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Abstract We complete the characterization of constant time computations on parallel models with reconfigurable
buses: We have shown previously that directed reconfigurable multiple bus machines (DRMBM) with polynomi-
ally bounded resources and running in constant time solve exactly the same problems as nondeterministic logarith
mic space bounded Turing machines, that write conflict resolution rules such as Priority or even Combining do not
add computational power over the Collision rule, and that a bus of width 1 (a wire) suffices for any constant time
computation on DRMBM. We now show that the same properties hold for constant time computations of directed
reconfigurable networks (DRN). We then study the power of the Collision rule in the general case, linking strongly
its universality with the capability of the model to compute the graph accessibility problem in constant time.

Key-words parallel computation, real-time computation, reconfigurable multiple bus machine, reconfigurable net-
work, CRCW conflict resolution rules, graph accessibility problem

1 Introduction the RN.

Previous work on parallel real-time computations [4] We then study whether the Conflict resolution rule
has produced a number of incidental results regardings generally (i.e., not only for constant time computa-
models of parallel computations with reconfigurable tions) universal on DRMBMs and DRNs. We find that
buses. Specifically, a tight characterization of con- this is indeed the case, and we are able to do so in a
stant time computations @aconfigurable multiple bus  more general setting. For indeed, the Collision rule is
machines RMBMs) was offered: DRMBMs andli- universal on any parallel model of computation that is
rected reconfigurable networKBRNSs) with constant ~ capable of computing the graph accessibility problem
running time have been found to have the same compu{GAP) in constant time.
tational power, which in turn is the same power as non-
deterministic logarithmic space bounded Turing ma- 2 Prelimi .
chines. In addition, it was shown that in the case of reliminaries
constant time RMBM computations there is no need Results proved elsewhere are introduced henceforth as
for such powerful write conflict resolution rules as Pri- Propositions, whereas results proved in this work are
ority or Combining as they do not add computational introduced as Theorems. Intermediate results are all
power over the easily implementable Collision rule, Lemmata.
that a unitary bus width is enough (i.e., a simple wire G AP, ; denotes be the following problem: Given
as bus will do for all constant time RMBM computa- a directed grapltz = (V, E), V = {1,2,...,n} (ex-
tions), and that segmenting buses does not add compupressed e.g., by the (boolean) incidence matyjde-
tational power over fusing buses. termine whether vertexis accessible from vertex
Motivated by such a result we complete in this pa- We denote byl [NL] the set of languages that
per the characterization of constant time computationsare accepted by deterministic [nondeterministic] Tur-
on models with reconfigurable buses. We find that suching machines that use at moé(logn) space (not
properties (Collision being the most powerful resolu- counting the input tape) on any input of lengtH6].
tion rule and unitary bus width being sufficient) hold For some languagé € NL there exists a nonde-
for the other model with reconfigurable buses, namely terministic Turing machiné/ = (K, X, 8, so) that ac-
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relation, andsg is the initial state. M accepts an input  these fuse lines can be electrically connected to any
stringx iff M halts onz. A configuration ofd work- bus. Assume that, at some given moment, buses
ing on inputz is defined as a tuplés, i, w, j), where i, ..., i are all connected to the down [up] fuse line
s is the statej andj are the positions of the heads on of some processor. Then, a signal placed on dus
input and working tape, respectively, ands the con-  is transmitted in one time unit to all the busgsuch
tent of the working tape. There apely(n) possible  thati; > i, [i; < i;]. If some RMBM [DRMBM] is
configurations ofM. For two configurations; and not allowed to segment buses, then this restricted vari-
v, We Writev; - v iff vo can be obtained by applying antis denoted by F-RMBM [F-DRMBM] (for “fusing”

0 exactly once on [6]. RMBM/DRMBM). The bus widthof some RMBM
The set of possible configurations &f working (DRMBM, etc.) denotes the maximum size of a word

onz forms a directed grap&' (M, x) = (V, E) as fol- that may be placed (and read) on (from) any bus in one

lows: V' contains one vertex for each and every possi- computational step.

ble configuration of\/ working onz, and(vy, v2) € E For CRCW (concurrent read, concurrent write;

iff v1 F vo. Itis clear thatr € L iff some configura- as opposed to CREW for concurrent read, exclusive
tion (h, i, wp, jn) IS accessible ilG(M, z) from the  write) RMBMs, the most realistic conflict resolution

initial configuration(sy, ig, wo, jo). For any language rule is Collision, where two values simultaneously
L € NL and for anyz, determining whether € L written on a bus result in the placement of a special,

can be reduced to the problem of computiig P, |y “collision” value on that bus. We consider for com-
for G(M,z) = (V, E), whereM is someNL Turing pleteness other conflict resolution rules such as Com-
machine decidind.. mon, Arbitrary, Priority, and Combining. However, we

The class of problems iNL with the addition of  find that all of these rules are in fact equivalent to the
(any kind of) real-time constraints is denotedNy/ ¢ seemingly less powerful Collision rule (see Proposi-
[4]. We denote by fPROC (f) the class of those tion 2.1(3)). We restrict only the Combining mode,
problems solvable in real time by the parallel model requiring that the combining operation be associative
of computation)/ that usesf(n) processors (and also and computable in nondeterministic linear space.

f(n) buses if applicable) for any input of size[3]. An RMBM (DRMBM, F-DRMBM, etc.) fam-
The following strongly supported conjecture isthenes-ily R = (R,),>1 iS a set containing one RMBM
tablished. (DRMBM, F-DRMBM, etc.) construction for each
n > 0. A family R solves a problen® if, for any
Claim 1 [4] rt-PROCCRCWFDRMBM ,51,(n)) = n, R, solves all inputs forP of sizen. We say that
NL/rt. some RMBM familyR is auniform RMBM familyif

there exists a Turing machin&/ that, givenn, pro-
Two main models with reconfigurable buses have duces the description a®,, using O(log(p(n)b(n)))
been developed in the literature: theconfigurable cells on its working tape. We henceforth drop the
network(or RN for short) [2] and theeconfigurable  “uniform” qualifier, with the understanding that any
multiple bus machinéor RMBM) [7]. RMBM family described in this paper is uniform. As-
sume that some familfR = (R,) solves a prob-
21 The RMBM lem P, and that eactk,,, n > 0, U.SeSp.(n) proces-
, sors, b(n) buses, and has a running time:). We
An RMBM [7] consists of a set op processorsand say then thaP € RMBM(p(n), b(n), t(n)) (or P €
b buses For each processaérand bush there exists a F-DRMBM(p(n), b(n), t(n)), etc.), and thaiR has
switchcontrolled by processar Using these switches, ;. complexity(n)b(n) andtime complexity ().
a processor has access to the buses by being able 10 |; should be noted that a directed RMBM can sim-
read or write from/to any bus. A processor may be ulate a nondirected RMBM by simply keeping all the

able tosegmené bus, obtaining thus two independent, |, 4nq down fuse lines synchronized with each other.
shorter buses, and it is allowed fisseany number of

buses together by usingase lineperpendicular to and

intersecting all the buses. DRMBM, tidirectedvari- 2.2 The Reconfigurable Network

ant of RMBM, is identical to the undirected model, An RN [2] is a network of processors that can be rep-
except for the definition of fuse lines: Each proces- resented as a connected graph whose vertices are the
sor features two fuse linesigwnandup). Each of  processors and whose edges represent fixed connec-



tions between processors. Each edge incident to a proand thus [5] arNL Turing machine)M, that receives
cessor corresponds to a (bidirectional) port of the pro-n’ (the number of processors iR) and somes,
cessor. A processor can internally partition its ports 1 < i < n’, and outputs the(f(logn) long) descrip-
such that all the ports in the same block of that parti- tion for processoi instead of the whole description.

tion are electrically connected (or fused) together. Two

We establish the existence 8f; (and thus)M)) by

or more edges that are connected together by a proinduction overd, and thus we complete the proof.

cessor that fuses some of its ports form a bus which

My exists by the definition of a uniform RMBM

connects ports of various processors together. CREWfamily. We assume the existence of;_, M), and

Common CRCW, Collision CRCW, etc. are defined
as for the the RMBM model. ThdirectedRN (DRN

for short) is similar to the general RN, except that the
edges are directed. The concept of (uniform) RN fam-
ily is identical to the concept of RMBM family. The
classRN(p(n),t(n)) [DRN(p(n),t(n))] is the set of
problems solvable by RN [DRN] uniform families with
p(n) processorsy(n) is also called thesize complex-
ity) andt(n) running time.

2.3 RMBM and Small Space Computations

The characterization of constant time RMBM compu-
tations described in the introduction of this paper can
be formally summarized as follows:

Proposition 2.1 [4]

1. CRCW DRMBM(poly(n), poly(n), O(1))
NL = CRCW F-DRMBM/(poly(n), poly(n),
O(1)) with Collision resolution rule and bus
width 1.

DRMBM ((poly(n),
DRN(poly(n), O(1)).
For any problemP solvable in constant time by
some (directed or nondirected) RMBM family us-
ing poly(n) processors angoly(n) buses,P €
CRCW F-DRMBM (poly(n), poly(n),O(1))

with Collision resolution rule and bus width

o(1))

poly(n),

We shall determine a similar result for DRNs. We will

adapt for this purpose two proofs used to derive Propo-

sition 2.1. In order to make this paper self contained
we include below these proofs.

Lemma 2.2 [4]CRCW DRMBM/(poly(n), poly(n),
O(1)) € NL, for any write conflict resolution rule and
any bus width.

Proof. Consider some R € CRCW
DRMBM(poly(n), poly(n), O(1)) performing
stepd of its computation(d < O(1)). We need to
find an NL Turing machineM, that generates the
description of R after stepd using O(logn) space,

show how M, is constructed. For each procesgpr
and each bus read byp; during stepd, M, performs
(sequentially) the following computationdZ; main-
tains two words andp, initially empty. For every; ,

1 < j < poly(n), My determines whether; writes on
busk. This implies the computation 6f AP; ; (clearly
computable in nondeterministie(log n) space since
it is NL-complete [6]). The local configurations of

fused and segmented buses at each processor (i.e., the

edges of the graph fatr AP; ;) are obtained by calls
to M,_,. The computation o&&AP;; is necessary to
ensure that we take; into account even whepy does
not write directly to busk but instead to another bus
that reaches busthrough fused buses.

If p; writes on busk, thenM; usesM,_, to de-
termine the value written by p; , and updates and
p as follows: (a) If bis empty, then itis set to (p; is
currently the only processor that writes to bsand
p is set toj. Otherwise: (b) If R uses the Collision
rule, the collision signal is placed i (c) If the con-
flict resolution rule is Priorityp andj are compared,;
if the latter denotes a processor with a larger priority,
thenb is set tov andp is set toj, otherwise, neither
b nor p are modified; the Common and Arbitrary rules
are handled similarly(d) Finally, if R uses the Com-
bining resolution rule withb as combining operation,
b is set to the result of o v (since the operation is
associative, the final content bis indeed the correct
combination of all the values written on bks

Once the content of bus has been determined,
the configuration op; is updated accordingly,andp
are reset to the empty word, and the same computation
is performed for the next bus read pyor for the next
processor. The whole computation/df; clearly takes
O(log n) space. O

Lemma 2.3 [4]LetM = (K, X, 4, sp) be anNL Tur-
ing machine that accepts € NL. Then, given some
word z, |x| = n, there exists &8@REW or CRCW
F-DRMBM algorithm that compute&'(M, =) (as an
incidence matrix/) in O(1) time, and usingoly(n)
processors angoly(n) buses of widtH.



Proof. Putn’ = |V| (n’ = poly(n)). The RMBM
algorithm uses: + (n’> — n’) processors: The first
n processory;, 1 < i < n, containz, i.e., eachp;
containsz;, thei-th symbol ofz; p; does nothing but
writesz; on busi. We shall refer to the remaining” —

¢ > 1, provided in the mentioned proof work in the

case of a RNR just as well as for the RMBM simu-

lation. The only difference is that buses are not num-

bered in the RN case. So, we first assign arbitrary (but

unambiguous) sequence numbers for the RN buses as

n’ processors gs;;, 1 < i,j < n'. Eachp;; assembles follows: There exists af)(log n) space-bounded Tur-

first the configurations corresponding to vertiegand ing machine that generates a descriptiolptinceR

v; of G(M,x) and then considers the potential edge belongs to a uniform RN family (in fact, such a Turing

(vs,v5) corresponding td;;. If such edge exists, then machine isM;). Then, in order to find “bus,” My

pi; WritesT'rue to I;;, and Flalse otherwise. There is  uses)M to generate the description &f until exactly

no interprocessor communication between processorg buses are generated. The description is discarded,

pij, thus any RMBM model is able to carry on this except for the last generated bus, which is considered

computation. to be “busk.” Since M, is deterministic, it always
Clearly, given a configuration;, p;; can com-  generates the description in the same order. Thus, it is

pute in constant time any configuratiop accessible  guaranteed that “bus’ is different from “bus;” if and

in one step fromy;, as this implies the computation of only if £ # j. The proof of Lemma 2.2 follows then

at most a constant numbe®(2¥)) of configurations.  unchanged.

The whole algorithm runs thus in constant time. [J The extra space used in the process of generating

bus & consists in two counters over the set of buses

(one to keep the valug and the other one to count

how many buses have been already generated). The

_ o _ _ counters take)(logn) space each, since there are at

The generality of the Collision resolution rule is not mostpoly(n) processors, antpoly(n))? = poly(n).

limited to RMBM computatipns. Indeed,' the same Thus, the overall space complexity remaiddog n),
property holds for constant time computations on RN ¢ gesired. ]

as well. We also find that a DRN is able to carry

out any constant time computation using only buses ofLemma 3.3 GAP, ,, € CRCW DRN(n?,O(1)) with
width 1. The first main result of this paper is thus the Collision resolution rule and bus width

DRN equivalent of Proposition 2.1, as follows:

3 The Characterization of Constant
Time RN Computations

Proof. Let R be the DRN solving+AP; ,, instances

of sizen. Then,R usesn? processors (referred to as
pij» 1 <i,j < n), connected in a mesh. That is, there
exists a (directional) bus fromy; only top;,); if and
onlyifi+1 < n, andtop;(;41) ifand only if j+1 < n,

as shown in Figure 1. As shown in the figure, we also
denote byF, S, N, andV the ports ofy;; to the buses
going top;;+1), 9oing top(;41);, coming fromp;;_1),
and coming fronp;_);, respectively.

We assume that the input gragh = (V) E),
|V| = n, is given by its incidence matriX, and that
each processar;; knows the value of;;.

The DRNR works as follows: Each processog,

i < j fuses itsW and S ports if and only ifl;; =
True. Analogously, each processar, ¢ > j fuses its
N andFE ports if and only ifl;; = True. Finally, each
processop;; fuses all of its ports.

Theorem 3.1 For any problems solvable in con-
stant time on some variant of RN, it holds thate

CRCW DRN(poly(n),O(1)) with Collision resolu-
tion rule and bus width.

The proof of Theorem 3.1 is based on the following
intermediate results.

Lemma3.2For any X € {CRCW,CREW},
Y € {D,e}, and for any write conflict resolu-
tion rule, it holds thatX YRN(poly(n),O(1)) C
CRCW DRN(poly(n),O(1)) with the Collision res-
olution rule.

Proof. First, note thaCRCW DRN(poly(n), O(1))
= NL for the Collision resolution rule [2]. Thus, we

complete the proof by showing that, for any conflict
resolution ruleCRCW DRN(poly(n), O(1)) C NL.
This result is however given by the proof of
Lemma 2.2. Indeed, it is immediate that the Turing
machinesM,; andM’, 0 < d < ¢ for some constant

Then, a signal is placed kpy; on both its outgoing
buses. Ifp,,,, receives some signal (either the original
one emitted byp;; or the signal corresponding to a
collision) the input is accepted; otherwise, the input is
rejected.
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Figure 1: A mesh ofi x n processors

Itis immediate thai? solvesG AP, ,,, by an argu-
ment similar to the one for RMBM [4] (also note that

At the beginning of the computationy, the kth
symbol of inputx, is stored in a register of processor

Pl 1<k <n.

We note from the proof of Lemma 2.3 that each
processorp?jrl of R is responsible for checking the
existence of a single edde, j) of G(M, x). In order
to accomplish this, it needs onbnesymbolzy,,; from
x, namely the symbol scanned by the head of the input
tape in configuration. We assume that all the proces-
sorSpfj, 1 < k < n, know the configuration (and
thus the value of;;).

It remains therefore to show now hawy, ; reaches
processop?j“ in constant time, for indeed, after this
distribution is achievedR is able to compute the in-
cidence matrix/ exactly as shown in the proof of
Lemma 2.3. The set of + 1 meshes performs the
following computation: For alll < k£ < n and
1<d,j<n/,

a similar construction is presented and proved correct 1. Eachp}; broadcastse; to all the processors in

elsewhere [8]). In addition, the content of the signal re-
ceived byp,., is clearly immaterial, so a bus of width
1 suffices. U

Recall now that the grapfi( M/, x) is the graph of
configurations of the Turing machin® working on
input .

Lemma 3.4 For any languagel. € NL (with the as-
sociatedNL Turing machineM accepting L), and
given some word:, |z| = n, there exists a constant
time CREW (and thus CRCW) DRN algorithm using
poly(n) processors and buses of widtthat computes
G(M, z) (as an incidence matrixX).

Proof. This fact is obtained by the same argument as
the one presented in the proof of Lemma 2.3. Indeed,
except for the distribution of input to processors,

Ry. To do this, all processo@“j fuse together
their N, S, E, andW ports, and thep}, places
21 0N its outgoing buses.

N

. Eachpfj comparess andh;;, and writesI'rue in
one of its registerd if they are equal and’'alse
otherwise.

. Eachpfj fuses itsU and D ports, thus forming
1 x j “vertical” buses.

4. Eachpj; for which d = True placesz; on its
port D.

. Finally, eacha%le stores the value it receives on
its U port. This is the value ofy,; it needs in
order to compute the elemeny of the incidence
matrix.

there is no interprocessor communication; as such, anyt is immediate that the above processing takes con-

parallel machine will do.

Thus, the computation @& (M, z) = (V, E) will
be performed by the same mesh of procesgbide-
picted in Figure 1, this time of size’ x n’ (where
n’ = |V]). In addition, the desired input distribution
will be accomplished by: additional meshes identical
to R. We will denote these meshes By, 1 < i < n.
Foranyl < 4,5 < n’ andl < k < n, the processor
at rowi, columnjy in meshRy [ R], will be denoted by
p; [p5]. Each processopf; has two new ports/
andD. There exists a bus connecting pértof pfj to
portU of pfj‘l foranyl < k < n. Then + 1 meshes
and their interconnection are shown in Figure 2.

stant time. In addition, it is also immediate that ex-
actly one processor writes on each “vertical” bus, and
thus no concurrent write takes place. Indeed, there ex-
ists exactly one processpfj, 1 < k < n, such that
k = h;j. Therefore, we realized the input distribution.
I;; is then computed by processpf?rl with-
out further communication, as shown in the proof of
Lemma 2.3. The construction of the DRN algorithm
that computed is therefore complete. Clearly, buses
of width 1 are enough for the whole processing, since
x is a word over an alphabet with 2 symbols. [
Given Lemmata 3.3, 3.4, and 3.2 we can now
prove our first main result.
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Figure 2: A collection ol meshes connected together

Proof of Theorem 3.1. That the Collision resolution
rule is the most powerful follows from Lemma 3.2. It
remains to be shown only that a bus widtbuffices.

Given some languagk € NL, let M be the (L)
Turing machine acceptindg.. For any inputz, the
DRN algorithm that accepté works as follows: Us-
ing Lemma 3.4, it obtains the gragh(M, x) of the
configurations ofM working onz. Then, it applies
the algorithm from Lemma 3.3 in order to determine
whether vertex: (halting/accepting state) is accessi-
ble from vertex1 (initial state) inG(M, x), and ac-
cepts or rejects, accordingly. In addition, note that
the valued;; computed by (and stored aﬁj“ in the
algorithm from Lemma 3.4 are in the right place as in-
put for p;; in the algorithm from Lemma 3.3 (that uses
only the meshR). It isimmediate given the aforemen-
tioned lemmata that the resulting algorithm accdpts
and uses no more thanly(n) processors, and unitary
width for all the buses.

The proof is now complete, since all the problems
solvable in constant time on RN are includedib. [J

4 GAP and the Universality of Colli-
sion

resolution rules for models with reconfigurable buses
(RMBM and RN) on one hand, and for shared mem-
ory models (PRAM) on the other hand. According
to our results, Collision is the most powerful rule on
RMBM and RN. By contrast, it is widely believed that
the Combining CRCW PRAM is more powerful than
the CRCW PRAM using the equivalent of a Collision
resolution rule. To our knowledge however no proof
on the matter exists to date. We believe that an inves-
tigation in this direction is an interesting pursuit. We
also believe that the contrast between RN and PRAM
is not only apparent (that is, we believe that the Com-
bining CRCW PRAM is indeed more powerful than
the Collision CRCW PRAM).

The reason for our belief is that the ability of some
model to compute GAP in constant time is central to
the constant time universality of the Collision rule, and
also determines that exactly all DRMBM and DRN
computations are iflL; we also note that GAP NL-
complete [6].

In light of this motivation, consider the classes
Mcogap, M=gap, andM~ a4 p of parallel models of
computations using polynomially bounded resources
(processors and, if applicable, buses), such that:

Mccap contains exactly all the models that cannot
compute GAP in constant time, and cannot com-
pute in constant time any problem nothi.. An
example of such a model is the Common CRCW
PRAM [9] (and thus the less powerful PRAM
variants).

M=cap contains exactly all the models that can com-
pute GAP in constant time, but cannot compute in
constant time any problem not ML. This class
includes the RMBM and RN.

M-gap contains exactly all the models that can com-
pute GAP in constant time and can compute in
constant time at least one problem not\Nib. To
our knowledge, no model has been proved to per-
tain to such a class, but a possible candidate is the
broadcast with selective reductionodel [1].

Our second main result is then formulated as follows:

Theorem 4.1 The Collision resolution rule is univer-
sal on any modelM € M=gap U Msgap, in the
following sense:

For any R € M with any write conflict resolution
rule andt(n) running time for input size there exists

As far a constant time computation is concerned, wean R’ € M that performs the same computation/as
note an apparent contrast between the power of conflicin O(¢(n)) time using the Collision resolution rule.



Proof. Suppose that some machif € M com- space given that the Combining operation is associa-
putesG AP; ; for a graphG with n vertices in constant  tive and computable in linear space. The whole pro-
time and usingoly(n) processors angoly(n) buses  cess performed by, is thus achievable in nondeter-
(if applicable); R’ exists by definition. Given thieg n ministic logarithmic space. On the other ha@d P; ;
restriction to the size of the registers of the participat- is NL-complete, sa?, can be a implemented as a ma-
ing processors, a processor cannot hold but a constarthine inM running in constant time.
number of edge descriptions. We then assume without It is also immediate that, iR usespoly(n) pro-
loss of generality thain processors hold information cessors and resources, then the combination also uses
about them edges inGG. Since the whole computation poly(n) resources. In addition to all of these, the
performed byR’ completes in constant time, it follows processors fromR, should be able to communicate
that them processors holding the edge information are in constant time with all the processors i (to in-
made to communicate with each other in constant timespect their configurations); this can be accomplished
by using extrapoly(m) resources. however with apoly(n) increase in resources ac-
This apparently irrelevant property can be put in cording to the constant-GAP-constant-communication
a more interesting way: given sonfe € M with property stated at the beginning of the proof. The result
m processors, there exists &i € M that includes is then established for the Combining rule. The other
R such that(a) all the original processors fronk conflict resolution rules are considered similarly in an

communicate with each other in constant timefih immediate manner, and the theorem obviously holds
and(b) R’ uses at mospoly(m) more resources than for any machine that does not use a conflict resolution
R. Call this property theconstant-GAP-constant- rule (i.e., a CREW machine). O
communicatiorproperty. Given that both DRMBMs and DRNs are in

Let now R € M be some CRCW machine with Mg 4p, the following is an immediate consequence
polynomially bounded resources that uses the Combin-of Theorem 4.1 and completes the characterization of
ing resolution rule to perform its computation. We then models with reconfigurable buses:
replaceR with a variant that uses the Collision resolu-
tion rule and then we split each stepf the computa-
tion into the following constant number of steps:

Corollary 4.2 The Collision resolution rule is univer-
sal on models with reconfigurable buses. That is:
For any X € {CRCW,CREW}, Y € {D,¢},
1. Each processgrof R reads the content of exter- 7 < {RN(poly(n), -), RMBM(poly(n), poly(n),-)},
nal resources (buses, memory locations, etc.) ag : IN — IN, and for any write conflict resolution rule,
required and then performs the prescribed com-it holds thatX Y Z(t(n)) C X DZ(O(t(n))) with the

putation for step, except that wheneverwants  Collision resolution rule.
to write to external resourck it also writes the

same value into a dedicated resoukg€there is , ,
one such a resource for each processor). Note thaﬁ'l GAP and Real-Time Computations

the Collision value might be placed in Compare the previous discussion on GAP with the fol-

) ] ) o lowing immediate generalization of Claim 1.
2. A machineR, then finds which of the original re-
sources hold a Collision value, and for each suchTheorem 4.3 For any models of computatiod/,
a resource(a) determines based on the configu- M,, and M3 such thatM; € Mcgap, My €
rations of the original processors which of these M—_g4p, and M3 € Mg ap, it holds that
processors write into the respective resoufég,

M
computes the resulting value to be placed into the t-PROC™ (poly(n)) < NL/rt (1)

respective resource (instead of the Collision sig- rt-PROC™ (poly(n)) = NL/rt (2)
nal), and(c) writes the computed value into the rt-PROCM: (poly(n)) > NL/rt (3)
resource.

Proof.  Minor variations of the arguments used in
Clearly the running time of the combinatiai, R,, [4] show that those computations which can be per-
and the new resourcds, put together is of the same formed in constant time on/;, 1 < i < 3, can be
order as the running time of the origin&. Indeed, performed in the presence of however tight time con-
Step(2.a) might imply repeated computations of some straints (and thus in real time in general). Then, Re-
GAP, ;, whilst step(2.0) is computable in logarithmic  lations (1) and (3) follow immediately from Claim 1.



By the same argument, BRROCMz(poly(n)) D
rt-PROCCRCWF-DRMBM 4,51/ (1)) holds as well. The

equality (and thus Relation (2)) is given by the argu-

ments that support Claim 1 [4]. O

Thus, the characterization of real-time computa-
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