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Abstract: We complete the characterization of constant time computations on parallel models with reconfigurable
buses: We have shown previously that directed reconfigurable multiple bus machines (DRMBM) with polynomi-
ally bounded resources and running in constant time solve exactly the same problems as nondeterministic logarith-
mic space bounded Turing machines, that write conflict resolution rules such as Priority or even Combining do not
add computational power over the Collision rule, and that a bus of width 1 (a wire) suffices for any constant time
computation on DRMBM. We now show that the same properties hold for constant time computations of directed
reconfigurable networks (DRN). We then study the power of the Collision rule in the general case, linking strongly
its universality with the capability of the model to compute the graph accessibility problem in constant time.
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1 Introduction
Previous work on parallel real-time computations [4]
has produced a number of incidental results regarding
models of parallel computations with reconfigurable
buses. Specifically, a tight characterization of con-
stant time computations onreconfigurable multiple bus
machines(RMBMs) was offered: DRMBMs anddi-
rected reconfigurable networks(DRNs) with constant
running time have been found to have the same compu-
tational power, which in turn is the same power as non-
deterministic logarithmic space bounded Turing ma-
chines. In addition, it was shown that in the case of
constant time RMBM computations there is no need
for such powerful write conflict resolution rules as Pri-
ority or Combining as they do not add computational
power over the easily implementable Collision rule,
that a unitary bus width is enough (i.e., a simple wire
as bus will do for all constant time RMBM computa-
tions), and that segmenting buses does not add compu-
tational power over fusing buses.

Motivated by such a result we complete in this pa-
per the characterization of constant time computations
on models with reconfigurable buses. We find that such
properties (Collision being the most powerful resolu-
tion rule and unitary bus width being sufficient) hold
for the other model with reconfigurable buses, namely
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de recherche sur la nature et les technologies.

the RN.
We then study whether the Conflict resolution rule

is generally (i.e., not only for constant time computa-
tions) universal on DRMBMs and DRNs. We find that
this is indeed the case, and we are able to do so in a
more general setting. For indeed, the Collision rule is
universal on any parallel model of computation that is
capable of computing the graph accessibility problem
(GAP) in constant time.

2 Preliminaries
Results proved elsewhere are introduced henceforth as
Propositions, whereas results proved in this work are
introduced as Theorems. Intermediate results are all
Lemmata.

GAPi,j denotes be the following problem: Given
a directed graphG = (V, E), V = {1, 2, ..., n} (ex-
pressed e.g., by the (boolean) incidence matrixI), de-
termine whether vertexj is accessible from vertexi.

We denote byL [NL] the set of languages that
are accepted by deterministic [nondeterministic] Tur-
ing machines that use at mostO(log n) space (not
counting the input tape) on any input of lengthn [6].

For some languageL ∈ NL there exists a nonde-
terministic Turing machineM = (K, Σ, δ, s0) that ac-
ceptsL and usesO(log n) working space.K is the set
of states,Σ is the tape alphabet (we consider without
loss of generality thatΣ = {0, 1}), δ is the transition



relation, ands0 is the initial state.M accepts an input
stringx iff M halts onx. A configuration ofM work-
ing on inputx is defined as a tuple(s, i, w, j), where
s is the state,i andj are the positions of the heads on
input and working tape, respectively, andw is the con-
tent of the working tape. There arepoly(n) possible
configurations ofM . For two configurationsv1 and
v2, we writev1 ` v2 iff v2 can be obtained by applying
δ exactly once onv1 [6].

The set of possible configurations ofM working
onx forms a directed graphG(M,x) = (V, E) as fol-
lows: V contains one vertex for each and every possi-
ble configuration ofM working onx, and(v1, v2) ∈ E
iff v1 ` v2. It is clear thatx ∈ L iff some configura-
tion (h, ih, wh, jh) is accessible inG(M, x) from the
initial configuration(s0, i0, w0, j0). For any language
L ∈ NL and for anyx, determining whetherx ∈ L
can be reduced to the problem of computingGAP1,|V |
for G(M, x) = (V, E), whereM is someNL Turing
machine decidingL.

The class of problems inNL with the addition of
(any kind of) real-time constraints is denoted byNL/rt
[4]. We denote by rt-PROCM (f) the class of those
problems solvable in real time by the parallel model
of computationM that usesf(n) processors (and also
f(n) buses if applicable) for any input of sizen [3].
The following strongly supported conjecture is then es-
tablished.

Claim 1 [4] rt-PROCCRCW F-DRMBM(poly(n)) =
NL/rt.

Two main models with reconfigurable buses have
been developed in the literature: thereconfigurable
network(or RN for short) [2] and thereconfigurable
multiple bus machine(or RMBM) [7].

2.1 The RMBM
An RMBM [7] consists of a set ofp processorsand
b buses. For each processori and busb there exists a
switchcontrolled by processori. Using these switches,
a processor has access to the buses by being able to
read or write from/to any bus. A processor may be
able tosegmenta bus, obtaining thus two independent,
shorter buses, and it is allowed tofuseany number of
buses together by using afuse lineperpendicular to and
intersecting all the buses. DRMBM, thedirectedvari-
ant of RMBM, is identical to the undirected model,
except for the definition of fuse lines: Each proces-
sor features two fuse lines (down and up). Each of

these fuse lines can be electrically connected to any
bus. Assume that, at some given moment, busesi1,
i2, ..., ik are all connected to the down [up] fuse line
of some processor. Then, a signal placed on busij
is transmitted in one time unit to all the busesil such
that il ≥ ij [il ≤ ij ]. If some RMBM [DRMBM] is
not allowed to segment buses, then this restricted vari-
ant is denoted by F-RMBM [F-DRMBM] (for “fusing”
RMBM/DRMBM). The bus widthof some RMBM
(DRMBM, etc.) denotes the maximum size of a word
that may be placed (and read) on (from) any bus in one
computational step.

For CRCW (concurrent read, concurrent write;
as opposed to CREW for concurrent read, exclusive
write) RMBMs, the most realistic conflict resolution
rule is Collision, where two values simultaneously
written on a bus result in the placement of a special,
“collision” value on that bus. We consider for com-
pleteness other conflict resolution rules such as Com-
mon, Arbitrary, Priority, and Combining. However, we
find that all of these rules are in fact equivalent to the
seemingly less powerful Collision rule (see Proposi-
tion 2.1(3)). We restrict only the Combining mode,
requiring that the combining operation be associative
and computable in nondeterministic linear space.

An RMBM (DRMBM, F-DRMBM, etc.) fam-
ily R = (Rn)n≥1 is a set containing one RMBM
(DRMBM, F-DRMBM, etc.) construction for each
n > 0. A family R solves a problemP if, for any
n, Rn solves all inputs forP of sizen. We say that
some RMBM familyR is a uniform RMBM familyif
there exists a Turing machineM that, givenn, pro-
duces the description ofRn usingO(log(p(n)b(n)))
cells on its working tape. We henceforth drop the
“uniform” qualifier, with the understanding that any
RMBM family described in this paper is uniform. As-
sume that some familyR = (Rn) solves a prob-
lem P , and that eachRn, n > 0, usesp(n) proces-
sors, b(n) buses, and has a running timet(n). We
say then thatP ∈ RMBM(p(n), b(n), t(n)) (or P ∈
F-DRMBM(p(n), b(n), t(n)), etc.), and thatR has
size complexityp(n)b(n) andtime complexityt(n).

It should be noted that a directed RMBM can sim-
ulate a nondirected RMBM by simply keeping all the
up and down fuse lines synchronized with each other.

2.2 The Reconfigurable Network
An RN [2] is a network of processors that can be rep-
resented as a connected graph whose vertices are the
processors and whose edges represent fixed connec-



tions between processors. Each edge incident to a pro-
cessor corresponds to a (bidirectional) port of the pro-
cessor. A processor can internally partition its ports
such that all the ports in the same block of that parti-
tion are electrically connected (or fused) together. Two
or more edges that are connected together by a pro-
cessor that fuses some of its ports form a bus which
connects ports of various processors together. CREW,
Common CRCW, Collision CRCW, etc. are defined
as for the the RMBM model. ThedirectedRN (DRN
for short) is similar to the general RN, except that the
edges are directed. The concept of (uniform) RN fam-
ily is identical to the concept of RMBM family. The
classRN(p(n), t(n)) [DRN(p(n), t(n))] is the set of
problems solvable by RN [DRN] uniform families with
p(n) processors (p(n) is also called thesize complex-
ity) andt(n) running time.

2.3 RMBM and Small Space Computations
The characterization of constant time RMBM compu-
tations described in the introduction of this paper can
be formally summarized as follows:

Proposition 2.1 [4]

1. CRCW DRMBM(poly(n), poly(n), O(1)) =
NL = CRCW F-DRMBM(poly(n), poly(n),
O(1)) with Collision resolution rule and bus
width1.

2. DRMBM(poly(n), poly(n), O(1)) =
DRN(poly(n), O(1)).

3. For any problemP solvable in constant time by
some (directed or nondirected) RMBM family us-
ing poly(n) processors andpoly(n) buses,P ∈
CRCW F-DRMBM(poly(n), poly(n), O(1))
with Collision resolution rule and bus width1.

We shall determine a similar result for DRNs. We will
adapt for this purpose two proofs used to derive Propo-
sition 2.1. In order to make this paper self contained
we include below these proofs.

Lemma 2.2 [4]CRCW DRMBM(poly(n), poly(n),
O(1)) ⊆ NL, for any write conflict resolution rule and
any bus width.

Proof. Consider some R ∈ CRCW
DRMBM(poly(n), poly(n), O(1)) performing
stepd of its computation(d ≤ O(1)). We need to
find an NL Turing machineMd that generates the
description ofR after stepd using O(log n) space,

and thus [5] anNL Turing machineM ′
d that receives

n′ (the number of processors inR) and somei,
1 ≤ i ≤ n′, and outputs the (O(log n) long) descrip-
tion for processori instead of the whole description.
We establish the existence ofMd (and thusM ′

d) by
induction overd, and thus we complete the proof.

M0 exists by the definition of a uniform RMBM
family. We assume the existence ofMd−1, M ′

d−1 and
show howMd is constructed. For each processorpi

and each busk read bypi during stepd, Md performs
(sequentially) the following computation:Md main-
tains two wordsb andρ, initially empty. For everypj ,
1 ≤ j ≤ poly(n), Md determines whetherpj writes on
busk. This implies the computation ofGAPj,i (clearly
computable in nondeterministicO(log n) space since
it is NL-complete [6]). The local configurations of
fused and segmented buses at each processor (i.e., the
edges of the graph forGAPj,i) are obtained by calls
to M ′

d−1. The computation ofGAPj,i is necessary to
ensure that we takepj into account even whenpj does
not write directly to busk but instead to another bus
that reaches busk through fused buses.

If pj writes on busk, thenMd usesM ′
d−1 to de-

termine the valuev written bypj , and updatesb and
ρ as follows:(a) If b is empty, then it is set tov (pj is
currently the only processor that writes to busk), and
ρ is set toj. Otherwise:(b) If R uses the Collision
rule, the collision signal is placed inb. (c) If the con-
flict resolution rule is Priority,ρ andj are compared;
if the latter denotes a processor with a larger priority,
thenb is set tov andρ is set toj, otherwise, neither
b norρ are modified; the Common and Arbitrary rules
are handled similarly.(d) Finally, if R uses the Com-
bining resolution rule with◦ as combining operation,
b is set to the result ofb ◦ v (since the operation◦ is
associative, the final content ofb is indeed the correct
combination of all the values written on busk).

Once the content of busk has been determined,
the configuration ofpi is updated accordingly,b andρ
are reset to the empty word, and the same computation
is performed for the next bus read bypi or for the next
processor. The whole computation ofMd clearly takes
O(log n) space. ¤

Lemma 2.3 [4]Let M = (K, Σ, δ, s0) be anNL Tur-
ing machine that acceptsL ∈ NL. Then, given some
word x, |x| = n, there exists aCREW or CRCW
F-DRMBM algorithm that computesG(M, x) (as an
incidence matrixI) in O(1) time, and usingpoly(n)
processors andpoly(n) buses of width1.



Proof. Put n′ = |V | (n′ = poly(n)). The RMBM
algorithm usesn + (n′2 − n′) processors: The first
n processorspi, 1 ≤ i ≤ n, containx, i.e., eachpi

containsxi, thei-th symbol ofx; pi does nothing but
writesxi on busi. We shall refer to the remainingn′2−
n′ processors aspij , 1 ≤ i, j ≤ n′. Eachpij assembles
first the configurations corresponding to verticesvi and
vj of G(M, x) and then considers the potential edge
(vi, vj) corresponding toIij . If such edge exists, then
pij writesTrue to Iij , andFalse otherwise. There is
no interprocessor communication between processors
pij , thus any RMBM model is able to carry on this
computation.

Clearly, given a configurationvi, pij can com-
pute in constant time any configurationvl accessible
in one step fromvi, as this implies the computation of
at most a constant number (O(2k)) of configurations.
The whole algorithm runs thus in constant time. ¤

3 The Characterization of Constant
Time RN Computations

The generality of the Collision resolution rule is not
limited to RMBM computations. Indeed, the same
property holds for constant time computations on RN
as well. We also find that a DRN is able to carry
out any constant time computation using only buses of
width 1. The first main result of this paper is thus the
DRN equivalent of Proposition 2.1, as follows:

Theorem 3.1 For any problemπ solvable in con-
stant time on some variant of RN, it holds thatπ ∈
CRCW DRN(poly(n), O(1)) with Collision resolu-
tion rule and bus width1.

The proof of Theorem 3.1 is based on the following
intermediate results.

Lemma 3.2 For any X ∈ {CRCW,CREW},
Y ∈ {D, ε}, and for any write conflict resolu-
tion rule, it holds thatX Y RN(poly(n), O(1)) ⊆
CRCW DRN(poly(n), O(1)) with the Collision res-
olution rule.

Proof. First, note thatCRCW DRN(poly(n), O(1))
= NL for the Collision resolution rule [2]. Thus, we
complete the proof by showing that, for any conflict
resolution rule,CRCW DRN(poly(n), O(1)) ⊆ NL.

This result is however given by the proof of
Lemma 2.2. Indeed, it is immediate that the Turing
machinesMd andM ′

d, 0 ≤ d ≤ c for some constant

c ≥ 1, provided in the mentioned proof work in the
case of a RNR just as well as for the RMBM simu-
lation. The only difference is that buses are not num-
bered in the RN case. So, we first assign arbitrary (but
unambiguous) sequence numbers for the RN buses as
follows: There exists anO(log n) space-bounded Tur-
ing machine that generates a description ofR, sinceR
belongs to a uniform RN family (in fact, such a Turing
machine isM0). Then, in order to find “busk,” Md

usesM0 to generate the description ofR until exactly
k buses are generated. The description is discarded,
except for the last generated bus, which is considered
to be “busk.” Since M0 is deterministic, it always
generates the description in the same order. Thus, it is
guaranteed that “busk” is different from “busj” if and
only if k 6= j. The proof of Lemma 2.2 follows then
unchanged.

The extra space used in the process of generating
bus k consists in two counters over the set of buses
(one to keep the valuek and the other one to count
how many buses have been already generated). The
counters takeO(log n) space each, since there are at
mostpoly(n) processors, and(poly(n))2 = poly(n).
Thus, the overall space complexity remainsO(log n),
as desired. ¤

Lemma 3.3 GAP1,n ∈ CRCW DRN(n2, O(1)) with
Collision resolution rule and bus width1.

Proof. Let R be the DRN solvingGAP1,n instances
of sizen. Then,R usesn2 processors (referred to as
pij , 1 ≤ i, j ≤ n), connected in a mesh. That is, there
exists a (directional) bus frompij only top(i+1)j if and
only if i+1 ≤ n, and topi(j+1) if and only if j+1 ≤ n,
as shown in Figure 1. As shown in the figure, we also
denote byE, S, N , andW the ports ofpij to the buses
going topi(j+1), going top(i+1)j , coming frompi(j−1),
and coming fromp(i−1)j , respectively.

We assume that the input graphG = (V,E),
|V | = n, is given by its incidence matrixI, and that
each processorpij knows the value ofIij .

The DRNR works as follows: Each processorpij ,
i < j fuses itsW andS ports if and only ifIij =
True. Analogously, each processorpij , i > j fuses its
N andE ports if and only ifIij = True. Finally, each
processorpii fuses all of its ports.

Then, a signal is placed byp11 on both its outgoing
buses. Ifpnn receives some signal (either the original
one emitted byp11 or the signal corresponding to a
collision) the input is accepted; otherwise, the input is
rejected.
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Figure 1: A mesh ofn× n processors

It is immediate thatR solvesGAP1,n, by an argu-
ment similar to the one for RMBM [4] (also note that
a similar construction is presented and proved correct
elsewhere [8]). In addition, the content of the signal re-
ceived bypnn is clearly immaterial, so a bus of width
1 suffices. ¤

Recall now that the graphG(M, x) is the graph of
configurations of the Turing machineM working on
inputx.

Lemma 3.4 For any languageL ∈ NL (with the as-
sociatedNL Turing machineM acceptingL), and
given some wordx, |x| = n, there exists a constant
time CREW (and thus CRCW) DRN algorithm using
poly(n) processors and buses of width1 that computes
G(M, x) (as an incidence matrixI).

Proof. This fact is obtained by the same argument as
the one presented in the proof of Lemma 2.3. Indeed,
except for the distribution of inputx to processors,
there is no interprocessor communication; as such, any
parallel machine will do.

Thus, the computation ofG(M, x) = (V, E) will
be performed by the same mesh of processorsR de-
picted in Figure 1, this time of sizen′ × n′ (where
n′ = |V |). In addition, the desired input distribution
will be accomplished byn additional meshes identical
to R. We will denote these meshes byRi, 1 ≤ i ≤ n.
For any1 ≤ i, j ≤ n′ and1 ≤ k ≤ n, the processor
at rowi, columnj in meshRk [R], will be denoted by
pk

ij [pn+1
ij ]. Each processorpk

ij has two new portsU

andD. There exists a bus connecting portD of pk
ij to

portU of pk+1
ij for any1 ≤ k ≤ n. Then + 1 meshes

and their interconnection are shown in Figure 2.

At the beginning of the computation,xk, thekth
symbol of inputx, is stored in a register of processor
pk
11, 1 ≤ k ≤ n.

We note from the proof of Lemma 2.3 that each
processorpn+1

ij of R is responsible for checking the
existence of a single edge(i, j) of G(M,x). In order
to accomplish this, it needs onlyonesymbolxhij from
x, namely the symbol scanned by the head of the input
tape in configurationi. We assume that all the proces-
sorspk

ij , 1 ≤ k ≤ n, know the configurationi (and
thus the value ofhij).

It remains therefore to show now howxhij reaches
processorpn+1

ij in constant time, for indeed, after this
distribution is achieved,R is able to compute the in-
cidence matrixI exactly as shown in the proof of
Lemma 2.3. The set ofn + 1 meshes performs the
following computation: For all1 ≤ k ≤ n and
1 ≤ i, j ≤ n′,

1. Eachpk
11 broadcastsxk to all the processors in

Rk. To do this, all processorspk
ij fuse together

their N , S, E, andW ports, and thenpk
11 places

xk on its outgoing buses.

2. Eachpk
ij comparesk andhij , and writesTrue in

one of its registersd if they are equal andFalse
otherwise.

3. Eachpk
ij fuses itsU andD ports, thus forming

i× j “vertical” buses.

4. Eachpk
ij for which d = True placesxk on its

portD.

5. Finally, eachpn+1
ij stores the value it receives on

its U port. This is the value ofxhij it needs in
order to compute the elementIij of the incidence
matrix.

It is immediate that the above processing takes con-
stant time. In addition, it is also immediate that ex-
actly one processor writes on each “vertical” bus, and
thus no concurrent write takes place. Indeed, there ex-
ists exactly one processorpk

ij , 1 ≤ k ≤ n, such that
k = hij . Therefore, we realized the input distribution.

Iij is then computed by processorpn+1
ij with-

out further communication, as shown in the proof of
Lemma 2.3. The construction of the DRN algorithm
that computesI is therefore complete. Clearly, buses
of width 1 are enough for the whole processing, since
x is a word over an alphabet with 2 symbols. ¤

Given Lemmata 3.3, 3.4, and 3.2 we can now
prove our first main result.
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Proof of Theorem 3.1. That the Collision resolution
rule is the most powerful follows from Lemma 3.2. It
remains to be shown only that a bus width1 suffices.

Given some languageL ∈ NL, let M be the (NL)
Turing machine acceptingL. For any inputx, the
DRN algorithm that acceptsL works as follows: Us-
ing Lemma 3.4, it obtains the graphG(M,x) of the
configurations ofM working onx. Then, it applies
the algorithm from Lemma 3.3 in order to determine
whether vertexn (halting/accepting state) is accessi-
ble from vertex1 (initial state) inG(M, x), and ac-
cepts or rejectsx, accordingly. In addition, note that
the valuesIij computed by (and stored at)pn+1

ij in the
algorithm from Lemma 3.4 are in the right place as in-
put forpij in the algorithm from Lemma 3.3 (that uses
only the meshR). It is immediate given the aforemen-
tioned lemmata that the resulting algorithm acceptsL
and uses no more thanpoly(n) processors, and unitary
width for all the buses.

The proof is now complete, since all the problems
solvable in constant time on RN are included inNL. ¤

4 GAP and the Universality of Colli-
sion

As far a constant time computation is concerned, we
note an apparent contrast between the power of conflict

resolution rules for models with reconfigurable buses
(RMBM and RN) on one hand, and for shared mem-
ory models (PRAM) on the other hand. According
to our results, Collision is the most powerful rule on
RMBM and RN. By contrast, it is widely believed that
the Combining CRCW PRAM is more powerful than
the CRCW PRAM using the equivalent of a Collision
resolution rule. To our knowledge however no proof
on the matter exists to date. We believe that an inves-
tigation in this direction is an interesting pursuit. We
also believe that the contrast between RN and PRAM
is not only apparent (that is, we believe that the Com-
bining CRCW PRAM is indeed more powerful than
the Collision CRCW PRAM).

The reason for our belief is that the ability of some
model to compute GAP in constant time is central to
the constant time universality of the Collision rule, and
also determines that exactly all DRMBM and DRN
computations are inNL; we also note that GAP isNL-
complete [6].

In light of this motivation, consider the classes
M<GAP , M≡GAP , andM>GAP of parallel models of
computations using polynomially bounded resources
(processors and, if applicable, buses), such that:

M<GAP contains exactly all the models that cannot
compute GAP in constant time, and cannot com-
pute in constant time any problem not inNL. An
example of such a model is the Common CRCW
PRAM [9] (and thus the less powerful PRAM
variants).

M≡GAP contains exactly all the models that can com-
pute GAP in constant time, but cannot compute in
constant time any problem not inNL. This class
includes the RMBM and RN.

M>GAP contains exactly all the models that can com-
pute GAP in constant time and can compute in
constant time at least one problem not inNL. To
our knowledge, no model has been proved to per-
tain to such a class, but a possible candidate is the
broadcast with selective reductionmodel [1].

Our second main result is then formulated as follows:

Theorem 4.1 The Collision resolution rule is univer-
sal on any modelM ∈ M≡GAP ∪ M>GAP , in the
following sense:

For anyR ∈ M with any write conflict resolution
rule andt(n) running time for input sizen there exists
an R′ ∈ M that performs the same computation asR
in O(t(n)) time using the Collision resolution rule.



Proof. Suppose that some machineR′ ∈ M com-
putesGAPi,j for a graphG with n vertices in constant
time and usingpoly(n) processors andpoly(n) buses
(if applicable);R′ exists by definition. Given thelog n
restriction to the size of the registers of the participat-
ing processors, a processor cannot hold but a constant
number of edge descriptions. We then assume without
loss of generality thatm processors hold information
about them edges inG. Since the whole computation
performed byR′ completes in constant time, it follows
that them processors holding the edge information are
made to communicate with each other in constant time
by using extrapoly(m) resources.

This apparently irrelevant property can be put in
a more interesting way: given someR ∈ M with
m processors, there exists anR′ ∈ M that includes
R such that(a) all the original processors fromR
communicate with each other in constant time inR′,
and(b) R′ uses at mostpoly(m) more resources than
R. Call this property theconstant-GAP-constant-
communicationproperty.

Let now R ∈ M be some CRCW machine with
polynomially bounded resources that uses the Combin-
ing resolution rule to perform its computation. We then
replaceR with a variant that uses the Collision resolu-
tion rule and then we split each stepi of the computa-
tion into the following constant number of steps:

1. Each processorp of R reads the content of exter-
nal resources (buses, memory locations, etc.) as
required and then performs the prescribed com-
putation for stepi, except that wheneverp wants
to write to external resourcek it also writes the
same value into a dedicated resourcekp (there is
one such a resource for each processor). Note that
the Collision value might be placed ink.

2. A machineRg then finds which of the original re-
sources hold a Collision value, and for each such
a resource:(a) determines based on the configu-
rations of the original processors which of these
processors write into the respective resource,(b)
computes the resulting value to be placed into the
respective resource (instead of the Collision sig-
nal), and(c) writes the computed value into the
resource.

Clearly the running time of the combinationR, Rg,
and the new resourceskp put together is of the same
order as the running time of the originalR. Indeed,
Step(2.a) might imply repeated computations of some
GAPi,j , whilst step(2.b) is computable in logarithmic

space given that the Combining operation is associa-
tive and computable in linear space. The whole pro-
cess performed byRg is thus achievable in nondeter-
ministic logarithmic space. On the other handGAPi,j

is NL-complete, soRg can be a implemented as a ma-
chine inM running in constant time.

It is also immediate that, ifR usespoly(n) pro-
cessors and resources, then the combination also uses
poly(n) resources. In addition to all of these, the
processors fromRg should be able to communicate
in constant time with all the processors inR (to in-
spect their configurations); this can be accomplished
however with apoly(n) increase in resources ac-
cording to the constant-GAP-constant-communication
property stated at the beginning of the proof. The result
is then established for the Combining rule. The other
conflict resolution rules are considered similarly in an
immediate manner, and the theorem obviously holds
for any machine that does not use a conflict resolution
rule (i.e., a CREW machine). ¤

Given that both DRMBMs and DRNs are in
M≡GAP , the following is an immediate consequence
of Theorem 4.1 and completes the characterization of
models with reconfigurable buses:

Corollary 4.2 The Collision resolution rule is univer-
sal on models with reconfigurable buses. That is:

For any X ∈ {CRCW, CREW}, Y ∈ {D, ε},
Z ∈ {RN(poly(n), ·),RMBM(poly(n), poly(n), ·)},
t : IN → IN, and for any write conflict resolution rule,
it holds thatX Y Z(t(n)) ⊆ X DZ(O(t(n))) with the
Collision resolution rule.

4.1 GAP and Real-Time Computations
Compare the previous discussion on GAP with the fol-
lowing immediate generalization of Claim 1:

Theorem 4.3 For any models of computationM1,
M2, and M3 such that M1 ∈ M<GAP , M2 ∈
M≡GAP , andM3 ∈M<GAP , it holds that

rt-PROCM1(poly(n)) ⊆ NL/rt (1)

rt-PROCM2(poly(n)) = NL/rt (2)

rt-PROCM3(poly(n)) ⊃ NL/rt (3)

Proof. Minor variations of the arguments used in
[4] show that those computations which can be per-
formed in constant time onMi, 1 ≤ i ≤ 3, can be
performed in the presence of however tight time con-
straints (and thus in real time in general). Then, Re-
lations (1) and (3) follow immediately from Claim 1.



By the same argument, rt-PROCM2(poly(n)) ⊇
rt-PROCCRCW F-DRMBM(poly(n)) holds as well. The
equality (and thus Relation (2)) is given by the argu-
ments that support Claim 1 [4]. ¤

Thus, the characterization of real-time computa-
tions established by Claim 1 does hold in fact for any
machines that are able to compute GAP in constant
time. The characterization presented in Theorem 4.3
emphasizes in fact the strength of Claim 1. Indeed, as
noted above, no model more powerful than the RMBM
is known to exist. That is, according to the current
body of knowledge,M>GAP = ∅. Unless this rela-
tion is found to be false, it follows from Claim 1 that
no problem outsideNL can be solved in real time in
general, not only as far as RMBM computations are
concerned.

5 Conclusions
We found that there exists a very strong similarity be-
tween the two models with reconfigurable buses, the
RN and the RMBM: Not only they solve the same
problems (namely, exactly all the problems inNL), but
in both cases(a) the smallest possible bus width is
enough for all problems, and(b) the Collision reso-
lution rule is the most powerful (even as powerful as
the Combining rule).

Furthermore, we showed that Collision is the most
powerful on DRNs and DRMBMs for any running
time. According to our results, the discussion regard-
ing the practical feasibility of rules like Priority or
Combining on spatially distributed resources such as
buses is no longer of interest. Indeed, such rules are
not only of questionable feasibility, but also not neces-
sary!

We also noted the central role of the graph acces-
sibility problem (GAP) for the DRN and DRMBM re-
sults obtained here and also previously [4]. In fact,
the universality of the Collision rule on models with
reconfigurable buses was established as a consequence
of our more general result that the Collision rule is uni-
versal on any model of parallel computation that is able
to compute GAP in constant time.

Having found that Collision is universal on all the
models fromM≡GAP and given that GAP is not com-
putable in constant time on models fromM<GAP , we
believe that the Collision resolution rule isnot univer-
sal on any model fromM<GAP . We also expect that
a lesser conflict resolution rule is universal on models
inM>GAP (if any). Showing (or disproving) this is an
intriguing open problem.
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