaC: A run-time
assurance tool for Java programs. In Proccedings of the 1st International Workshop
on Run-Time Verification (RV 2001), volume 55(2) of Electronic Notes in Theoretical
Computer Science. Elsevier Science Publishers, July 2001. [510, 525]

KKL+02. M. Kim, S. Kannan, I. Lee, M. Viswanathan, and O. Sokolsky. Computational analysis
of run-time monitoring. In K. Havelund and G. Roşu, editors, Proccedings of the
2nd Workshop on Run-Time Verification (RV 2002), volume 70(4). Elsevier Science
Publishers, 2002. [530, 535]

KKLS01. Moonjoo Kim, Sampath Kannan, Insup Lee, and Oleg Sokolsky. Java-MaC: a run-
time assurance tool for Java. In Prodeedings of the 1st International Workshop on Run-
time Verification (RV 2001), volume 55 of Electronic Notes in Theoretical Computer
Science, Paris, France, July 2001. Elsevier Science Publishers. [514]

KLS+02. M. Kim, I. Lee, U. Sammapun, J. Shin, and O. Sokolsky. Monitoring, checking, and
steering of real-time systems. In K. Havelund and G. Roşu, editors, Proceedings of the
2nd Workshop on Run-time Verification (RV 2002), volume 70(4) of Electronic Notes
in Theoretical Computer Science. Elsevier Science Publishers, 2002. [530, 535, 537]

KMP+95. W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpiesman, and D. Wonnacott. The
Omega library interface guide. Technical Report UMIACS-TR-95-41, University of
Maryland at College Park, 1995. http://www.cs.umd.edu/projects/omega/.
[416]

Koh78. Zvi Kohavi. Switching and Finite Automata Theory. McGraw-Hill, New York, NY,
second edition, 1978. [51, 59, 60, 66, 85, 87, 88, 89, 174]

Kop97. Hermann Kopetz. Real-Time Systems – Design Principles for Distributed Embedded
Applications. Kluwer Academic, 1997. ISBN: 0-7923-9894-7. [374]

Koz77. Dexter Kozen. Lower bounds for natural proof systems. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science (FOCS 1977), pages 254–
266, Providence, Rhode Island, October 1977. IEEE Computer Society Press. [48,
68]

Koz83. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, December 1983. [547]

Literature 613

KPN. KPN website. http://www.kpn.com/. [399]
KPV03. Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. Generalized symbolic

execution for model checking and testing. In Proceedings of the 9th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
2003. [335, 342, 343]

KRS87. A. A. Klyachko, I. K. Rystsov, and M. A. Spivak. An extremal combinatorial problem
associated with the bound on the length of a synchronizing word in an automaton.
Kibernetika, 25(2):165–171, March–April 1987. Translation from Russian. [28, 40,
51]

KS76. J. G. Kemeny and J. L. Snell. Finite Markov Chains. Springer-Verlag, 1976. [249]
KSW96. Kolyang, Thomas Santen, and Burkhart Wolff. A structure preserving encoding of

Z in Isabelle/HOL. In Joakim von Wright, Jim Grundy, and John Harrison, editors,
Proceedings of the 9th International Conference on Theorem Proving in Higher Order
Logics (TPHOLs 1996), volume 1125 of Lecture Notes in Computer Science, pages
283–298. Springer-Verlag, 1996. [321]

KV94. M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning Theory.
The MIT Press, Cambridge, Massachusetts and London, England, 1994. [570, 574]

KVZ98. Hakim Kahlouche, Cesar Viho, and Massimo Zendri. An industrial experiment in au-
tomatic generation of executable test suites for a cache coherency protocol. In A. Pe-
trenko and N. Yevtushenko, editors, Proceedings of the 11th IFIP/TC6 International
Workshop on Testing of Communicating Systems (TestCom 1998). Chapman & Hall,
September 1998. [429, 433, 435, 437, 438, 439, 444, 445, 446, 448]

Kwa62. Mei-Ko Kwan. Graphic programming using odd or even points. Chinese Math, 1:273–
277, 1962. [110]

Lai02. Richard Lai. A survey of communication protocol testing. Journal of Systems and
Software, 62(1):21–46, May 2002. [25]

Lal85. P. Lala. Fault Tolerant and Fault Testable Hardware Design. Prentice-Hall Interna-
tional, 1985. [88]

Lan90. Rom Langerak. A testing theory for lotos using deadlock detection. In Ed Brinksma,
Giuseppe Scollo, and Chris A. Vissers, editors, Proceedings of the IFIP/WG6.1 9th
International Symposium on Protocol Specification, Testing and Verification (PSTV
1989), pages 87–98. North-Holland, 1990. [156]

LBGG94. I. Lee, P. Brémond-Grégoire, and R. Gerber. A process algebraic approach to the
specification and analysis of resource-bound real-time systems. Proceedings of the
IEEE, 82(1):158–171, January 1994. [351]

LDW03. Tessa Lau, Pedro Domingos, and Daniel S. Weld. Learning programs from traces us-
ing version space algebra. In Proceedings of the International Conference on Knowl-
edge Capture (K-CAP 2003), Sanibel Island, FL, USA, 2003. ACM Press. [534]

Lit. Lite ftp and web sites. ftp://ftp.cs.utwente.nl/pub/src/lotos-tools/ and
http://fmt.cs.utwente.nl/tools/lite/. [405, 407]

LKK+99. I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime assurance
based on formal specifications. In Hamid R. Arabnia, editor, Proceedings of the Inter-
national Conference on Parallel and Distributed Processing Techniques and Applica-
tions (PDPTA 1999), Volume 1, pages 279–287. CSREA Press, 1999. [525, 528]

LLC03. Glen McCluskey & Associates LLC. Javatm test coverage and instrumentation toolk-
its. http://www.glenmccl.com/, 2003. [514]

LP81. H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation.
Prentice-Hall, Englewood Cliffs, 1981. [110]

LP01. B. Legeard and F. Peureux. Génération de séquences de tests à partir d’une
spécification B en PLC ensembliste. In Actes des Approches Formelles dans

614 Literature

l’Assistance au Développement de Logiciels (AFADL 2001), pages 113–130, June
2001. [332, 337, 341]

LPU02. B. Legeard, F. Peureux, and M. Utting. Automated Boundary Testing from Z and B. In
Proceedings of the International Conference on Formal Methods Europe (FME 2002),
volume 2391 of Lecture Notes in Computer Science, pages 21–40, Copenhagen, Den-
mark, July 2002. Springer-Verlag. [332, 337]

LPU04. B. Legeard, F. Peureux, and M. Utting. Controlling test case explosion in test gen-
eration from B formal models. Software Testing, Verification and Reliability (STVR),
14(2):81–103, 2004. [337]

LPY97. Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. Inter-
national Journal on Software Tools for Technology Transfer, 1(1–2):134–152, 1997.
[235, 358]

LS91. Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. Informa-
tion and Computation, 94:1–28, 1991. [256, 263, 282, 284]

LSV01. Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. Hybrid I/O automata re-
visited. In Maria Domenica Di Benedetto and Alberto L. Sangiovanni-Vincentelli,
editors, Proceedings of the 4th International Workshop on Hybrid Systems: Computa-
tion and Control (HSCC 2001), volume 2034 of Lecture Notes in Computer Science,
pages 403–417. Springer-Verlag, 2001. [365]

LSW97. K. G. Larsen, B. Steffen, and C. Weise. Continuous modelling of real time and hy-
brid systems: From concepts to tools. International Journal on Software Tools for
Technology Transfer, 1(1–2):64–85, 1997. [365]

LT87. N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms.
In Proceedings of the 6th ACM Symposium on Principles of Distributed Comput-
ing (PODC 1987), pages 137–151. ACM Press, 1987. Also: Technical Report
MIT/LCS/TM-387, Massachusetts Institute of Technology, Cambridge, U.S.A., 1987.
[187, 189]

LT89. N. A. Lynch and M. R. Tuttle. An introduction to Input/Output Automata. CWI Quar-
terly, 2(3):219–246, 1989. Also: Technical Report MIT/LCS/TM-373 (TM-351 re-
vised), Massachusetts Institute of Technology, Cambridge, U.S.A., 1988. [189]

LvBP94. G. Luo, G. von Bochmann, and A. Petrenko. Selecting test sequences for partially-
specified non deterministic finite state machines. In Proceedings of the 7th Inter-
national Workshop on Protocol Test Systems (IWPTS 1994), pages 91–106, Japan,
February 1994. [204]

LY94. David Lee and Mihalis Yannakakis. Testing finite-state machines: State identification
and verification. IEEE Transactions on Computers, 43(3):306–320, March 1994. [25,
50, 59, 60, 66, 68, 69, 70, 74, 78, 81, 82, 83, 84, 85, 87, 90, 93, 96, 103, 589]

LY96. David Lee and Mihalis Yannakakis. Principles and methods of testing finite state
machines – a survey. Proceedings of the IEEE, 84(8):1090–1126, 1996. [25, 33, 51,
60, 85, 99, 105, 107, 111, 124, 589]

MA00. B. Marre and A. Arnould. Test sequence generation from lustre descriptions: GATEL.
In Proceedings of the 15th IEEE International Conference on Automated Software
Engineering (ASE 2000), Grenoble, 2000. IEEE Computer Society Press. [393]

Mah99. Savi Maharaj. Towards a method of test case extraction from correctness proofs.
Presented at the 14th International Workshop on Algebraic Development Techniques
(WADT 1999), 1999. [329, 330]

Mah00. Savi Maharaj. Test case extraction from correctness proofs. University of Stirling,
2000. Case for Support. [329]

ME03. Stephen McCamant and Michael D. Ernst. Predicting problems caused by compo-
nent upgrades. In Proceedings of the 9th European Software Engineering Conference

Literature 615

(ESEC 2003). Held jointly with the 11th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2003), pages 287–296. ACM Press, 2003.
[533, 536]

Mel88. Thomas Melham. Abstraction mechanisms for hardware verification. In G. Birtwistle
and P. A. Subrahmanyam, editors, VLSI Specification, Verification, and Synthesis, vol-
ume 35 of The Kluwer International Series in Engineering and Computer Science,
pages 129–157. Kluwer Academic, Boston, 1988. [444]

Mey79. G. Meyer. The Art of Software Testing. John Wiley & Sons, Inc., 1979. [294, 295]
Mey92. Bertrand Meyer. Design by contract. IEEE Computer, 25(10):40–52, October 1992.

[514]
Mey01. Oliver Meyer. Structural Decomposition of Timed-CSP and its Application in Real-

Time Testing. Dissertation, University of Bremen, 2001. Number 16 in Monographs
of the Bremen Institute of Safe Systems. [351]

MH99. V. Matena and M. Hapner. Enterprise javabeansTM specification. Public Draft version
1.1, Sun Microsystems, 1999. [511]

Mil80. R. Milner. A Calculus for Communicating Processes, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, 1980. [135, 144, 159]

Mil89. Robin Milner. Communication and concurrency. Prentice-Hall, 1989. [353, 547, 581]
MK99. Jeff Magee and Jeff Kramer. Concurrency: State Models & Java Programs. John

Wiley & Sons, 1999. [413]
ML97. Aloysius K. Mok and Guangtian Liu. Efficient run-time monitoring of timing con-

straints. In IEEE Real-Time Technology and Applications Symposium, June 1997.
[514]

Moo56. Edward F. Moore. Gedanken-experiments on sequential machines. In C. E. Shannon
and J. McCarthy, editors, Automata Studies, number 34 in Annals of Mathematics
Studies, pages 129–153. Princeton University Press, Princeton, NJ, 1956. [33, 34, 35,
43, 51, 56, 59, 107]

MOSS99. M. Müller-Olm, D. Schmidt, and B. Steffen. Model checking: A tutorial introduc-
tion. In G. File A. Cortesi, editor, Proceedings of the 6th Static Analysis Symposium
(SAS’99), volume 1694 of Lecture Notes in Computer Science, pages 330–354, Hei-
delberg, Germany, September 1999. Springer-Verlag. [542]

MP93. R. Miller and S. Paul. On the generation of minimal-length conformance tests for
communication protocols. IEEE/ACM Transactions on Networking, 1(1):116–129,
February 1993. [89, 94]

MP95. O. Maler and A. Pnueli. On the learnability of infinitary regular sets. Information and
Computation, 118(2):316–326, 1 May 1995. [578]

MP03. Leonardo Mariani and Mauro Pezzè. Behavior capture and test for controlling the
quality of component-based integrated systems. In Proceedings of the Workshop on
Tool-Integration in System Development (TIS 2003) at the 9th European Software
Engineering Conference / 11th Symposium on Foundations of Software Engineering
(ESEC/FSE 2003), pages 23–28, Helsinki, Finland, September 2003. [533, 534, 536]

MRS+97. J. R. Moonen, J. M. T. Romijn, O. Sies, J. G. Springintveld, L. G. M. Feijs, and R. L. C.
Koymans. A two-level approach to automated conformance testing of VHDL designs.
Technical Report SEN-R9707, CWI – Centrum voor Wiskunde en Informatica, Ams-
terdam, 1997. [401]

MS99. Alexandru Mateescu and Arto Salomaa. Many-valued truth functions, černý’s conjec-
ture and road coloring. Bulletin of the EATCS, 68:134–150, June 1999. [52]

MSF. Microsoft Research – Foundations of Software Engineering. http://research.
microsoft.com/fse/. [403]

616 Literature

Müh97. H. Mühlenbein. Genetic algorithms. In E. Aarts and J. K. Lenstra, editors, Local
Search in Combinatorial Optimization, pages 137–171. John Wiley & Sons, 1997.
[101]

Mus93. J. D. Musa. Operational profiles in software-reliability engineering. IEEE Software,
10(2):14–32, March 1993. [386]

Nai97. K. Naik. Efficient computation of unique input/output sequences in finite-state ma-
chines. IEEE/ACM Transactions on Networking, 5(4):585–599, August 1997. [87, 89,
94, 95, 96, 100, 101, 103]

Nat86. B. K. Natarajan. An algorithmic approach to the automated design of parts orienters.
In Proceedings of the 27th Annual Symposium on Foundations of Computer Science
(FOCS 1986), pages 132–142, Toronto, Ontario, Canada, October 1986. IEEE. [29,
52]

NdFL95. Manuel Nuthez, David de Frutos, and Luis Llana. Acceptance trees for probabilistic
processes. In Insup Lee and Scott A. Smolka, editors, Proceedings of the 6th Interna-
tional Conference on Concurrency Theory (CONCUR 1995), volume 962 of Lecture
Notes in Computer Science, pages 249–263. Springer-Verlag, 1995. [246]

NH84. R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83–133, 1984. [193]

Nie00. B. Nielsen. Speification and Test of Real-Time Systems. PhD thesis, Department of
Computer Science, Aalborg University, 2000. [362, 363]

NPW02. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof As-
sistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science.
Springer-Verlag, 2002. [321, 324]

NS03. Brian Nielsen and Arne Skou. Automated test generation from timed automata. In-
ternational Journal on Software Tools for Technology Transfer, 5:59–77, 2003. [218,
220, 226, 243]

NT81. S. Naito and M. Tsunoyama. Fault detection for sequential machines by transition
tours. In Proceedings of the 11th IEEE Fault Tolerant Computing Conference (FTCS
1981), pages 238–243. IEEE Computer Society Press, 1981. [110]

Nta88. S. C. Ntafos. A comparison of some structural testing strategies. IEEE Transactions
on Software Engineering, SE-11:367–375, April 1988. [18, 297]

Nta98. Simeon Ntafos. On random and partition testing. In Proceedings of the ACM SIG-
SOFT International Symposium on Software Testing and Analysis (ISSTA 1998), pages
42–48. ACM Press, 1998. [7, 18, 299, 302, 431]

OBG01. D. Buchs O. Biberstein and N. Guelfi. Object-oriented nets with algebraic speci-
fications: The CO-OPN/2 formalism. In Gul Agha, Fiorella de Cindio, and Grze-
gorz Rozenberg, editors, Concurrent Object-Oriented Programming and Petri Nets,
Advances in Petri Nets, volume 2001 of Lecture Notes in Computer Science, pages
73–130. Springer-Verlag, 2001. [336]

OMG02. Object Management Group (OMG). UML Testing Profile – Request For Proposal,
April 2002. OMG Document (ad/01-07-08). [483]

OP95. F. Ouabdesselam and I. Parissis. Constructing operational profiles for synchronous
crtitical software. In Proceedings of the 6th International Symposium on Software
Reliability Engineering (ISSRE 1995), pages 286–293. IEEE Computer Society Press,
1995. [390]

ORR+96. Sam Owre, Sreeranga Rajan, John M. Rushby, Natarajan Shankar, and Mandayam K.
Srivas. PVS: Combining specification, proof checking, and model checking. In Rajeev
Alur and Thomas A. Henzinger, editors, Proceedings of the 8th International Confer-
ence on Computer Aided Verification (CAV 1996), volume 1102 of Lecture Notes in
Computer Science, pages 411–414. Springer-Verlag, 1996. [319]

Literature 617

ORS92. Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype verification
system. In Deepak Kapur, editor, Proceedings of the 11th International Conference
on Automated Deduction (CADE 1992), volume 607 of Lecture Notes in Artificial
Intelligence, pages 748–752. Springer-Verlag, 1992. [330]

ORSvH95. S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification of fault-
tolerant architerctures: Prolegomena to the design of PVS. IEEE Transactions on
Software Engineering, 21(2):107–125, 1995. [415, 416]

PAD+98. Jan Peleska, Peter Amthor, Sabine Dick, Oliver Meyer, Michael Siegel, and Cornelia
Zahlten. Testing reactive real-time systems. Tutorial, held at the 5th International
Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT
1998), Denmark Technical University, Lyngby, 1998. Updated revision. Available
as http://www.informatik.uni-bremen.de/agbs/jp/papers/ftrtft98.ps.
[348, 349, 351, 366]

Pap94. Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, New York,
1994. [48]

Pat70. Michael S. Paterson. Unsolvability in 3×3 matrices. Studies in Applied Mathematics,
49(1):105–107, March 1970. [52]

Pau94. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture
Notes in Computer Science. Springer-Verlag, 1994. [321, 324]

PBD93. A. Petrenko, G. Bochmann, and R. Dussouli. Conformance relations and test deriva-
tion. In O. Rafiq, editor, Proceedings of the 6th International Workshop on Protocol
Test Systems (IWPTS 1993), volume C-19 of IFIP Transactions, pages 157–178, Pau,
France, September 1993. North-Holland. [203]

PDGN03. H. Pals, Z. R. Dai, J. Grabowski, and H. Neukirchen. UML-based modeling of
roaming with bluetooth devices. In Chun Chen, Walter Dosch, Yuntao Qian, and
Huaizhong Lin, editors, First Hangzhou-Lübeck Conference on Software Engineering
(HL-SE’03), 2003. [491]

Pel02. Jan Peleska. Formal methods for test automation – hard real-time testing of controllers
for the airbus aircraft family. In Proceedings of the 6th Biennial World Conference
on Integrated Design & Process Technology (IDPT 2002). Society for Design and
Process Science, June 2002. [351]

Per98. Cecile Peraire. Formal testing of object-oriented software: From the method to the
tool. PhD thesis, École Polytechnique Fédéral de Lausanne (EPFL), Switzerland,
1998. [341]

PF90. David H. Pitt and David Freestone. The derivation of conformance tests from LO-
TOS specifications. IEEE Transactions on Software Engineering, 16(12):1337–1343,
December 1990. [177, 178, 179]

Pha91. M. Phalippou. Tveda: An experiment in computer-aided test case generation from
formal specification of protocols. Technical Note NT/LAA/SLC/347, France Telecom
– CNET, 1991. [212]

Pha93. M. Phalippou. The limited power of testing. In Gregor von Bochmann, Rachida
Dssouli, and Anindya Das, editors, Proceedings of the 5th International Workshop
on Protocol Test Systems (IWPTS 1992), volume C-11 of IFIP Transactions, pages
43–54, Montréal, September 1993. North-Holland. [203, 209]

Pha94a. M. Phalippou. Executable testers. In Omar Rafiq, editor, Proceedings of the 6th
International Workshop on Protocol Test Systems (IWPTS 1993), volume C-19 of IFIP
Transactions, pages 35–50, Pau, France, September 1994. North-Holland. [212]

Pha94b. M. Phalippou. Relations d’Implantation et Hypothèses de Test sur des Automates à
Entrées et Sorties. PhD thesis, L’Université de Bordeaux I, France, 1994. [187, 189,
190, 201, 402]

618 Literature

Pha95. M. Phalippou. Abstract testing and concrete testers. In S. T. Vuong and S. T. Chanson,
editors, Proceedings of the 14th IFIP/WG6.1 International Symposium on Protocol
Specification, Testing and Verification (PSTV 1994), volume 1 of IFIP Conference
Proceedings, pages 221–236, Vancouver, June 1995. Chapman & Hall. [212]

Phi. Philips website. http://www.philips.com/. [400]
Phi87. Iain Phillips. Refusal testing. Theoretical Computer Science, 50:241–284, 1987. [141,

152, 153, 155]
Pin78a. Jean-Eric Pin. Sur les mots synchronisants dans un automate fini. Elektronische

Informationsverarbeitung und Kybernetik (EIK), 14:297–303, 1978. [51]
Pin78b. Jean-Eric Pin. Sur un cas particulier de la conjecture de černý. In Giorgio Ausiello and

Corrado Böhm, editors, Proceedings of the 5th Colloquium on Automata, Languages
and Programming, volume 62 of Lecture Notes in Computer Science, pages 345–352,
Udine, Italy, July 1978. Springer-Verlag. [51, 52]

Pir95. L. Ferreira Pires. Protocol Implementation: Manual for Practical Exercises 1995–
1996. University of Twente, the Netherlands, 1995. Lecture notes. [433]

PJH92. Carl Pixley, Seh-Woong Jeong, and Gary D. Hachtel. Exact calculation of synchro-
nization sequences based on binary decision diagrams. In Proceedings of the 29th
Design Automation Conference (DAC 1992), pages 620–623. IEEE Computer Society
Press, June 1992. [28, 52]

PLP03. A. Pretschner, H. Lötzbeyer, and J. Philipps. Model based testing in incremental
system development. Journal of Systems and Software, 70(3):315–329, 2003. [15]

PN98. Peter Puschner and Roman Nossal. Testing the results of static worst-case execution-
time analysis. In Proceedings of the 19th IEEE Real-Time Systems Symposium (RTSS
1998), pages 134–143. IEEE Computer Society Press, December 1998. [374]

Pnu77. A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Sympo-
sium Foundations of Computer Science (FOCS 1977), pages 46–57. IEEE Computer
Society Press, 1977. [510, 513, 544]

PO96. I. Parissis and F. Ouabdesselam. Specification-based testing of synchronous software.
In D. Garlan, editor, Proceedings of the 4th ACM SIGSOFT Symposium on Founda-
tions of Software Engineering (FSE 1996), volume 21(6) of ACM SIGSOFT Software
Engineering Notes, pages 127–134. ACM Press, 1996. [390]

PP04. Wolfgang Prenninger and Alexander Pretschner. Abstractions for model-based test-
ing. In Proceedings of the International Workshop on Test and Analysis of Component
Based Systems (TACoS 2004), Electronic Notes in Theoretical Computer Science. El-
sevier Science Publishers, 2004. [11, 15, 441]

PPS+03. J. Philipps, A. Pretschner, O. Slotosch, E. Aiglstorfer, S. Kriebel, and K. Scholl.
Model-based test case generation for smart cards. In In Proceedings of the 8th Inter-
national Workshop on Formal Methods for Industrial Critical Systems (FMICS 2003),
Electronic Notes in Theoretical Computer Science. Elsivier, 2003. to appear. [5, 332,
336, 339, 340, 397, 429, 434, 436, 437, 438, 439, 440, 443, 444, 445, 446, 447, 448]

PR94. Irith Pomeranz and Sudhakar M. Reddy. Application of homing sequences to syn-
chronous sequential circuit testing. IEEE Transactions on Computers, 43(5):569–580,
May 1994. [43, 52]

Pre01. A. Pretschner. Classical search strategies for test case generation with constraint logic
programming. In E. Brinksma and J. Tretmans, editors, Proceedings of the 3rd In-
ternational Workshop on Formal Approaches to Testing of Software (FATES 2001),
number NS/01/4 in BRICS Notes Series, pages 47–60, 2001. Satellite Workshop on
CONCUR 2001. [398]

Pre03. A. Pretschner. Compositional generation for MC/DC test suites. In Proceedings of the
International Workshop on Test and Analysis of Component Based Systems (TACoS

Literature 619

2003), volume 82(6) of Electronic Notes in Theoretical Computer Science, pages 1–
11. Elsevier Science Publishers, 2003. [7, 15, 398]

PS01. Tatjana Petković and Magnus Steinby. On directable automata. Journal of Automata,
Languages and Combinatorics, 6(2):205–220, 2001. [28]

PST96. Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal Specification
and Z. Prentice Hall, second edition, 1996. [319, 321]

PTLP99. S. Prowell, C. Trammell, R. Linger, and J. Poore. Cleanroom Software Engineering.
Addison Wesley, 1999. [11]

Put94. Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley and Sons, Inc, 1994. [251, 253]

PVY99. D. Peled, M. Vardi, and M. Yannakakis. Black box checking. In Proceedings of
the Joint International Conference on Formal Description Techniques for Distributed
Systems and Communication Protocols (FORTE 1999) and Protocol Specification,
Testing and Verification (PSTV 1999), volume 156 of IFIP Conference Proceedings,
pages 225–240. Kluwer Academic, 1999. [578]

PZ91. A. Parrish and S. Zweben. Analysis and refinement of software test data adequacy
properties. IEEE Transactions on Software Engineering, 17(6):565–581, June 1991.
[7]

Rav96. Bala Ravikumar. A deterministic parallel algorithm for the homing sequence prob-
lem. In Proceedings of the 8th IEEE Symposium on Parallel and Distributed Process-
ing (SPDP 1996), pages 512–520, New Orleans, LA, October 1996. IEEE Computer
Society Press. [51]

Rav98. Bala Ravikumar. Parallel algorithms for finite automata problems. In Jośe D. P. Rolim,
editor, Proceedings of the 10 Workshops of the 12th International Parallel Processing
Symposium (IPPS 1998) and 9th Symposium on Parallel and Distributed Process-
ing (SPDS 1998), volume 1388 of Lecture Notes in Computer Science, page 373.
Springer-Verlag, 1998. [52]

RdBJ00. V. Rusu, L. du Bousquet, and T. Jéron. An approach to symbolic test generation. In
W. Grieskamp, T. Santen, and B. Stoddart, editors, Proceedings of the 2nd Interna-
tional Conference on Integrated Formal Methods (IFM 2000), volume 1945 of Lecture
Notes in Computer Science, pages 338–357. Springer-Verlag, 2000. [188, 408, 414,
415, 416]

RG95. Anil S. Rao and Kenneth Y. Goldberg. Manipulating algebraic parts in the plane.
IEEE Transactions on Robotics and Automation (IEEETROB), 11(4):598–602, Au-
gust 1995. [29, 52]

RH01a. S. Rayadurgam and M.P. Heimdahl. Coverage based test case generation using model
checkers. In Proceedings of the 8th Annual IEEE International Conference and Work-
shop on the Engineering of Computer Based Systems (ECBS 2001), pages 83–91.
IEEE Computer Society Press, 2001. [7, 344]

RH01b. S. Rayadurgam and M. P. Heimdahl. Test-sequence generation from formal require-
ments models. In Proceedings of the 6th IEEE International Symposium on High-
Assurance Systems Engineering (HASE 2001), pages 23–31. IEEE Computer Society
Press, 2001. [344]

RH01c. G. Roşu and K. Havelund. Synthesizing dynamic programming algorithms from linear
temporal logic formulae. Technical report, RIACS, 2001. [517, 518]

RHC76. C. V. Ramamoorthy, S. F. Ho, and W. T. Chen. On the automated generation of pro-
gram test data. In Proceedings of the 2nd International Conference on Software Engi-
neering (ICSE 1976), page 636. IEEE Computer Society Press, 1976. Abstract only.
[335, 336]

Ris93. N. Risser. TVEDA V2 user guide. Technical Document DT/LAA/SLC/EVP/5, France
Telecom – CNET, March 1993. [212]

620 Literature

RJB99. James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, Reading, Massachusetts, USA, first edition,
1999. [23, 483]

RKS02. Orna Raz, Philip Koopman, and Mary Shaw. Semantic anomaly detection in online
data sources. In Proceedings of the 24th International Conference on Software Engi-
neering (ICSE 2002), pages 302–312. ACM Press, 2002. [510, 533, 536]

RLNS00. K. Rustan, M. Leino, G. Nelson, and J. B. Saxe. ESC/Java user’s manual. Technical
Report 2000-002, Compaq Systems Research Center, Palo Alto, 2000. [537]

RNHW98. P. Raymond, X. Nicollin, N. Halbwachs, and D. Weber. Automatic testing of reac-
tive systems. In Proceedings of the 19th IEEE Real-Time Systems Symposium (RTSS
1998), pages 200–209. IEEE Computer Society Press, 1998. [390, 391, 392]

RP92. A. Rouger and M. Phalippou. Test cases generation from formal specifications. In
Proceedings of the 14th International Switching Symposium (ISS 1992), page C10.2,
Yokohama, October 1992. [211]

RS93. Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing
sequences. Information and Computation, 103(2):299–347, April 1993. [30, 33, 47,
566, 578]

RSP93. June-Kyung Rho, Fabio Somenzi, and Carl Pixley. Minimum length synchronizing
sequences of finite state machine. In Proceedings of the 30th ACM/IEEE Design
Automation Conference (DAC 1993), pages 463–468. ACM Press, June 1993. [45,
52]

Rus02. Vlad Rusu. Verification using test generation techniques. In L.-H. Eriksson and
P. Lindsay, editors, Getting IT Right: Proceedings of the 11th International Sympo-
sium of Formal Methods Europe (FME 2002), volume 2381 of Lecture Notes in Com-
puter Science, pages 252–271. Springer-Verlag, 2002. [415]

RVL+97. Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank Levy,
Brian Bershad, and Brad Chen. Instrumentation and optimization of Win32/Intel ex-
ecutables using Etch. In Proceedings of the First USENIX Windows NT Workshop,
Seattle, WA, August 1997. [514]

RW85. S. Rapps and E. J. Weyuker. Selecting software test data using data flow information.
IEEE Transactions on Software Engineering, SE-11:367–375, April 1985. [294, 297]

RW88. C. Rich and R. Waters. The programmer’s apprentice: A research overview. IEEE
Computer, 21(11):10–25, 1988. [534]

RX96. Bala Ravikumar and Xuefeng Xiong. Randomized parallel algorithms for the homing
sequence problem. In Adam W. Bojanczyk, editor, Proceedings of the 25th Inter-
national Conference on Parallel Processing (ICPP 1996), volume 2: Algorithms &

Applications, pages 82–89. IEEE Computer Society Press, August 1996. [52]
RX97. Bala Ravikumar and Xuefeng Xiong. Implementing sequential and parallel programs

for the homing sequence problem. In Darrell R. Raymond, Derick Wood, and Sheng
Yu, editors, Proceedings of the 1st Workshop on Implementing Automata (WIA 1996),
volume 1260 of Lecture Notes in Computer Science, pages 120–131. Springer-Verlag,
1997. [52]

Rys83. Igor K. Rystsov. Polynomial complete problems in automata theory. Information
Processing Letters, 16(3):147–151, April 1983. [29, 41, 48, 50, 51, 52]

Rys92. Igor K. Rystsov. Rank of a finite automaton. CYBERNETICS: Cybernetics and Sys-
tems Analysis, 28(3):323–328, May 1992. Translation of Kibernetika i Sistemnyi
Analiz, pages 3–10 in non-translated version. [28, 50, 52]

Rys97. Igor K. Rystsov. Reset words for commutative and solvable automata. Theoretical
Computer Science, 172:273–279, February 1997. [28, 51]

Literature 621

SA99. Jian Shen and Jacob Abraham. An RTL abstraction technique for processor mico-
rarchitecture validation and test generation. Journal of Electronic Testing: Theory &

Application, 16(1–2):67–81, February 1999. [14, 429, 433, 434, 435, 437, 438, 439,
444, 445, 446, 447]

Sad98. Sadegh Sadeghipour. Testing Cyclic Software Components of Reactive Systems on the
Basis of Formal Specifications, volume 40 of Forschungsergebnisse zur Informatik.
Verlag Dr. Kovač, Hamburg, 1998. [323, 324, 325]

Sal02. Arto Salomaa. Synchronization of finite automata. Contributions to an old problem.
In I. Hal Sudborough T. Æ. Mogensen, D. A. Schmidt, editor, The Essence of Com-
putation. Complexity, Analysis, Transformation: Essays Dedicated to Neil D. Jones,
volume 2566 of Lecture Notes in Computer Science, pages 37–59. Springer-Verlag,
2002. [29]

Sav70. Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4:177–192, 1970. [48]

SBN+97. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser: A dy-
namic data race detector for multithreaded programs. ACM Transactions on Computer
Systems, 14(4):391–411, November 1997. [510, 515, 516, 517]

Sch00. Johann M. Schumann. Automated theorem proving in high-quality software design.
In Steffen Hölldobler, editor, Intellectics and Computational Logic, volume 19 of Ap-
plied Logic Series, pages 295–312. Kluwer Academic, 2000. [319]

Sch01. Johann M. Schumann. Automated Theorem Proving in Software Engineering.
Springer-Verlag, 2001. [319]

SCK+95. B. Steffen, A. Claßen, M. Klein, J. Knoop, and T. Margaria. The fixpoint analysis
machine. In J. Lee and S. Smolka, editors, Proceedings of the 6th International Con-
ference on Concurrency Theory (CONCUR 1995), volume 962 of Lecture Notes in
Computer Science, pages 72–87, Heidelberg, Germany, 1995. Springer-Verlag. [556]

SCS97. Harbhajan Singh, Mirko Conrad, and Sadegh Sadeghipour. Test case design based on
Z and the classification-tree method. In Michael G. Hinchey and Shaoying Liu, edi-
tors, Proceedings of the 1st International Conference on Formal Engineering Methods
(ICFEM 1997), pages 81–90. IEEE Computer Society Press, 1997. [323, 324, 325]

SD85. K. Sabnani and A. Dahbura. A new technique for generating protocol tests. In Pro-
ceedings of the 9th Data Communication Symposium (SIGCOMM 1985), pages 36–
43. IEEE Computer Society Press, 1985. Also appeared in Computer Communication
Review, volume 15(4), September 1985. [89]

SD88. Krishan Sabnani and Anton Dahbura. A protocol test generation procedure. Computer
Networks and ISDN Systems, 15(4):285–297, September 1988. [87, 89, 96, 101, 115,
116]

SDGR03. I. Schieferdecker, Z. R. Dai, J. Grabowski, and A. Rennoch. The UML 2.0 testing
profile and its relation to TTCN-3. In D. Hogrefe and A. Wiles, editors, Proceed-
ings of the 15th IFIP International Conference on Testing of Communicating Systems
(TestCom2003), volume 2644 of Lecture Notes in Computer Science. Springer-Verlag,
May 2003. [483]

Seg92. R. Segala. A process algebraic view of Input/Output Automata. Technical Memo
MIT/LCS/TR-557, Massachusetts Institute of Technology, Laboratory for Computer
Science, Cambridge, U.S.A., 1992. [187]

Seg96. Roberto Segala. Testing probabilistic automata. In Ugo Montanari and Vladimiro
Sassone, editors, Proceedings of the 7th Conference on Concurrency Theory (CON-
CUR 1996), volume 1119 of Lecture Notes in Computer Science, pages 299–314.
Springer-Verlag, 1996. [246, 256, 257, 263, 264, 266, 272, 276, 280]

Seg97. R. Segala. Quiescence, fairness, testing and the notion of implementation. Information
and Computation, 138(2):194–210, 1997. [194, 196, 197]

622 Literature

SEG00. M. Schmitt, M. Ebner, and J. Grabowski. Test generation with Autolink and Test-
Composer. In E. Sherratt, editor, Proceedings of the 2nd Workshop on SDL and MSC
(SAM 2000). VERIMAG, IRISA, 2000. [420, 421, 422]

SL88. D. Sidhu and T. Leung. Experience with test generation for real protocols. In Pro-
ceedings of the ACM Symposium on Communications Architectures and Protocols
(SIGCOMM 1988), pages 257–261. ACM Press, 1988. [126]

SL89. D. Sidhu and T.-K. Leung. Formal methods for protocol testing: A detailed study.
IEEE Transactions on Software Engineering, 15(4):413–426, April 1989. [25, 117]

SL94. Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic pro-
cesses. In Bengt Jonsson and Joachim Parrow, editors, Proceedings of the 5th Con-
ference on Concurrency Theory (CONCUR 1994), volume 836 of Lecture Notes in
Computer Science, pages 481–496. Springer-Verlag, 1994. [251, 281]

SM93. Sriram Sankar and Manas Mandal. Concurrent runtime monitoring of formally spec-
ified programs. IEEE Computer, 26(3):32–41, March 1993. [514]

SMIM89. F. Sato, J. Munemori, T. Ideguchi, and T. Mizuno. Test sequence generation method
based on finite automata – single transition checking using W Set. Transactions of
EIC (in Japanese), J72-B-I(3):183–192, 1989. [110]

Sok71. M. N. Sokolovskii. Diagnostic experiments with automata. Kibernetika, 6:44–49,
1971. [59]

Sos92. R. Sosič. Dynascope: A tool for program directing. In Proceedings of the SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 1992),
pages 12–21, 1992. Appeared in SIGPLAN Notices, volume 27(7), July 1992. [514]

SPHP02. B. Schätz, A. Pretschner, F. Huber, and J. Philipps. Model-based development of
embedded systems. In J.-M. Bruel and Z. Bellahsene, editors, Proceedings of the
Workshops of the 8th International Conference on Advances in Object-Oriented In-
formation Systems (OOIS 2002), volume 2426 of Lecture Notes in Computer Science,
pages 298–311. Springer-Verlag, 2002. [16]

Spi92. J. Michael Spivey. The Z Notation. Prentice Hall, second edition, 1992. [319, 321]
SSD+03. U. Sammapun, R. Sharykin, M. DeLap, M. Kim, and S. Zdancewic. Formalizing Java-

MaC. In O. Sokolsky and M. Viswanathan, editors, Proccedings of the 3rd Workshop
on Run-Time Verification (RV 2003), volume 89(2) of Electronic Notes in Theoretical
Computer Science. Elsevier Science Publishers, 2003. [510, 530]

Sta. Stateflow. http://www.mathworks.com/products/stateflow/. [23]
Sta66. Peter H. Starke. Eine Bemerkung über homogene Experimente. Elektronische Infor-

mationverarbeitung und Kybernetic, 2:257–259, 1966. [51]
Sta72. Peter. H. Starke. Abstract Automata. North-Holland, Amsterdam, 1972. Translation

from German. [29, 36]
Sta73. H. Stachowiak. Allgemeine Modelltheorie. Springer-Verlag, 1973. [9]
Sto02. M. I. A. Stoelinga. An introduction to probabilistic automata. In G. Rozenberg, editor,

EATCS bulletin, volume 78, pages 176–198, 2002. [245]
SV03. M. I. A. Stoelinga and F. W. Vaandrager. A testing scenario for probabilistic automata.

In J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, editors, Proceedings
of the 30th International Colloquium on Automata, Lnaguages, and Programming
(ICALP 2003), volume 2719 of Lecture Notes in Computer Science, pages 464–477.
Springer-Verlag, 2003. Also published as Technical Report of the nijmeegs instituut
voor informatica en informatiekunde, number NIII-R0307. [246, 280]

SVD01. Jan Springintveld, Frits Vaandrager, and Pedro R. D’Argenio. Testing timed automata.
Theoretical Computer Science, 254(1–2):225–257, March 2001. [216, 220, 226, 228,
234, 235, 243]

Literature 623

SVG02. S. Schulz and T. Vassiliou-Gioles. Implementation of TTCN-3 test systems using
the TRI. In I. Schieferdecker, H. König, and A. Wolisz, editors, Applications to In-
ternet Technologies and Service – Proceedings of the 14th International Conference
on Testing Communication Systems (TestCom 2002), volume 210 of IFIP Conference
Proceedings, pages 425–442. Kluwer Academic, 2002. [467]

SVG03. Ina Schieferdecker and Theofanis Vassiliou-Gioles. Realizing distributed TTCN-3 test
systems with TCI. In Dieter Hogrefe and Anthony Wiles, editors, Proceedings of the
15th International Conference on Testing of Communicating Systems (TestCom 2003),
volume 2644 of Lecture Notes in Computer Science, pages 95–109. Springer-Verlag,
2003. [467]

SVW87. A. P. Sistla, Moshe Y. Vardi, and Pierre Wolper. The complementation problem for
Büchi automata with application to temporal logics. Theoretical Computer Science,
49:217–237, 1987. [548]

SW91. Colin Stirling and David Walker. Local model checking in the modal mu-calculus.
Theoretical Computer Science, 89(1):161–177, October 1991. [548]

TB02. J. Tretmans and E. Brinksma. Côte de Resyste – Automated Model Based Testing.
In M. Schweizer, editor, Progress 2002 – 3rd Workshop on Embedded Systems, pages
246–255, Utrecht, The Netherlands, October 24 2002. STW Technology Foundation.
[410, 413]

Tel. Telelogic website. http://www.telelogic.com/. [401]
Tho90. Wolfgang Thomas. Automata on infinite objects. In Jan van Leeuwen, editor, Hand-

book of Theoretical Computer Science, volume B: Formal Models and Semantics,
chapter 4, pages 133–191. Elsevier Science Publishers, 1990. [217]

TJ98. Kevin S. Templer and Clinton L. Jeffrey. A configurable automatic instrumentation
tool for Ansi C. In Proceedings of the 13th IEEE Conference on Automated Soft-
ware Engineering (ASE 1998), pages 249–258. IEEE Computer Society Press, Octo-
ber 1998. [514]

TM95. Ian Toyn and John A. McDermid. CADiZ: an architecture for Z tools and its imple-
mentation. Software – Practice and Experience, 25(3):305–330, 1995. [324]

Tor. Torx website. http://www.purl.org/net/torx/. [410]
Toy96. Ian Toyn. Formal reasoning in the Z notation using cadiZ. In Nicholas A. Merriam,

editor, Proceedings of the 2nd International Workshop on User Interface Design for
Theorem Proving Systems (UITP 1996), 1996. [324]

Toy98. Ian Toyn. A tactic language for reasoning about Z specifications. In David Duke
and Andy Evans, editors, Proceedings of the 3rd Northern Formal Methods Workshop
(NFMW 1998), Electronic Workshops in Computing. British Computer Society, 1998.
[324]

TP98. Q. M. Tan and A. Petrenko. Test generation for specifications modeled by input/out-
put automata. In A. Petrenko and N. Yevtushenko, editors, Proceedings of the 11th
International Workshop on Testing of Communication Systems (IWTCS 1998), volume
131 of IFIP Conference Proceedings, pages 83–100. Kluwer Academic, 1998. [188]

TPvB96. Q. M. Tan, Alexandre Petrenko, and Gregor von Bochmann. Modeling basic LO-
TOS by FSMs for conformance testing. In Piotr Dembinski and Marek Sredniawa,
editors, Proceedings of the 15th IFIP/WG6.1 International Symposium on Protocol
Specification, Testing and Verification (PSTV 1995), volume 38 of IFIP Conference
Proceedings, pages 137–152. Chapman & Hall, 1996. [170, 171, 172, 173]

TPvB97. Q. M. Tan, A. Petrenko, and Gregor v. Bochmann. Checking experiments with labeled
transition systems for trace equivalence. In Proceedings of the 10th International
Workshop on Testing Communicating Systems (IWTCS 1997), 1997. [174, 175, 176,
177]

624 Literature

Tra02. Avraham N. Trakhtman. The existence of synchronizing word and černý conjecture
for some finite automata. In Proceedings of the 2nd Haifa Workshop on Graph Theory,
Combinatorics and Algorithms (GTCA 2002), June 2002. [51]

Tre94. Jan Tretmans. A formal approach to conformance testing. In Proceedings of the 6th
IFIP TC6/WG6.1 International Workshop on Protocol Test Systems (IWPTS 1993),
volume C-19 of IFIP Transactions, pages 257–276. North-Holland, 1994. [134, 159,
161]

Tre96a. J. Tretmans. Conformance testing with labelled transisition systems: Implementation
relations and test generation. Computer Networks and ISDN Systems, 29:49–79, 1996.
[408, 414]

Tre96b. J. Tretmans. Test generation with inputs, outputs, and quiescence. In T. Margaria
and B. Steffen, editors, Proceedings of the 2nd International Workshop on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 1996), volume 1055
of Lecture Notes in Computer Science, pages 127–146. Springer-Verlag, 1996. [187,
193, 197, 198, 200, 207]

Tre96c. J. Tretmans. Test Generation with Inputs, Outputs and Repetitive Quiescence. Soft-
ware – Concepts and Tools, 17(3):103–120, 1996. [189, 191, 408, 410, 411, 413]

U2T. U2TP Consortium. http://www.fokus.fraunhofer.de/u2tp/. [483]
U2T04. U2TP Consortium. UML Testing Profile, March 2004. Final Adopted Specification at

OMG (ptc/2004-04-02). [483, 484]
UMLa. UML 2.0. http://www.omg.org/uml. [483]
UMLb. UMLAUT website. http://www.irisa.fr/UMLAUT/. [409, 410]
UML03a. UML 2.0 Infrastructure Specification, November 2003. OMG Adopted Specification

(ptc/03-09-15). [483]
UML03b. UML 2.0 Superstructure, September 2003. OMG Adopted Specification (ptc/03-08-

02). [483]
Ura92. H. Ural. Formal methods for test sequence generation. Computer Communications,

15(5):311–325, June 1992. [18]
UWZ97. Hasan Ural, Xiaolin Wu, and Fan Zhang. On minimizing the lengths of checking

sequences. IEEE Transactions on Computers, 46(1):93–99, 1997. [121]
Vaa91. F. Vaandrager. On the relationship between process algebra and Input/Output Au-

tomata. In Proceeedings on the 6th IEEE Symposium on Logic in Computer Science
(LICS 1991), pages 387–398. IEEE Computer Society Press, 1991. [194]

Val84. L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984. [302]

Var96. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In F. Moller
and G. M. Birtwistle, editors, Logics for Concurrency – Structure versus Automata.
Proceedings of the 8th Banff Higher Order Workshop (Banff 1995), volume 1043 of
Lecture Notes in Computer Science, pages 238–266. Springer-Verlag, 1996. [548,
549]

Var01. M. Y. Vardi. Branching vs. linear time: Final showdown. In W. Yi T. Margaria, edi-
tor, Proceedings of the 7th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2001), volume 2031 of Lecture Notes
in Computer Science, pages 1–22. Springer-Verlag, January 2001. [544]

Vas73. M. P. Vasilevski. Failure diagnosis of automata. Cybernetic, 9(4):653–665, 1973.
[118, 124, 573, 578]

VB01. S. A. Vilkomir and J. P. Bowen. Formalization of software testing criteria using the Z
notation. In Proceedings of the 25th International Computer Software and Applica-
tions Conference (COMPSAC 2001), pages 351–356. IEEE Computer Society Press,
8–12 October 2001. [294, 295]

Literature 625

VB02. S. A. Vilkomir and J. P. Bowen. Reinforced condition/decision coverage (RC/DC): A
new criterion for software testing. In D. Bert, J. P. Bowen, M. Henson, and K. Robin-
son, editors, Proceedings of the 2nd International Conference of B and Z Users: For-
mal Specification and Development in Z and B (ZB 2002), volume 2272 of Lecture
Notes in Computer Science, pages 295–313. Springer-Verlag, 2002. [296]

VCI90. S. T. Vuong, W. Y. L. Chan, and M. R. Ito. The UIOv-method for protocol test se-
quence generation. In Proceedings of the 2nd International Workshop on Protocol
Test Systems (IWPTS 1990), pages 161–176. North-Holland, 1990. [116]

vG01. Rob J. van Glabbeek. The linear time – branching time spectrum I: The semantics of
concrete, sequential processes. In J. A. Bergstra, A. Ponse, and S. A. Smolka, editors,
Handbook of Process Algebra, pages 3–99. Elsevier Science Publishers, 2001. [135,
142, 144, 243]

vGSS95. Rob J. van Glabbeek, Scott A. Smolka, and Bernhard Steffen. Reactive, generative and
stratified models of probabilistic processes. Information and Computation, 121:59–
80, 1995. [252]

VT01. R. G. de Vries and J. Tretmans. Towards Formal Test Purposes. In E. Brinksma
and J. Tretmans, editors, Proceedings of the 1st International Workshop on Formal
Approaches to Testing of Software (FATES 2001), number BRICS NS-01-4 in BRICS
Notes Series, pages 61–76, 2001. [412, 413]

WBS02. Joachirn Wegener, André Baresel, and Harrnen Sthamer. Suitability of evolutionary
algorithms for evolutionary testing. In Proceedings of the 26th IEEE International
Computer Software and Applications Conference: Prolonging Software Life: Devel-
opment and Redevelopment (COMPSAC 2002), pages 287–289, Oxford, England, Au-
gust 2002. IEEE Computer Society Press. [374]

Weg01. J. Wegener. Evolutionärer Test des Zeitverhaltens von Realzeit-Systemen. Disserta-
tion, Humboldt Universität zu Berlin, 2001. [374]

Wes89. C. H. West. Protocol validation in complex systems. In Proceedings of the ACM
Symposium on Communications Architectures & Protocols (SIGCOMM 1989), pages
303–312, Austin, TX, September 1989. ACM Press. [411, 425]

Wey86. E. Weyuker. Axiomatizing software test data adequacy. IEEE Transactions on Soft-
ware Engineering, SE-12(12):1128–1138, December 1986. [7]

Wez90. Clazien D. Wezeman. The CO-OP method for compositional derivation of canonical
testers. In E. Brinksma, G. Scollo, and C. A. Vissers, editors, Proceedings of the 9th
International Symposium on Protocol Specification, Testing and Verification (PSTV
1990), pages 145–158. North-Holland, 1990. [179, 181, 405, 407]

Wez95. Clazien D. Wezeman. Deriving test from LOTOS specifications. In Tommaso Bolog-
nesi, Jeroen van de Lagemaat, and Chris Vissers, editors, LOTOSphere: Software De-
velopment with LOTOS, pages 295–315. Kluwer Academic, 1995. [405, 407]

WGS94. E. Weyuker, T. Goradia, and A. Singh. Automatically generating test data from a
boolean specification. IEEE Transactions on Software Engineering, 20(5):353–363,
May 1994. [21]

Wil01. A. Wiles. ETSI testing activities and the use of TTCN-3. In Proceedings of the 10th
International SDL Forum, 2001, volume 2078 of Lecture Notes in Computer Science,
pages 123–128. Springer-Verlag, 2001. [454]

Wol99. Mario Wolczko. Using a tracing javaTM virtual machine to gather data on the behavior
of java programs. Technical report, Sun Microsystems, March 1999. [514]

WSS94. S.-H. Wu, S. A. Smolka, and E. W. Stark. Composition and behaviors of proba-
bilistic I/O automata. In B. Jonsson and J. Parrow, editors, Proceedings of the 5th
International Conference on Concurrency Theory (CONCUR 1994), volume 836 of
Lecture Notes in Computer Science, pages 513–528, Uppsala, Sweden, August 1994.
Springer-Verlag. [246]

626 Literature

WVS83. P. Wolper, M. Y. Vardi, and A. P. Sistla. Reasoning about infinite computations paths.
In Proceedings of the 24th IEEE Symposium on Foundations of Computer Science
(FOCS 1983), pages 185–194. IEEE Computer Society Press, 1983. Extended ab-
stract. [548]

XP. eXtreme Programming website. http://www.extremeprogramming.org/. [487]
YL91. M. Yannakakis and D. Lee. Testing finite state machines. In Baruch Awerbuch, ed-

itor, Proceedings of the 23rd Annual ACM Symposium on the Theory of Computing
(STOC 1991), pages 476–485, New Orleans, LS, May 1991. ACM Press. Extended
abstract. An extended version appeared in the Journal of Computer and System Sci-
ences, 50(2):209–227, April 1995. [115]

ZC93. Jinsong Zhu and Samuel T. Chanson. Fault coverage evaluation of protocol test se-
quences. Technical Report TR-93-19, Department of Computer Science, University
of British Columbia, June 1993. [126]

ZHM97. H. Zhu, P. Hall, and J. May. Software unit test coverage and adequacy. ACM Comput-
ing Surveys, 29(4):366–427, December 1997. [7, 17, 294, 296, 298]

Index

=⇒ , 188
ioco, 200
ioconf, 198
passes, 206
−→, 188
3SAT, 46

a-valid, 75
abstract state machine, 403
abstract state machine language, 403
abstraction, 441
– communication, 444
– data, 443
– functional, 442
– temporal, 444
accepting, 540
accepting state
– büchi automaton, 541
– deterministic finite-state automaton, 540
ACSR, 351, 355
adaptive distinguishing sequences, 68
adaptive experiment, 591
ADS, 68
after, 189
AGEDIS, 416
algebra of communicating shared resources,

351
alphabet, 540
alternating büchi automaton, 550
ASM, 403
AsmL, 403
assignment, 227, 332, 334
assistant, 575
ATS, 467
autofocus, 397, 436, 440
autolink, see test tool
automaton
– region, 218
AVS, architecture validation suite, 433, 435

B, 337
b-valid, 75
büchi automaton, 541
back propagation, 364
BCET, 374

behavioral constraints, 352
best-case execution time, 374
bisimulation, 594
– weak bisimulation, 145
black box checking, 578
black-box test, 348
black-box testing, 587
block, 61
block (of uncertainty), 32
boundary states, 337
breakpoint, 560

c-valid, 75
CADP, see tool
CADP, CAESAR/ALDEBARAN develop-

ment package, 435
characterizing set, 112
checking sequence, 106
classification-tree, 323, 324
clause, 46
clock
– constraints, 216
clock valuation, 217, 227
closed, 75, 564, 567
closed for, 559
CLPS-B, 337
CNF, 46
cofinal automaton, see synchronizing

sequence
collapsible automaton, see synchronizing

sequence
complete, 207
complete splitting tree, 79
complete trace, 143
complete trace formula, 143
complete trace preorder, see preorder
completely specified, 589
completeness, 325
component, 558
computational tree logic, 545
concurrency
– data race, 515
– deadlock, 517
conditional, 332, 334
conformance, 586

628 Index

conformance kit, 399
conformance testing, 89, 105, 134, 159
conjunctive normal form, 46
consistent, 564
constraint graph, 352
constraint logic programming, 337, 440
continuous-time markov chain
– action-labeled, 254
control path, 331
cooper, see test tool
coverage
– all definition uses paths, 297
– all definitions, 297
– all uses, 297
– boundary interior, 293
– branch, 295
– condition, 295
– decision, 295
– decision condition, 295
– full predicate, 296
– modified condition decision, 295
– multiple condition, 295
– path, 293
– required k -tuples, 298
– transition, 293
coverage criteria
– control flow, 294
– data flow, 294, 296
CTL, 545
current state uncertainty, 31, 591
current uncertainty, 62

derived transition system, see labeled
transition system

deterministic, 589
deterministic finite-state automaton, 540
DFA, 540
digital signal processing, 432
directable automaton, see synchronizing

sequence
directing word, see synchronizing sequence
discrete partition, 63
discrimination tree, 569
disjointness, 325
distinguishing sequence, 88, 117
distinguishing trace, 226
distribution, 248
divergence-free, 247
dom, 227

e-purse, 434
embedding, 255
empty word, 540
equivalent, 590
ERA, 362, 363
ETS, 467
Euler tour, 110
event clock, 219
event recording automaton, 219, 362
evolutionary algorithm, 372
– exit test, 373
– fitness evaluation, 373, 374
– individual, 372
– multimodal function, 372
– population, 372
– stoppage criterion, 374
– unimodal function, 372
evolutionary testing, 371
evolving algebra, 403
exhaustive, 207
external trace inclusion, 193

failure trace preorder, see preorder
fair computational tree logic, 547
fair preorder, 194
fair testing, see preorder
fault detection, 105
fault-based heuristic, 326
finite automata intersection, 48, 68
finite state machine
– binary transition tree, 519
finitely-branching, 247
flogsta, 31
flow graph, 296
FSP, see specification language
functional, 586

GATeL, 393
genesys, 435, 440
genetic algorithms, 101
GOTCHA, 434, 439
– GDL, GOTCHA definition language, 434,

436

hennessy-milner logic, 547
HML, 146, 547
homing sequence, 29
– adaptive, 30, 42
– algorithm for adaptive, 42–43
– algorithm for general mealy machines,

40–42

Index 629

– algorithm for minimized mealy machines,
33–36

– length of adaptive, 42
– of minimal length, 43–47
homing tree, 44
hybrid automaton, 366
– CHARON, 367
– event, 367
– flow condition, 366
– HybridUML, 367
– initial condition, 366
– invariant, 366
– jump condition, 366
hybrid system, 347, 365
– hybrid automaton, 366

identification set, 114
IF, see specification language
image-finite, 138
implementation relation
– conf, 405
– ioco, 408, 410
– ioconf, 414
implementation under test, see IUT
implication graph, 75
init, 189
initial state
– büchi automaton, 541
– deterministic finite-state automaton, 540
initial state uncertainty, 31, 591
initial uncertainty, 62
initializable automaton, see synchronizing

sequence
initializing word, see synchronizing sequence
input output automaton, 189
input output refusal preorder, 200
input output state machine, 190
input output symbolic transition system, see

IOSTS
input output testing relation, 198
input output transition system, 191
interaction
– k-dr, 297
intv, 227
invalid, 64
IOLTS, 408
IOLTS, an input output labeled transition

system, 435
IOSTS, 414, 436
IUT, 587

java, 434
– exception handling, 433, 436
– language specification, 434

kripke structure, 542
KS, 542

label, 558
labeled transition system, 135, 188, 593
– derived transition system, 137
– with divergence, 136
language
– timed, 218
learning
– invaraint detection, 531
– learner, 557
– program synthesis, 530
– teacher, 557
letter, 540
linear temporal logic, 544
lite, see tool
literal, 46
loop, 334
LOTOS, see specification language, 435, 436
LTL, 544
LTSA, see tool
lurette, 390
lustre, 386
lutess, 386

MµALT, 432, 434
machine verification, 105
MAY preorder, 196
mealy machine, 589
merging sequence, 36
modal mu-calculus, 547
model, 332, 586, 587
model checking, 319
– adaptive, 578
monitor, 586
MSC, see specification language
MUST preorder, 197
mutation testing, 327

natural language, 432, 434, 436
necessary condition, 326
non-probabilistic process, 247
NTIF, see specification language

objectgeode, 418

630 Index

observable testing preorder, see preorder
observation, 558
– pack, 558
– reduced observation table, 567
– table, 563
observation preorder, see preorder
OMEGA, see tool
operating system, 433
– POSIX, 433, 436
– UNIX, 434
oracle, 557
out, 189

parallel composition, 257–259, 270
partition graph, 364
partition tour, 399
partitioning heuristic, 325
path
– finite, 247, 250
– infinite, 250
path condition, 331, 333
PDS, 61
performance constraints, 352
PHACT, 400
PIXIT, 400
POSIX, 433
postcondition, 334
precondition, 334
preorder, 133
– complete trace, 143
– failure trace, 156
– fair testing, 157
– observable testing, 142
– observation, 144
– refusal, 152, 154
– should testing, 158
– testing, 148
– trace, 144
preset distinguishing sequences, 61
preset experiment, 591
preset homing sequence, 30
probabilistic bisimulation, 282
probabilistic process, 252
– fully, 249
probability space, 248
process algebra
– ACSR, 351, 355
– action, 353
– behavioral constraints, 356
– event, 353

– performance constraints, 356
– TCSP, 351
process of MBT
– abstract, 429
processor, 432
– ARM-2, 433
– intel 8085, 433
– microprocessor, 433
– multiprocessor, 433, 435
– PowerPC, 433, 435, 440
program correctness, 334
prolog, 337
PROMELA, 436
promela, see specification language
proof procedure, 331
proof tactic, 321
protocol, 433
– cache coherency, 433, 435
– conference protocol, 433
– engineering, 435

query
– equivalence, 557
– membership, 557
quiescent preorder, 194
quiescent state, 188

random sequence, 400
real-time
– hard, 347
– soft, 347
real-time system, 347
recurrent automaton, see synchronizing

sequence
recurrent word, see synchronizing sequence
refusal, 139
refusal preorder, see preorder
regular, 540
regularity hypothesis, 329
reset sequence, see synchronizing sequence
resettable automaton, see synchronizing

sequence
route, 329
run
– büchi automaton, 541
– deterministic finite-state automaton, 540

satisfaction operator, 143
schema, 319, 320
– declaration part, 320

Index 631

– name, 320
– predicate part, 320
– signature, 320
SDL, see specification language, 436
separating sequence, 34
should testing, see preorder
silent transition, 218
smart card, 434, 440
smile, see tool
sort-finite, 138
sound, 207
specification, 586
specification language, 331
– FSP, 413
– IF, 409
– LOTOS, 407, 409, 413, 416
– MSC, 421
– NTIF, 416
– promela, 413
– SDL, 409, 421
– UML, 409
SPIN, see tool
splitting tree, 79
stable, 229
stable state, 188
stable transition criterion, 363
state
– büchi automaton, 541
– deterministic finite-state automaton, 540
state cover set, 114
state identification, 88
state verification, 87
STG, see test tool
stochastic, 586
straces, 189
string, 540
– access, 558
– prefix, 540
strong until, 545
strongly responsive, 188
structural, 586
subsume relation, 304
successor tree, 66
sufficient condition, 326
super graph, 66
SUT, 348, 587
symbolic execution, 331, 332
symbolic reachability graph, 364
symbolic state, 364
– strengthened, 364

synchronized automaton, see synchronizing
sequence

synchronizing sequence, 27, 28, 399
– algorithm, 36–40
– of minimal length, 43–47
synchronizing tree, 43, 44
system under test, 348, see SUT

TCSP, 351
temporal logic
– finite state past time LTL, 521
– finite trace LTL, 518
terminal state experiment, see homing

sequence
terms, 227
test
– black-box, 348
– closed loop, 369
– open loop, 369
– white-box, 348
test automation, 348
test case, 205, 348, 585
– evaluation, 448
– execution, 447
– generation, 351, 439
– specification, 348
– structure, 446
– translation, 447
test case derivation, 207
test case generation, 351
– ACSR, 355
– ERA, 363
– evolutionary algorithm, 371
– hybrid system, 365
– iterative refinement, 371
– real time system, 351
– TTS, 360
test case generator, 586
test case specification, 585
test context, 587
test data, 585
test driver, 349
– hybrid system, 351
– real-time system, 351
test evaluation
– overview, 432
test execution, 586
– overview, 432
test generation
– overview, 431

632 Index

test generator, 348
– hybrid system, 350
– real-time system, 350
test instantiation
– overview, 431
test model, 348, 434
– abstract, 430
– hybrid system, 350
– real-time system, 350
test monitor, 348
– hybrid system, 350
– real-time system, 350
test oracle, 349
– hybrid system, 350
– real-time system, 350
test procedure, 348
test process, 256
– fully probabilistic, 257
– Markovian, 259
– non-probabilistic, 257
– probabilistic, 257
test purpose, 585
test run, 206
test sequence, 232
test specification
– case studies, 437
– functional, 437
– overview, 431, 436
– stochastic, 438
– structural, 438
test suite, 348, 585
test system, 453, 468, 586
test system configuration, 459
test tool
– AGEDIS, 408, 416
– AsmL, 403
– autofocus, 397
– autolink, 420
– conformance kit, 399
– cooper, 405
– GATeL, 393
– lurette, 390
– lutess, 386
– PHACT, 400
– STG, 413
– testcomposer, 408, 418
– TGV, 408
– TorX, 410
– TVEDA, 401
test tree, 365

test verdict, 349
– failed, 349
– inconclusive, 349
– passed, 349
test view, 360
testable timed transition system, 238, 360
testcomposer, 418
testing, 348, 512, 586
testing context refinement, 327
testing preorder, see preorder
testing scenario, 134, 140, 142
TGV, see test tool, 435, 439
the current set, 71
the initial set, 71
theorem prover, 318, 321, 324, 330
– automated, 318
– interactive, 318
– semi-automated, 318
theorem proving, 318, 319, 329
time domain
– dense, 350, 362, 365
– discrete, 350, 351
timed automaton, 351, 362
– U, 235, 360
– deterministic, 218
– ERA, 363
– safety, 217
– semantics, 217
– syntax, 216
– TTS, 360
timed communicating sequential processes,

351
timed transition system, 236, 351, 358
timing annotation, 227
tool
– CADP, 408, 413
– IF compiler, 409
– lite, 407
– LTSA, 413
– OMEGA, 416
– smile, 413
– SPIN, 413
– trojka, 413
– UMLAUT, 409
TorX, see test tool, 436
trace, 143, 188
– extended, 279
– finite, 247, 250
– infinite, 250
– probabilistic, 277

Index 633

trace distribution, 251
trace distribution precongruence, 280
trace distribution preorder, 280
trace equivalence, 594
trace preorder, see preorder
transferring sequence, 399
transformative system, 374
transition cover set, 111
transition function
– büchi automaton, 541
– deterministic finite-state automaton, 540
transition tour, 109, 399
trojka, see tool
TTCN-2, 420, 453
TTCN-3, 453
TTS, 236, 351, 358, 360
TTTS, 360
TVEDA, 401

UIO sequence, 87, 399
UIO testing method, 115
UIO tree, 96, 97
UML, 367, see specification language
UMLAUT, see tool
unified modeling language, 367
uniformity hypothesis, 319, 329
UNIX, 434
UPPAAL automaton, 360

valid input, 64
valid input sequence, 64
validation, 586
value domain
– dense, 350, 365
– discrete, 350, 351, 362
verdict, 586
verification, 586
– assertion, 514
– run-time, 510
verilog, 432, 435
VHDL, 401, 432, 435

WAP, 434
WCET, 374
weak bisimulation, see bisimulation
weak until, 545
weight function, 248
white-box test, 348
white-box testing, 332, 587
word, 540
– timed, 218
worst-case execution time, 374

Yuri Gurevich, 403

Z, 337

