
PARALLEL REAL-TIME COMPLEXITY THEORY

by

STEFAN D. BRUDA

A thesis submitted to the

Department of Computing and Information Science

in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada

April 2002

Copyright © Stefan D. Bruda, 2002

Abstract

We present a new complexity theoretic approach to real-time computations. We define

timed ω-languages as a new formal model for such computations, that we believe to allow

a unified treatment of all variants of real-time computations that are meaningful in prac-

tice. To our knowledge, such a practically meaningful formal definition does not exist at

this time.

In order to support our claim that timed ω-languages capture all the real-time char-

acteristics that are important in practice, we use this formalism to model the two most

important features of real-time algorithms, namely the presence of deadlines and the real-

time arrival of input data. We emphasize the expressive power of our model by using it to

formalize aspects from the areas of real-time database systems and ad hoc networks.

We also offer a complexity theoretic characterization of parallel real-time computations.

First, we define complexity classes that capture the intuitive notion of resource require-

ments for real-time computations in a parallel environment. Then, we show that real-time

algorithms form an infinite hierarchy with respect to the number of processors used, and

that all the problems solvable in nondeterministic logarithmic space (NLOGSPACE) can

be solved in real time by a parallel machine, no matter how tight the real-time constraints

are. As well, we show that, once real-time constraints are dropped, several other real-time

problems are in effect in NLOGSPACE. Therefore, we conjecture that NLOGSPACE con-

tains exactly all the computations that admit feasible (poly(n) processors) real-time parallel

implementations.

i

In the context of these results, the issue of real-time optimization problems is investi-

gated. We identify the class of such problems that are solvable in real time, and we show

that, for a large class of optimization problems, a parallel algorithm can report in real time

a solution that is arbitrarily better than the solution reported by a sequential algorithm.

We also address the problem of real-time approximation algorithms. We identify prob-

lems that do not admit good approximation solutions in real time. We also show that bin

packing admits a good real-time approximation algorithm.

ii

Acknowledgments

Special thanks to my thesis supervisor, Professor Selim Akl. Without him, the research

direction described in this thesis would be at best only a project. His research support is

gratefully acknowledged, and is equaled only by his advice and support in countless other

academic situations (from the publishing process to job applications). Many thanks again

for his support and advice.

This thesis has benefited from the comments of the anonymous referees of our pa-

pers, especially the ones who reviewed our submissions to International Parallel and Dis-

tributed Processing Symposium, and to Parallel Processing Letters.

I also wish to thank Professor Kai Salomaa, Professor Henk Meijer, Professor David

Rappaport, Professor Ivan Stojmenovic, and Professor Thomas Dean for comments and

fruitful discussions on the material of this thesis.

Finally, I wish to express my gratitude for their emotional support to my parents as

well as to all of my friends. In this respect, a truly special mention goes to Andreia and

Flavius. Without them, this thesis might have been the same, but I would not.

iii

Co-Authorship

The work presented in this thesis has been published in many papers [26, 27, 28, 29, 30,

34, 32, 33], all of them joint authored by myself (as principal author) and Selim G. Akl, my

thesis supervisor.

iv

Contents

1 Introduction 1
1.1 Real Time in Practice: An Informal Definition 2
1.2 Formal Models of Real Time . 3
1.3 The Problem . 4
1.4 Towards a Solution . 4
1.5 Thesis Summary . 7

2 Preliminaries 10
2.1 Notations . 12
2.2 Parallel Models of Computation . 16
2.3 The Data-Accumulating Paradigm . 23

3 Previous Work: Theory and Practice of Real-Time Systems 33
3.1 Real Time in Practice . 34
3.2 Real-Time and On-Line Turing Machines . 38
3.3 The Real-Time Producer/Consumer Paradigm 40
3.4 Real-Time Discrete Steepest Descent . 41
3.5 Timed Automata . 42

4 Defining Real-Time Computations: From Applications to Theory. . . 47
4.1 Well-Behaved Timed ω-Languages . 47
4.2 Accepting Timed ω-Languages . 49
4.3 Operations on Timed ω-Languages . 52
4.4 Sizing Up Real-Time Computations . 54

5 . . . And Back [from Theory to Applications] 58
5.1 Computing with Deadlines . 59
5.2 Real-Time Input Arrival . 61
5.3 Real-Time Database Systems . 63
5.4 Ad Hoc Networks . 70

v

6 Complexity of Real Time I: A Strong Infinite Hierarchy 78
6.1 Two Processors are More Powerful than One 79
6.2 The Hierarchy rt-PROCPRAM . 88
6.3 The Strong Hierarchy rt-PROC . 92
6.4 On Practical Issues and Why the Hierarchy rt-PROC does not Collapse . . . 93

7 Complexity of Real Time II: Logarithmic Space Computations are Real Time 96
7.1 RMBM and NLOGSPACE Computations . 97
7.2 Small Space Computations Are Real-Time . 106

8 Complexity of Real Time III: Real Time Computations are Logarithmic Space? 109
8.1 Non-Real-Time Pursuit Is Easy . 111
8.2 The Characterization of D-Algorithms . 113
8.3 The Characterization of C-Algorithms . 122
8.4 The Graph Accessibility Problem and Real Time 129

9 Real-Time Characterization of Optimization Problems 132
9.1 Independence Systems and Matroids . 133
9.2 A Real-Time Perspective . 135
9.3 Beyond Speedup, Extended . 138

10 On Real-Time Approximation Algorithms 143
10.1 Real-Time Approximation Schemes and Problems not Admitting Real-Time

Approximation Algorithms . 144
10.2 A Real-Time Approximation Scheme for Bin Packing 145

11 The Characterization of Constant Time RN Computations 149
11.1 Write Conflict Resolution Rules on RN . 150
11.2 Bus Width Bounds on RN . 151
11.3 Open Problems . 155

12 Conclusions and Open Problems 157
12.1 Open Problems . 160
12.2 Incidental results . 164

Bibliography 167

vi

List of Figures

2.1 The reconfigurable multiple bus machine . 19
2.2 Example of reconfigurable networks: (a) nondirected, and (b) directed . . . 23

6.1 PURSUIT1: Insertion modulo r . 80
6.2 PURSUIT1: Acceptable insertion zone . 83
6.3 PURSUITk: The k-dimensional circle . 89

9.1 A RAM greedy algorithm for maximization problems 134
9.2 A parallel greedy algorithm for maximization problems 136

11.1 A mesh of n× n processors . 152
11.2 A collection of n meshes connected together 153

vii

Chapter 1

Introduction

To adapt an example presented in [57], consider a person driving a vehicle. The driver

should perform some actions whose timing is critical to the task at hand (bringing the

vehicle to the destination of the trip). For example, once a turn is approached, proper force

should be applied to the steering wheel. This force should be applied at a precise moment

in time: should it be applied too early (before entering the turn) or too late, the outcome

(placing the vehicle off the road) is probably different from the desired result. We say that

steering is a real-time task, since in this case the timing of the action is just as important as

the action itself. By contrast, one non-real-time task may consist in filling up the gas tank

of the vehicle. While it is desirable that the process be completed as soon as possible (and

within a reasonable amount of time), the successful completion of the task is much more

important than the timing.

The object of this thesis is the formal definition and analysis of real-time computations,

that is, the computational equivalents of the driving process. Chances are, everybody has

already used (directly or indirectly) a computer performing a real-time task. Consider

again the automotive world: the engine of most of today’s vehicles is driven by an embed-

ded real-time computer. Various other computer driven systems, such as anti-lock braking

or traction control, are becoming more and more common. In fact, the nowadays auto-

mobile contains so many electronic and electrical devices that the auto industry is in the

1

CHAPTER 1. INTRODUCTION. 2

process of increasing the voltage standard for vehicles, from the current 12 volts to 42-volt

systems [55]. Part of this extra voltage will undoubtedly be used by even more real-time

computing devices. On a (both literally and technically) higher level, many modern air-

craft use fly-by-wire systems, that are driven by real-time computers [56].

We have mentioned in the preceding paragraph only two examples, taken from day-to-

day life. However, real-time systems do permeate the whole industrialized world, from the

control of industrial processes, to global communication networks, to financial markets, to

the military [21, 81]. Thus, the practice of real-time computing systems has reached a

significant level of maturity.

1.1 Real Time in Practice: An Informal Definition

We used the term “real-time computation” many times, without providing a definition

(save for the intuition from the first paragraph). Most computing scientists have an intu-

itive notion about what this concept means, but the absence of a definition is no accident:

to our knowledge, the term does not have a precise, general definition. The systems lit-

erature either defines it partially (restricting the notion to the actual subdomain that is

considered in the corresponding paper), or does not define it at all (for instance, one text-

book on the subject [58] goes directly to describe the components of a real-time system and

various design issues—no definition is ever provided).

Indeed, the domain of real-time systems is very complex, with requirements varying

from application to application. For example, while in some applications the real-time

component is the presence of deadlines imposed upon the computation, other applications

require that input data are processed as soon as they become available, with more data to

come while the computation is in progress. Variants (and combinations) of these two main

requirements are often present. This complexity of the domain is probably best captured

in a recent textbook on the subject [57], that candidly opens with the following statement:

“After writing a book on real-time systems you might think that we would be able to give

CHAPTER 1. INTRODUCTION. 3

you a precise, cogent statement of what a real-time system is. Unfortunately, we cannot.”

An informal definition of a general, practical real-time system is actually possible. By

putting the existing partial definitions together, one can easily reach the following con-

clusion1: The correctness of a classical (i.e., non-real-time) system is given by its ability to

report the correct result for any set of input data available at the beginning of the compu-

tation. By contrast, a real-time system is considered to work correctly if it produces the

correct result, and all the time restrictions (on input, output, or both) are met. In addition,

time in a real-time system is measured in “real” (or human) time units (i.e., seconds, mil-

liseconds, hours, . . .) instead of machine units (i.e., processor cycles). In other words, a

real-time system is essentially nothing more than a normal computing system, except for

the notion of a correct computation, where the (human notion of) time becomes an inherent

part.

1.2 Formal Models of Real Time

By inspecting the existing body of literature on the practice of real-time systems design,

one can notice that all the real-time specifications conform to the definition presented

above. One would therefore expect that the existing formal models conform, even par-

tially, to the same definition. This is, unfortunately, not always the case. Indeed as we shall

see in detail in Chapter 3 on page 33, most formal models (such as the real-time Turing

machine [97]) revert to the machine sense of time. By contrast to practitioners, theorists

tend to define real time as on-line and/or linear time2. Attempts at articulating a compre-

hensive definition for real time in general have also been made recently: An algorithmic

definition of real-time computations is proposed in [4]. Although time is still taken in a

machine sense, real time is no longer taken as a synonym for linear time. This is to our

1We anticipate a bit here. A detailed discussion on the matter is provided in Chapter 3 on page 33.
2When processing one input datum, an on-line algorithm does not know any of the subsequent input data

(as opposed to an off-line algorithm, that has access to the entire input at any time). A linear time algorithm
requires n steps to complete the computation on any input of length n. These notions are presented in more
detail in Section 3.2 on page 38.

CHAPTER 1. INTRODUCTION. 4

knowledge the most complete definition of real time.

Other recent formal models (such as the real-time producer/consumer paradigm [51]

or timed automata [14]) offer a realistic view of the domain, but—expectedly given the

lack of a unified practical definition—are not general enough to provide a uniform abstract

characterization of all real-time computations.

1.3 The Problem

In summary, we are faced with the following state of the art in the area of real-time compu-

tations: They have a very strong practical grounding in domains like operating systems,

databases, and the control of physical processes. Besides these practical applications how-

ever research in the area is primarily focused on formal methods and on communication is-

sues in distributed real-time systems. Little work has been done in the direction of applied

complexity theory. This is even more evident (if possible) when parallel implementations

are considered.

In fact, the limited extent of this work is emphasized by the fact that a general com-

plexity theoretic definition for (parallel or sequential) real-time computations is missing.

1.4 Towards a Solution

This thesis is an attempt at remedying the situation described in Section 1.3. We believe

that a formal model and an associated complexity theory are essential tools in the process

of specification and implementation of computer algorithms. Thus, we first propose a

formal definition which, in our opinion, captures all the practically meaningful aspects of

real-time computations.

We should emphasize that our definition is a complexity theoretic model, in the following

sense: We consider real-time computations (or problems), but we are not concerned with

any particular algorithm that carries out the given computation. Instead, for any such a

computation, our model allows for the construction of a language (i.e., decision problem)

CHAPTER 1. INTRODUCTION. 5

such that the computational resources required in order to accept this language are of the

same order as the resources that are required to carry out the given real-time computa-

tion. Thus, by analyzing the model (i.e., the language), one is able to determine upper

and lower bounds for the resources that are necessary to successfully handle the modeled

computation in the real world.

However, constructing a formal model is not our only goal: It is also our intention to

use such a model as the basis for a complexity theoretic characterization of real-time sys-

tems, similar to the one that has been in place for a long time for non-real-time computa-

tions (and which is based on formal languages). As such, we shall not take an algorithmic

approach (as done in [4]). Instead, our model will be based on formal languages. This

way, not only we are consistent with classical complexity results, but we are able to take

advantage of existing results as well.

Once the model is in place, we will build the basis of a complexity theoretic approach

to parallel real-time computations.

To our knowledge, this thesis is the first to articulate a formal and general definition of

real world real-time applications, which is suitable for complexity theoretic analysis. As

well, this is the first time it is shown that parallel real-time computations form an infinite

hierarchy, and that there exists a strong relation between the class of real-time parallel

problems and a classical complexity class. The main contributions of this thesis are the

following:

1. We propose, under the form of well-behaved timed ω-languages, a general formal def-

inition of real time as understood by the systems community. It is our thesis that

well-behaved timed ω-languages model exactly all real-time computations.

2. Based on this model, we offer a complexity theoretic characterization of parallel real-

time computations. Specifically,

(a) We show that parallel real-time computations form an infinite hierarchy with

CHAPTER 1. INTRODUCTION. 6

respect to the number of processors used.

(b) We show that all the classical logarithmic space-bounded computations can be

successfully carried out in parallel, in the presence of however tight real-time

constraints.

(c) We present strong evidence that logarithmic space-bounded computations are

in effect exactly all the computations that can be performed in the presence of

real-time constraints.

3. We also offer an incipient discussion on practical applications of our theory.

(a) We model as well-behaved timed ω-languages the main ingredients that give

the qualifier “real-time” to some computation. We also offer formal models

for practical aspects from the areas of real-time database systems and ad hoc

networks.

(b) We offer a characterization of real-time optimization problems expressible as

independence systems.

(c) We show that, in a real-time environment, parallel algorithms can offer an arbi-

trarily better solution not only for the minimum weight spanning tree problem

as previously known [9], but for a whole class of optimization problems.

(d) Acknowledging the existence of problems that cannot be solvable exactly in real

time, we provide results in the area of approximation real-time algorithms, .

Classical complexity theory is of central concern for practitioners. Indeed, a proven

lower complexity bound for some problem cannot be overcome, no matter how clever a

program is. In the area of real-time systems, the current absence of such a complexity

theory implies that any question related to resource allocation for, or even solvability of

a real-time problem is unique, in the sense that the answer to such a question should be

developed from scratch. We believe that the importance of this thesis is that it is the first

CHAPTER 1. INTRODUCTION. 7

work to address this issue and thus to bridge the long standing gap between the complex-

ity theory and the practice of real-time computations. In a nutshell, our main contribution

is that we offer a common (complexity theoretic) ground to which practitioners can refer

in order to get readily available answers to their questions.

1.5 Thesis Summary

The remainder of this thesis is organized as follows: We present the necessary prelimi-

naries (including descriptions of the models of computation that are used throughout the

thesis) in Chapter 2 on page 10, and we survey the existing work on defining and charac-

terizing real-time systems in Chapter 3 on page 33.

Chapters 4 to 10 constitute the body of this work: We offer in Chapter 4 on page 47

our formal definition of real-time computations expressed as the model of well-behaved

timed ω-languages. We present a notion of acceptance for such languages, together with

the structure of an acceptor for them. Based on these languages, we also define underlying

complexity theoretic notions (input size, complexity classes). In order to support our thesis

that timed ω-languages model all the practically meaningful aspects of real-time compu-

tations, we show in Chapter 5 on page 58 how those ingredients that, when present, give

to some problem the “real-time” qualifier (namely, computing with deadlines, and input

data that arrive in real-time during the computation) can be modeled using our formalism.

The expressiveness of the formalism is also emphasized in Chapter 5, by modeling impor-

tant practical problems. More precisely, we consider the domain of real-time database

systems, and we offer a real-time variant of the recognition problem from the domain of

classical database systems; then, we construct a formal model of the routing problem in ad

hoc networks.

Chapters 6, 7, and 8 are dedicated to the complexity theoretic characterization of real-

time computations. Intriguingly, we find that these computations are in some sense “hard”

and “easy” at the same time. On one hand, we show in Chapter 6 on page 78 that there is

CHAPTER 1. INTRODUCTION. 8

no such thing as too many processors, as real-time computations form an infinite hierar-

chy with this respect. In addition, this hierarchy is strong, in the sense that it is invariant

with respect to the model of parallel computation involved. On the other hand, once the

real time restrictions are eliminated, we show that such computations pertain to a class of

relatively reduced computational power (namely, NLOGSPACE, the class of logarithmic

space-bounded computations). We show in Chapter 7 on page 96 that all NLOGSPACE

computations can be carried out successfully in parallel, no matter how tight the time

constraints are. In fact, the way the result from Chapter 7 is obtained hints towards

an even tighter relation between real time and NLOGSPACE computations. We investi-

gate in Chapter 8 on page 109 whether such a tight relation really exists, that is, whether

NLOGSPACE contains exactly all computations that can be successfully carried out in real

time. We offer strong evidence that this is indeed the case.

Once the complexity theoretic characterization of real time is complete, we investigate

aspects of real-time computations that are closer to practice. In Chapter 9 on page 132 we

focus our attention on optimization problems that can be described as independence sys-

tems. In this context, we identify the class M of such problems that are solvable in real

time. We also extend in this chapter previous results [9], conforming to which a paral-

lel implementation can do more than merely speed up the computation. It is known [9]

that the parallel solution for the real-time minimum-weight spanning tree problem can be

made arbitrarily better than the solution reported by a sequential algorithm that solves the

same problem. We show that, for all practical purposes, such a property does in fact hold

for any optimization problem in M.

One of the consequences of the complexity theoretic characterization of real-time sys-

tems is that there are problems that are simply unsolvable in real time. One of the possible

approaches to such problems is giving up in the effort to find an exact solution, and seek

approximate solutions instead. We offer an incipient discussion on real-time approxima-

tion algorithms in Chapter 10 on page 143. We first use the substantial body of knowledge

CHAPTER 1. INTRODUCTION. 9

on approximation algorithms for P-complete problems to identify problems that do not

admit “good” approximate, real-time computable solutions. Then, we show that the bin

packing problem admits approximate solutions computable in real time.

The results of Chapters 7 and 8 are derived with respect to one particular model of

parallel computation. We show in Chapter 11 on page 149 that these results do hold for

other parallel models as well. The thesis wraps up with Chapter 12 on page 157, that hosts

our conclusions, including a discussion on the potential research directions opened by our

work.

Chapter 2

Preliminaries

Summary

We present in this chapter the notations, as well as the models of (parallel and sequential)

computation that will be used throughout this thesis. We do not, however, linger over

well known models such as the Turing machine [61], the finite automaton [49], the Ran-

dom Access Machine (RAM) [89], the Parallel Random Access Machine (PRAM) [70], or

the bounded degree interconnection network (BDN) [5]. Instead, we present a very brief

description of such models (provided merely for summarizing the terminology), directing

the interested reader to [5, 49, 61, 70, 89]. As well, previously studied models of real-time

computation are not presented here, they being the subject of Chapter 3 on page 33.

The sequential models (RAM, Turing machine) are briefly presented in Section 2.1 on

page 12, while the parallel models (PRAM, BDN) are the subject of Section 2.2 on page 16.

We also use models with reconfigurable buses, namely the reconfigurable multiple bus

machine (RMBM) [88] and the reconfigurable network (RN) [19, 20]. The RMBM and the

RN are presented in detail in Section 2.2.

We also review the data-accumulating paradigm, with its main two variants d-algorithms

and c-algorithms. Case studies from this paradigm will be used throughout the remainder

of this thesis.

10

CHAPTER 2. PRELIMINARIES. 11

A note on the models of computation and their use We shall offer a formal definition

of real-time computations in Chapter 4 on page 47, and we shall use it throughout the

thesis. This definition consists in two parts: First, we offer a model for real-time problems

by introducing the formalism of timed ω-languages. A problem is, of course, independent

of the agent that solves it. Thus, the definition of timed ω-languages does not depend on

any model of computation.

Then we offer a general definition of an acceptor for timed ω-languages. In other

words, we model real-time algorithms, i.e., algorithms that solve real-time problems. For

such an algorithm, the input has a different semantics than a conventional input, as it also

includes time constraints. The computations that are performed internally are, however,

the same as the ones performed by a conventional algorithm. Thus, our definition relies

on the existence of some conventional (sequential or parallel) model of computation.

The definition of acceptors is, however, general, in the sense that it is applicable to any

such an underlying model. That is, based on our definition, one can construct real-time

algorithms running on, say, the Turing machine just as well as real-time algorithms on the

Random Access Machine, or the Parallel Random Access Machine. The power of acceptors

running on different models are likely to vary with the underlying model, but the general

definition can be easily particularized to the model of choice.

Therefore, in our definition of timed ω-languages and their acceptors we do not men-

tion any particular model of computation, with the understanding that these definitions

apply to any reasonable such a model. Things are different though when we begin to

present complexity results (in Chapter 6 on page 78 and the subsequent ones). Indeed,

such complexity results are in general different from model to model. Thus, we fix the

models used throughout the thesis as follows:

• All the results regarding sequential computations are established with respect to the Random

Access Machine (RAM).

CHAPTER 2. PRELIMINARIES. 12

• Results related to parallel computations are established with respect to the reconfigurable

multiple bus machine (RMBM), unless they are invariant with the model of choice1 (see, for

instance, the infinite hierarchy developed in Chapter 6). The power of reconfigurable

buses is needed in most of the cases, hence the use of RMBM. A limited generaliza-

tion is, however, presented in Section 8.4 on page 129.

• We shall, however use various other models (such as the Turing machine or the

PRAM) in order to derive intermediate results whenever we find it convenient.

2.1 Notations

Given some alphabet (i.e., finite set) A, the set of all the words of finite (but not necessarily

bounded) length over A is denoted by A∗. The cardinality ofN, the set of natural numbers,

is denoted by ω. It should be noted2 that ω 6∈ N [36]. Then, the set Σω contains exactly

all the words over Σ of length ω. Given two words σ1 and σ2, σ1σ2 denotes their concate-

nation. The length of a word σ is denoted by |σ |. The empty word is denoted by λ. R

denotes the set of real numbers. Given some alphabet A, the set Ak is defined recursively

by A1 = A, and Ai = A× Ai−1 for i > 1. For some set Σ, P(Σ) stands for the power set of

Σ, that is, P(Σ) = 2Σ.

Given two (infinite or finite) words σ = σ1σ2 . . . and σ ′ = σ ′1σ
′
2 . . ., we say that σ ′ is a

subsequence of σ (denoted by σ ′ ⊆ σ) if and only if both the following two conditions hold:

(a) for each σ ′i there exists a σ j such that σ ′i = σ j, and (b) for any positive integers i, j, k, l

such that σ ′i = σ j and σ ′k = σl , it holds that i > k if and only if j > l.

We use the following standard asymptotic notations [38]: Let f and g denote functions

1The notion of “invariant with the model of choice” will be precisely defined in Section 2.2 on page 16.
2Also note that the cardinality ofN is denoted by either ω [36] or ℵ0 [83]. We chose the first variant in order

to be consistent with the notation used in [14].

CHAPTER 2. PRELIMINARIES. 13

over natural numbers, i.e., f , g : N→ N. Then,

O(g(n)) = { f (n) | there exist positive constants c and n0
such that 0 ≤ f (n) ≤ c× g(n) for all n ≥ n0.}

Ω(g(n)) = { f (n) | there exist positive constants c and n0
such that 0 ≤ c× g(n) ≤ f (n) for all n ≥ n0.}

Θ(g(n)) = { f (n) | there exist positive constants c1, c2, and n0
such that 0 ≤ c1 × g(n) ≤ f (n) ≤ c2 × g(n) for all n ≥ n0.}

A general finite automaton [49] is defined as the 5-tuple A = (Σ, S, s0, δ, F), where Σ is

the (finite) input alphabet, S is a (finite) set of states, s0 is the initial state, δ is the transition

relation, δ ∈ S× S× Σ, and F is the set of accepting states, F ⊆ S. The accepting condition

for a finite automaton A is as follows: If at the end of the input string, A is in some state

from F, then the input is accepted. Otherwise, the input is rejected.

The sequential model used throughout this thesis is the Random Access Machine (RAM)

[5, 70, 89]. A RAM consists in a set of registers (memory), and a processing unit (proces-

sor). Each register is bounded in size by O(log n) for any input of size n, but the memory

(i.e., the number of registers) is unbounded. However, any successful computation must

use only a finite amount of memory. The processor can read/write data from/to the mem-

ory, and perform elementary operations on data. We assume that the restricted arithmetic

instruction set is available to the processor [70]. That is, a time unit is the time required by

the processor to perform one addition, one subtraction, or one arbitrary length shift.

Sometimes, we will use the Turing machine as an intermediate model. For example,

we may simulate the computation performed by a Turing machine on some other model.

Such an approach is considered in Chapter 7 on page 96, where, rather than simulating a

RAM computation, we find it more convenient to work with the graph structure (and the

associated graph accessibility problem) formed by the configurations of a Turing machine.

As well, it is sometimes the case that the class of problems we want to analyze (e.g., the

class of on-line algorithms) is formally defined in the literature only in terms of Turing

machines. Then, the results related to this class are also stated in terms of Turing machines

(such a case is considered in Section 8.2.1 on page 113).

CHAPTER 2. PRELIMINARIES. 14

This, however, does not reduce the generality of our results. Indeed, the class of loga-

rithmic space bounded computations, that we investigate in Chapter 7, is the same as the

class of space bounded computations on the RAM [52]. Then, the idea of on-line algo-

rithms is easily extended from Turing machines (that we use throughout Section 8.2.1) to

the RAM. Finally, RAMs and Turing machines can simulate each other with polynomial

overhead on the running time [89]. As a consequence, the results presented in this thesis

with respect to the RAM are easily extended to Turing machines.

For some constant k, k ≥ 1, a k-tape Turing machine is tuple M = (K, Σ, W, δ, s0), where

K is the (finite) set of states, s0 is the initial state, s0 ∈ K, Σ and W are the input and working

alphabets, respectively. M has one, read-only input tape, and k working tapes.

The state transition function δ is defined as follows: If δ : (K× Σ×Wk) → (K ∪ {h})×
(W ∪ {R, L})k ∪ {R, L, λ}, then M is deterministic. If, on the other hand, δ : (K × Σ ×
Wk) → P((K ∪ {h})× (W ∪ {R, L})k ∪ {R, L, λ}), then M is nondeterministic. The halting

state h is not a member of K.

A configuration of a k-tape Turing machine is a (k + 2)-tuple of the form

(q, xιaιyι, x1a1 y1, . . . , xkak yk), where q is a state, xιaιyι ∈ Σ∗ is the content of the input

tape, and for any i, 1 ≤ i ≤ k, xiai yi is the content of the i-th working tape. For

i ∈ {ι} ∪ { j|1 ≤ j ≤ k}, ai is the symbol that is currently scanned by the head of tape

i (the head of the input tape if i = ι). If a configuration C1 yields another configuration C2

by exactly one application of δ, we write C1 `M C2 (with the subscript M often omitted

when understood from the context). As usual, `∗M denotes the transitive and reflexive clo-

sure of `M. A Turing machine M is said to accept some language L if, for any input string

w, (s0, w, λ, . . . , λ) `∗M (h, w, x1, . . . , xk) if and only if w ∈ L, for some xi ∈ W∗, 1 ≤ i ≤ k.

Many variants of the above definition of Turing machine exists, but they do not sub-

stantially affect the computational power of the model [61, 65]. For instance, it is some-

times convenient to consider Turing machines with only one tape; the input is placed on

the (sole) tape at the beginning of the computation. This tape is read-write and is used as

CHAPTER 2. PRELIMINARIES. 15

working tape during the computation.

The notation poly(n) expresses the upper bound for polynomial functions of one vari-

able n, that is, poly(n) = nO(1). Given some total function f : N → N, we denote by

SPACE(f (n)) [NSPACE((f (n)))] the set of languages that are accepted by a determin-

istic [nondeterministic] Turing machine which uses at most O(f (n)) space (not counting

the input tape) on any input of length n. LOGSPACE [NLOGSPACE] is a shorthand for

SPACE(log n) [NSPACE(log n)]. The class P [NP] contains exactly all the languages ac-

cepted in deterministic [nondeterministic] polynomial time. Finally, NC denotes the class

of languages accepted in polylogarithmic time by some parallel machine using poly(n)

processors. Given some class C of languages (that is, boolean functions) and some (non-

boolean) function f , we say by abuse of notation that f ∈ C whenever the extension from

language to function does not alter the complexity of computation.

The most common measure of the performance of a parallel algorithm is the speedup [5,

82]. Given a p1-processor algorithm Ap1 for some problem π , p1 > 0, let A be the best

known sequential algorithm that solves π . Then, the speedup of Ap1 is the ratio S(1, p1) =

Tπ (1)/Tπ (p1), where Tπ (x) is the running time of the x-processor algorithm that solves π

(A when x = 1). Note, however, that, using the above definition of speedup, one cannot

directly compare the performance of two parallel algorithms. Speedup is therefore an

absolute measure. This definition was extended to a relative measure in [12] where, given

two parallel algorithms A1 and A2 which use p1 and p2 processors, respectively, p1 > p2 >

1, the speedup of A1 over A2 is S(p2, p1) = Tπ (p2)/Tπ(p1). In the following we refer to

the original definition each time when we write S(1, p), and to the modified definition

when we write S(p′, p), p′ 6= 1. We also imply the original definition when we refer to

“speedup” without any further clarifications.

In a conventional environment, the speedup (and hence the efficiency) of a parallel

algorithm is bounded by the following results: The speedup theorem [82] states that, for any

problem admitting a sequential algorithm and a p-processor parallel algorithm, p > 1,

CHAPTER 2. PRELIMINARIES. 16

it holds that S(1, p) ≤ p. Conforming to Brent’s Theorem [24], if a computation π can be

performed with p processors in time Tπ (p) and with q processors in time Tπ(q), where

q < p, then Tπ (p) ≤ Tπ(q) ≤ Tπ (p) + pTπ (p)/q.

2.2 Parallel Models of Computation

For some p > 1, we consider that any (p-processor) parallel model of computation M

meets the following minimal requirements:

• M has p RAM processors.

• M has access to Ω(p) registers (the memory of M).

• Each processor can access Ω(1) registers in constant time.

• Each processor can access any register from the memory of M in finite (but not nec-

essarily bounded) time.

One can easily notice that all the models presented below (PRAM, BDN, RMBM, etc.)

conform to the above description. Indeed, almost any reasonable model of parallel com-

putation does conform to this definition, as a parallel machine is in effect a collection of

sequential machines connected together. One apparent exception is the combinational circuit

[38, 70]. However, such exception in only apparent, as it is well known that the complex-

ity classes of combinational circuits have exact counterparts expressed in terms of parallel

machines that meets the constraints presented above (see, for example, [5, 45, 70]).

One other exception to the above description is the processor farm [93, 96]. In a processor

farm, tasks are distributed (“farmed out”) by one “farmer” processor to several “worker”

processors, and results are sent back to the farmer [96]. The “worker” processors do not

communicate with each other, thus invalidating one of the requirements specified above.

One may argue that the parallel machine on which a processor farm is implemented must

have interprocessor communication capabilities, since the tasks are distributed and the

CHAPTER 2. PRELIMINARIES. 17

results are collected back. In other words, the lack of interprocessor communication in the

processor farm paradigm is an algorithmic choice rather than a machine-level one. In any

case, we shall exclude the processor farm paradigm from any subsequent discussions.

Therefore, we say without loss of generality that any parallel machine (with the exclu-

sion of the processor farm) meets these minimum requirements. In particular, when we

state results that hold for any model of parallel computation (e.g., the results established

in Chapter 6 on page 78), we simply say henceforth that such results are invariant to the

parallel model used, with the implicit assumption that they hold for any model that meets

the requirements stated at the beginning of this section.

One of the most convenient models of parallel computation is the parallel random access

machine (PRAM). Such a machine consists in p RAM processors that have access to a shared

storage, forming thus a tightly coupled system. The other extreme is the bounded degree in-

terconnection network (BDN), where the p RAM processors have their own storage space,

and interprocessor communication is accomplished by an exchange of messages, trans-

mitted through a sparse network connecting the processors. We assume that the reader is

familiar with the PRAM and BDN. Therefore we do not define the terms that are usually

covered in a textbook on such a subject (e.g., [5, 70]).

However, a third class of parallel models, featuring reconfigurable buses, is less known.

We thus review in what follows this class. Two main models with reconfigurable buses

have been developed in the literature: the reconfigurable network (or RN for short) [19, 20]

and the reconfigurable multiple bus machine (or RMBM) [88]. While both models have similar

characteristics, the RMBM features a clear separation between buses and processors.

We shall primarily use in Chapters 7 on page 96 and 8 on page 109 the RMBM (but

we shall refer to RN as well). The reason for such a choice of computational model (with

reconfigurable buses) is the fact that the concept of reconfigurable buses is both powerful

(our constructions do use the power of reconfiguration) and feasible [20, 44, 88] at the same

time.

CHAPTER 2. PRELIMINARIES. 18

We assume without loss of generality that the sequential equivalent of all the parallel

models is the RAM. That is, any p-processor parallel machine (PRAM, RMBM, RN, etc.)

becomes a RAM whenever p = 1. Indeed, issues that may or may not be relevant for

some particular model (write or read conflicts, bus configuration, etc.) no longer apply to

a machine using one processor. Thus, any such a machine can be considered equivalent to

the RAM.

The following description of RMBMs closely follows the one provided in [34], that, in

addition to [88], defines the concept of uniform family.

The reconfigurable multiple bus machine An RMBM [87, 88] consists a set of p (RAM)

processors and b (electronic, nondirectional) buses. For each processor i and bus b there

exists a switch controlled by processor i. By these switches, a processor has access to the

buses by being able to read or write from/to any bus. As well, a processor may be able to

segment a bus, obtaining thus two independent, shorter buses. Any processor is allowed to

fuse any number of buses together by using a fuse line perpendicular to and intersecting all

the buses. A fuse line can be electrically connected to any number of buses, simultaneously.

Two buses that are connected to the same fuse line are said to be fused, and act as a unique,

longer bus.

DRMBM, the directed variant of RMBM [88], is identical to the nondirected model (in

particular, the buses continue to be nondirectional), except for the definition of fuse lines.

In a DRMBM, each processor features two fuse lines (down and up) perpendicular to and

intersecting all buses. At the processor’s control, each of these fuse lines can be electri-

cally connected to any bus. Assume that, at some given moment, buses i1, i2, ..., ik are all

connected to the down [up] fuse line of some processor. Then, a signal placed on bus i j is

transmitted in one time unit to all the buses il such that l ≥ j [l ≤ j]. It is argued [87] that

the fuse lines must use active components anyway, such that a directional connection is as

practically realizable as a nondirectional one.

CHAPTER 2. PRELIMINARIES. 19

0 < i < m+1
bus i

processor j, 0 < j < n+1
communication with

segmenting
device

re
ad

 p
or

t

w
rit

e
po

rt

se
gm

en
t s

ig
na

l

. .
 . m buses

n processors

Fuse lines
(down, up)

. . .P1 P2 Pn

Figure 2.1: The reconfigurable multiple bus machine

For ease of presentation, one can consider RMBM as a special case of DRMBM, in which

the up and down fuse lines are “synchronized,” in the sense that the down fuse line of

some processor pi is connected to some bus j if and only if the up fuse line of pi is connected

to bus j. We shall adopt in the following this uniform characterization, and thus we assume

that each processor in any RMBM variant has two (up and down) fuse lines, even if these

fuse lines may in fact act as one bidirectional line. Furthermore, as we shall emphasize

below, it is clear from this construction that, for any nondirectional RMBM there exists a

DRMBM simulating it, that uses the same amount of resources (time, processors, buses,

bus width).

If some RMBM [DRMBM] is not allowed to segment buses, then this restricted variant

is denoted by F-RMBM [F-DRMBM]. Figure 2.1 illustrates the structure of a (directed or

nondirected3) RMBM.

3Recall that the only difference between these two variants is that the up and down fuse lines are kept
synchronized in the nondirected case.

CHAPTER 2. PRELIMINARIES. 20

As far as the process of reading and writing on the buses is concerned, one can dis-

tinguish between CREW (concurrent read, exclusive write) and CRCW (concurrent read,

concurrent write) RMBMs. Theoretically, exclusive read, exclusive write (EREW) RMBMs

are possible as well, but we shall not consider such, since we believe that the ability of all

the processors to listen to a common bus is a trivial feature (that is, some extra effort in

order to insure exclusive read appears to be necessary).

For CRCW (concurrent read, concurrent write) RMBMs, one should establish a conflict

resolution rule for the process of writing a value to some bus. The most realistic such a

rule is Collision (indeed, such a technique is widely used nowadays in the MAC network

layer protocols, like CSMA-CS from which the Ethernet protocol is derived [85]), where

two values simultaneously written on a bus result in the placement of a special collision

value on that bus. Other conflict resolution rules (used for either RMBM or other models

of parallel computation) are Common (two processors are allowed to simultaneously write

on the bus only if the values written by them are identical), Arbitrary (some arbitrary pro-

cessor succeeds in writing on the bus and the write request of all the others are discarded),

Priority (the write request of the highest priority processor is the only one to succeed), and

Combining (a combination of the values written by all the processors is placed on the bus).

The use of the latter three rules for a bus (i.e., a spatially distributed resource) is indeed

questionable. We will, however, consider all these possible rules. On one hand, this is done

for completeness reasons. On the other hand, these rules are in fact equivalent, at least for

the computational settings we are interested in (directed RMBMs with constant running

time), as we shall show in Corollary 7.8 on page 105. We restrict only the Combining mode,

requiring that the combining operation be associative and computable in nondeterministic

linear space (NSPACE(n)). We believe that these are reasonable restrictions, as they clearly

hold for any reasonable combining operation.

As for most models of computation, the word size of each processor in a [D]RMBM is

limited to O(log n) [88]. Furthermore, we are interested in constant time computations.

CHAPTER 2. PRELIMINARIES. 21

Thus, we can assume without loss of generality that a processor has only a constant num-

ber of internal registers (indeed, even if there are an infinite number of registers, a proces-

sor can access only a constant number of them given the time restrictions). It follows that

the internal configuration or internal state ci of some processor pi (which contains the con-

tent of pi’s registers and the state of pi’s finite control) in an RMBM can be expressed by a

word of size O(log n). For similar reasons (O(log n) word size and constant running time)

and by information theoretic arguments, it follows that, at any given time, one can fully

describe which buses are fused together or segmented by a given processor, using a word

of size O(log n). These limitations can be formally captured by introducing the concept of

uniform family of RMBMs, similar to the concept of RN family [19].

An RMBM [DRMBM, F-DRMBM, etc.] family R = (Rn)n≥1 is a set containing one

RMBM [DRMBM, F-DRMBM, etc.] construction for each n > 0. A family R solves a

problem π if, for any n, Rn solves all inputs for π of size n.

A description of some [D]RMBM family using p(n) processors and b(n) buses is a

list of p(n) tuples (i, ci, upi, downi, segmenti), 1 ≤ i ≤ p(n). Such a tuple describes the

configuration of processor pi. Specifically, ci denotes the internal configuration of pi, and

upi [downi, segmenti] represents a set of rules that determine which buses are fused by the

up fuse line [fused by the down fuse line, segmented], depending on ci. In the case of

F-RMBM or F-DRMBM, the set segmenti is always empty (no buses are ever segmented).

We say that some RMBM family R is a uniform RMBM family (or that R is uniformly

generated in SPACE(log p(n) × b(n))) if there exists a Turing machine M that, given n,

produces the description of Rn using O(log p(n)× b(n)) cells on its working tape. Since

we deal only with uniform families here, we henceforth drop the “uniform” qualifier, with

the understanding that any RMBM family described in this thesis is uniform.

Assume that some family R = (Rn) solves a problem π , and that each Rn, n > 0,

uses p(n) processors, b(n) buses, and has a running time t(n). We say then that π ∈
RMBM(p(n), b(n), t(n)) [or π ∈ F-DRMBM(p(n), b(n), t(n)), etc.], and that R has size

CHAPTER 2. PRELIMINARIES. 22

complexity p(n)× b(n) (it is customary [67, 88] to consider the size of a network as being the

product between the number of processors and the number of buses) and time complexity

t(n).

It should be noted that, as shown above, a directed RMBM can simulate a nondirected

RMBM by simply keeping all the up and down fuse lines synchronized with each other:

Observation 1 For any x, y, z : N → N, X ∈ {CRCW, CREW}, and Y ∈ {F-, λ}, it holds

that X YRMBM(x(n), y(n), z(n)) ⊆ X YDRMBM(x(n), y(n), z(n))

The bus width of some RMBM [DRMBM, etc.] denotes the maximum size of a word that

may be placed (and read) on (from) any bus in one computational step. It is immediate that

the bus width of any RMBM from an RMBM family is upper bounded by O(log n).

The reconfigurable network An RN [19] is a network of processors that can be repre-

sented as a connected graph whose vertices are the (RAM) processors and whose edges

represent fixed connections between processors. Each edge incident to a processor cor-

responds to a (bidirectional) port of the processor. A processor can internally partition its

ports such that all the ports in the same block of that partition are electrically connected (or

fused) together. Two or more edges that are connected together by a processor that fuses

some of its ports form a bus which connects ports of various processors together. CREW,

Common CRCW, Collision CRCW, etc. are defined as for the the RMBM model.

The directed RN (DRN for short) is similar to the general RN, except that the edges

are directed. The concept of (uniform) RN family is identical to the concept of RMBM

family. The class RN(p(n), t(n)) [DRN(p(n), t(n))] is the set of problems solvable by RN

[DRN] uniform families with p(n) processors (p(n) is also called the size complexity) and

t(n) running time.

Figure 2.2 on the next page is a graphical example of nondirected (Part (a)) and directed

(Part (b)) reconfigurable network.

CHAPTER 2. PRELIMINARIES. 23

P1
P2

P3

P4

P5Processors

Nondirected buses

P1
P2

P3

P4

P5Processors

Directed buses

(a) (b)

Figure 2.2: Example of reconfigurable networks: (a) nondirected, and (b) directed

2.3 The Data-Accumulating Paradigm

The data-accumulating paradigm was introduced in [62] and further studied in [27, 63,

64]. The two main variants of this paradigm are d-algorithms and c-algorithms. They

were formally defined in [28] and [30], respectively. The following summary conforms to

[28, 30], with some terminological modifications that clear up the subsequent presentation.

2.3.1 D-Algorithms

An algorithm for which the input data arrive while the computation is in progress, and the

computation terminates when all the currently arrived data have been treated, is called a

data-accumulating algorithm (d-algorithm for short) [63]. Formally,

Definition 2.1 An algorithm A is a d-algorithm if

1. A works on a set of data which is not entirely available at the beginning of computa-

tion. Data come while the computation is in progress (conforming to some specified

data arrival law), and A terminates when all the currently arrived data have been

processed before another datum arrives.

2. For any input data set, there is at least one data arrival law φ such that, for any

value of n, A terminates in finite time, where φ has the following properties: (a) φ is

increasing with respect to t, and (b) for any n > 0, φ(n, C(n)) > n, where C(n) is the

CHAPTER 2. PRELIMINARIES. 24

complexity of A, C(n) > 0. Moreover, A immediately terminates if the initial data

set is null (n = 0).

The first condition in Definition 2.1 is implicitly given in [63]. The second condition

means that A stops for some increasing data arrival law, such that at least one new datum

arrives before A finishes the processing of the initial set of n data. If this condition is not

stated, then any algorithm A1 may be considered a d-algorithm.

The size of the set of processed data is denoted by N. The data arrival law is denoted

by φ(n, t), where n denotes the number of input data available at the beginning of the

computation, and t denotes the time. That is, φ(n, t) denotes the amount of input data

that are accessible to the d-algorithm at any time t. Moreover, we have the constraint

φ(n, 0) = n, since n denotes the size of the initial input. Given the termination condition,

if we denote by t the running time of some d-algorithm, then N = φ(n, t).

The form proposed in [63] for the data arrival law is

φ(n, t) = n + knγtβ, (2.1)

where k, γ, and β are positive constants. Such a form of the arrival law is rather flexible,

and its polynomial form eases the reasoning about algorithms that use it. In particular,

note that, when γ = 0, the amount of data that arrive in one time unit is independent of

the size of initial data set. If β = 1, then the data flow is constant during the time, while in

the case β > 1 the flow of data actually increases with time. Similarly, when β < 1, fewer

and fewer data arrive as time increases.

Definition 2.2 Consider a given problem π , and let A be a d-algorithm for π , working on

a varying set of data of size N. Consider now an algorithm As that performs the same

computations as A, except that As works on the N data as if they are available at time 0.

Then, if A and As use the same number of processors, As is called the static version of A.

Note that this definition of the static version of a d-algorithm is somehow different

from the definition presented in [63]. Indeed, the original definition [63] is similar with

CHAPTER 2. PRELIMINARIES. 25

Definition 2.2, except that “perform the same computation” is replaced by “solves the same

problem,” and, in addition, As is the best known algorithm that solves the given problem.

However, as we shall note shortly, such a definition is of little relevance, since there are d-

algorithms whose performance is inherently worse than in the static case as defined in [63].

Therefore we chose the above definition, as suggested in [28]. In addition, this definition

allows us to define the time complexity of a d-algorithm in a more elegant manner, as we

shall see below.

Example 2.1 In order to make a clear distinction between the two definitions of the static

version, let us consider the problem of sorting a sequence of numbers. Consider then the

d-algorithm A that solves this problem and performs the following computations: Sort by

some efficient method the initial data set, putting the result in an array; then, insert each

datum that arrive into the sorted array. Conforming to Definition 2.2, the static version

As of A is an algorithm that receives the amount of data processed by A, sorts what was

the initial sequence for A, and then inserts each additional datum into the already sorted

array. Considering that N > n, the time complexity of As is Θ(N2). On the other hand,

the static version of A as defined in [63] takes the whole sequence of length N and sorts it

using some efficient method. The complexity is now Θ(N log N).

It is important to emphasize the difference between the time complexity and the run-

ning time in the data-accumulating paradigm. In the static case, the time complexity C(n)

of some algorithm As on input w, |w| = n, is defined as the running time of As. Such a

complexity is a function of n, and there is no difference between the notions of time com-

plexity and running time. We define the time complexity in the data-accumulating case in

a similar manner, that is, as a function of the size N of the processed input.

Definition 2.3 Given some d-algorithm A, some data arrival law φ, and some initial data

set of size n, suppose that A terminates at some time t, where t depends on both n and φ.

We call t the running time of A.

CHAPTER 2. PRELIMINARIES. 26

Given the amount of data N that is processed by A, the time complexity C(N) of A (or

just complexity for short) is defined as the termination time of As, expressed as a function

of N, where As is the static version of A.

Note that Definition 2.3 is valid in both the sequential and parallel cases. However, for

clarity, we use the notations t and C(N) for the sequential case. On the other hand, when

explicitly referring to the parallel case, we add the subscript p. That is, when speaking of a

parallel d-algorithm, we denote its running time by tp and its (time) complexity by Cp(N).

By contrast to the static case, in the case of d-algorithms the time complexity and the

running time are different from each other. Indeed, consider some d-algorithm A, working

on some input where the size of the initial data set is n and new data arrive while the

computation is in progress, according to some arrival law φ. Starting from the analysis of

the static version As of A, one can easily compute the complexity C(N) of A. However, the

complexity is not a very useful measure, since N itself is a function of time. The running

time is obtained by solving an implicit equation of the form t = C(N). Similarly, the

parallel time complexity is different from the parallel running time.

In general, as shown in [63], in the case of a sequential d-algorithm, the running time

is given by the solution of the following implicit equation:

t = cd(n + knγtβ)α , (2.2)

where the static counterpart of the d-algorithm in discussion has a complexity of cdNα, for

a positive constant cd. The complexity of such a d-algorithm is also cdNα. In the parallel

case, we have a similar equation for the running time:

tp =
cdp(n + knγtβp)υ

S′(1, p)
, (2.3)

conforming to a result given in [63] and improved in [28], where S′(1, p) is the speedup of-

fered in the static case by an algorithm that uses p processors, and cdp is a positive constant.

The parallel complexity is in this case cdpNυ/S′(1, p).

CHAPTER 2. PRELIMINARIES. 27

The size of the whole input data set will be denoted by Nω. Since the input data set

is virtually endless in the data-accumulating paradigm, we will consider Nω to be either

large enough or tending to infinity. When considering Nω to be infinite, it is obvious that

some d-algorithm terminates in finite time if and only if it terminates before considering

the whole input data set. By abuse of notation we also say this when Nω is considered

finite (that is, we say that the d-algorithm terminates in finite time if and only if it terminates

before considering all its Nω input data, no matter whether Nω is finite or not).

A Turing machine model We shall investigate the relation between d-algorithms and

on-line algorithms in Section 8.2.1 on page 113. Since, to our knowledge, the only formal

definitions of on-line algorithms are expressed in terms of Turing machines [48, 71, 77], we

provide a Turing machine model for the class of d-algorithms as well.

We shall use the following notations: We denote by Di the i-th datum in the input

stream. The ordering is naturally defined as follows: D j is examined before Di is examined

for the first time if and only if i > j. We say that an algorithm A [Turing machine M] is

able to terminate at point k if, before visiting any Dk′ , k′ > k, it has built a solution identical

to the solution returned by A [M] when working on the input set D1, . . . , Dk. Note that

N (the amount of data processed by a d-algorithm) is also a termination point for that

d-algorithm.

Definition 2.4 A Turing machine M which models an algorithm that is able to terminate

at some point other than Nω is the tuple (K, Σ, δ, h′), K being the (finite) set of states, Σ

the (finite) tape alphabet, δ the transition function, and h′ the initial state. The machine

M has two tapes, as in [48]: The first tape is the (read-only) input tape, and the second

one is the working tape. In addition, M is deterministic, except that it has to model the

ability to terminate at some point. For this purpose, we allow a designated state h′ to have

two output transitions as follows: δ(h′, x, y) = (h, x, y), and δ(h′, x, y) = (q, z, u), where h

denotes the halting state. With the above exception, δ is deterministic. Moreover, no other

CHAPTER 2. PRELIMINARIES. 28

state is allowed to go directly to h. That is, the halting state h is replaced by an “optional

halting” one (namely, h′). Note that the optional halting state h′ is also the initial state.

Definition 2.4 clearly models a d-algorithm, less the real-time characteristics of the data

arrival law. More precisely, the algorithm A corresponding to such a machine M can ter-

minate before the whole input is considered, namely, when M enters the state h′. Once in

h′, M’s choice of halting or continuing to work models the ability of A to terminate even-

tually when it is able to output a solution for the currently arrived data and there is no

arrived but yet unprocessed datum. Note that it is required that the state h′ be entered

at least once before the end of input data in order for A to be considered a d-algorithm

(since, conforming to Definition 2.1 on page 23, there is at least one data arrival law for

which A terminates, and this termination is modeled by the nondeterminism of h′). Since

a d-algorithm should immediately terminate on an empty initial input, we impose h′ as

the initial state.

Generally, we assume that any algorithm (whether or not modeled by such a machine

M) eventually terminates after considering all its input data. That is, when Nω is finite,

M’s initial state h′ is reached again some time after M visits all the data on the input tape.

2.3.2 C-Algorithms

A correcting algorithm (c-algorithm for short) is defined in [63] as being an algorithm that

works on an input data set of n elements, all available at the beginning of computation,

but V(n, t) variations of the n input data occur with time. For the sake of consistency with

the analysis of d-algorithms, we denote by φ(n, t) the sum n + V(n, t). We call the the

function V the corrections arrival law. More precisely, given some time t and some initial

input of size n, the quantity V(n, t) represents the number of corrections that arrived in

the time interval [0, t]. We consider that V(n, 0) = 0. That is, no corrections are present at

time 0.

We propose a definition of a c-algorithm that is similar to Definition 2.1 on page 23 of

CHAPTER 2. PRELIMINARIES. 29

a d-algorithm.

Definition 2.5 An algorithm A is a c-algorithm if

1. A works on a set of n data which is available at the beginning of computation. How-

ever, V(n, t) corrections to the initial input data occur with time, and A terminates

at some time t when all the corrections received up to time t have been processed.

2. For any input data set, there is at least one corrections arrival law V such that, for

any value of n, A terminates in finite time, where V has the following properties: (a)

V is increasing with respect to t, and (b) for any n > 0, V(n, C(n)) > 0, where C(n)

is the complexity of A, C(n) > 0. Moreover, A immediately terminates if the initial

data set is null (n = 0).

The rationale behind this definition is the same as in the d-algorithm case: The first

item is the definition introduced in [63], while the second one implies that there is at least

one corrections arrival law such that a correction occurs before the algorithm in question

has finished processing the initial input data.

Note that algorithms that correct themselves when their input changes have been stud-

ied [73, 76], but they do not fall within the theory of c-algorithms, since this theory assumes

a real-time component, namely the corrections arrival law. We will call such algorithms,

where the corrections arrival law is not considered, dynamic algorithms4. The reader should

not confuse the notion of c-algorithm (or d-algorithm) with the notion of dynamic algo-

rithm. The former notion assumes a real-time arrival law for the input and a specific ter-

mination condition, while a dynamic algorithm has neither real-time restrictions on the

input, nor special termination rules. The terminology is indeed confusing, but these terms

were already introduced elsewhere [63, 73, 76], hence we will use them as they are.

It remains to define the form of a correction in order to complete the definition of a

c-algorithm. Generally, we consider that a correction consists of a tuple (i, v), where i
4Sometimes called “incremental algorithms.”

CHAPTER 2. PRELIMINARIES. 30

denotes the index of the datum that is corrected, 1 ≤ i ≤ n, and v is the new value for that

datum.

An important consideration regards the quantity in terms of which the complexity

analysis is expressed. It is not reasonable to give complexity results with respect to n only,

since processing the corrections generally takes an important part of the computation time

(it is consistent to assume that most of the data that are corrected are already considered;

therefore, a c-algorithm will have at least to insert the new (corrected) datum into the so-

lution; however, such an algorithm may also have to remove the effects of the old value).

Thus, it seems more consistent to consider the quantity φ(n, t) as the basis for complexity

analysis, where t denotes the termination time. We will denote φ(n, t) by N, as in the case

of d-algorithms.

The size of the whole input data set (including the corrections) will be denoted by Nω.

Since the input data set is virtually endless in the data-accumulating paradigm, we will

consider Nω to be either large enough or tending to infinity, as in the case of d-algorithms.

Throughout the rest of the thesis, it is assumed that an algorithm Au which applies

one update only has a complexity of Cu(n), where Cu(n) = cunε and ε is a nonnegative

constant. However, it may be useful sometimes to consider simultaneously a bundle of

corrections of size b. Let an algorithm that performs this processing be Ab
u, of complex-

ity Cb
u(n, b). Now, considering the parallel implementation of Au and Ab

u, we make the

following assumption:

Claim 1 For some problem π solvable by a c-algorithm, let Au be the best p-processor

algorithm that considers a correction and runs on some parallel model of computation5,

and let Ab
u be the best known p-processor algorithm (running on the same parallel machine

as Au) that considers a bundle of corrections of size b. Also, let the speedup manifested by

Au and Ab
u be Su(1, p) and Sb

u(1, p), respectively. Then, Su(1, p) = Sb
u(1, p).

5Recall that “some” parallel model of computation implicitly assumes the minimal characterization pre-
sented at the beginning of Section 2.2 on page 16, and that the sequential algorithms used for speedup com-
parison are RAM algorithms.

CHAPTER 2. PRELIMINARIES. 31

In other words, the speedup manifested by Au is the same as the speedup manifested

by Ab
u. We believe that this is a reasonable assumption, since the computation performed

by Ab
u is essentially the same as the computation performed by Au (except that there may

be some initial manipulation like sorting the bundle of corrections; however, such a ma-

nipulation manifests linear speedup, and hence does not affect the overall speedup of Ab
u).

Note that a c-algorithm has to perform some initial processing, that may perform more

computations than required for merely building the solution in the static case, in order

to facilitate a fast update. Generally, we consider the computations that are performed

before considering any correction as having a complexity of C′(n) = cnα, for some positive

constants α and c.

Definition 2.6 Consider a given problem π , and let A be a c-algorithm for π , working on

a varying set of data of size N. Consider now an algorithm As that performs the same

computations as A, except that As works on the N data as if they are available at time 0.

Then, if A and As use the same number of processors, As is called the static version of A.

Given some corrections arrival law V, and some initial data set of size n, suppose that

A terminates at some time t, where t depends on both n and V. We call t the running time

of A.

Given the amount of data N that is processed by A, the time complexity C(N) of A (or

just complexity for short) is defined as the termination time of As, expressed as a function

of N.

The static version of a c-algorithm, as well as the running time and the time complexity,

are hence defined similarly to the case of d-algorithms. Again, Definition 2.6 is valid in

both the sequential and parallel cases. We denote by S′(1, p) the parallel speedup for the

static case.

Since this was the arrival law considered when studying d-algorithms [27, 28, 63], we

CHAPTER 2. PRELIMINARIES. 32

use the following corrections arrival law:

V(n, t) = knγtβ, (2.4)

with k, γ, and β as in Relation 2.1 on page 24.

Chapter 3

Previous Work: Theory and Practice
of Real-Time Systems

Summary

We survey in this chapter the existing work on defining and characterizing real-time sys-

tems. We consider first the ultimately most important point of view, the industry’s (Sec-

tion 3.1 on the next page). Although, to our knowledge, no explicit definition of real time

exists, we are able to derive one from the many implicit definitions in the literature.

We reach the conclusion that, in the systems community, “real-time” refers to those

computations in which the notion of correctness is linked to the notion of time. That is, a

computation is considered correct if the output is correct and the specified time restrictions

are met, no matter whether these restrictions are imposed on input or output. In addition,

real time describes a human rather than a machine sense of time: real time is measured in

seconds (nanoseconds, hours. . .) rather than the number of steps performed by a machine.

We then consider the mainstream real-time theoretical models and their relation with

practical real-time computations. In this context, we start with what is probably the old-

est and most studied such a model, the real-time Turing machine (Section 3.2 on page 38).

According to this model and related variants, we note that, when theorists say “real time”

they often mean linear time or even on-line. This is clearly different from the point of view

of the systems community.

33

CHAPTER 3. PREVIOUS WORK. 34

We then briefly describe the real-time producer/consumer paradigm (Section 3.3 on

page 40). We show that it cannot constitute an all-encompassing definition of real time,

as it is not general enough.

Finally, we survey a third formal model for real-time computations, the timed ω-regular

languages and timed automata (Section 3.5 on page 42). Again, this model is not general

enough, but it constitutes the basis of our general definition that shall be presented in

Chapter 4 on page 47.

3.1 Real Time in Practice

From a practical point of view, there are many implicit definitions of real-time compu-

tations. To our knowledge, however no explicit, general definition exists. Instead, par-

tial definitions (restricted to the studied subdomain) are presented. The characteristic on

which all these definitions agree is the presence of deadlines. That is, each computation in a

real-time system has associated a deadline for its termination time. The result of a compu-

tation is either useless if it is reported after the deadline (and then this deadline is hard), or

the usefulness decreases with time after the deadline passed (and we have a soft deadline).

Variants of this definition can be found for example in [69, 92].

However, other applications add a new dimension to real-time computation. The most

notable domains where such a dimension is added are industrial applications and real-

time database systems. In such applications, time restrictions are imposed not only on the

result of the computation, but on its input as well. Indeed, it is noted in [91] that, besides

transaction deadlines a real-time database system should have a time-sensitive image of

the real world, that includes the current state. That is, the information in such a database

should present a state that is up to date. The same idea is emphasized in [17]. Here, the

Airborne Warning and Control System (AWACS) is used as an example, and it is noted

that the trajectory of an aircraft should be sampled at a rate that is upper bounded by a

constant. In the same direction, a specification language for real-time systems is presented

CHAPTER 3. PREVIOUS WORK. 35

in [16]. This language allows the specification of not only deadline constraints, but also

of the maximum/minimum time allowed/required for the events, including those events

that determine the input.

Real-time industrial applications have restrictions imposed on the input as well. For

example, the model for such applications proposed in [58] consists in an algorithm that

communicates with the external world by means of sensors (as input devices), and ac-

tuators (as output). It is mentioned that the readings of the sensors must be taken into

account in an expedited manner, which is specified by limits to the temporal difference

between the real world time and the last time at which the readings from sensors were

considered. Similar specifications are mentioned in [86].

All the properties that were summarized above are reiterated in [90]. Although we

couldn’t find any explicit definition of real-time systems (not even in [90]), a closer look at

the issues presented in the above paragraphs can lead to an acceptable general characteri-

zation of such systems. Indeed, the most important characteristic seems to be the existence

of deadlines imposed on the output. In addition, the input may have time restrictions as

well.

However, the restrictions on the input as presented above may be considered them-

selves output deadlines. For example, the requirement that the reading of some sensor

should be taken into consideration before the former reading is 400 milliseconds old can

be interpreted as a deadline for the process that interprets the sensor’s reading and makes

it available to the main processing algorithm. On the other hand, the point of view of the

mentioned main algorithm is that it has to cope with an input stream whose data arrive

at a temporal distance of no more than 400 milliseconds from each other. This is clearly a

restriction on the input.

The question that appears naturally but has not been explicitly answered is: Should

an algorithm that has some imposed time restrictions on the input without any explicit

deadline on the output be considered real-time? We believe that the answer is affirmative,

CHAPTER 3. PREVIOUS WORK. 36

since input restrictions usually imply output restrictions as well. In order to see this, we

offer some examples.

The routing problem in ad hoc networks consists in transporting a message between

two nodes in a collection of wireless mobile hosts, that dynamically forms a temporary

network without using any existing network infrastructure or centralized administration

[25, 46]. Due to the limited transmission range of such nodes, multiple hops may be needed

for one node to exchange data with another. The routing problem is the main difference

between an ad hoc network and a conventional one. In such a network, each mobile node

acts not only as a host, but as a router as well, forwarding packets to other mobile hosts in

the network, that are not within the direct reach of the sender. Furthermore, all the hosts

are mobile. Therefore, the set of those nodes that can be directly reached by some host

changes with time.

Take now for example a distance vector routing algorithm for ad hoc networks [25].

In such an algorithm, each node maintains a routing table listing the next hop for each

reachable destination. The algorithm labels each possible route with a sequence number,

and compares two possible routes using this number. On the other hand, each node in

the network advertises a monotonically increasing even sequence number for itself. When

some node B decides that its route to some destination C has broken, it advertises this

route with a sequence number that is larger than the latest number heard from C by one,

making therefore an odd number. This situation remains unchanged until B hears from

C again, and changes the corresponding number to the one just heard, making it an even

number again. Each node performs the computations that are required in order to keep its

routing table up to date according with the information received from other nodes.

Assume now that this is not a real-time problem, since no explicit deadline is imposed.

On the other hand, the direct connectivity of each two nodes change with time, and the

time during which two nodes are in transmission range from each other is clearly imposed

as a real-time constraint from the outside world. Should there be no real-time constraint

CHAPTER 3. PREVIOUS WORK. 37

for the algorithm that updates the routing tables, the whole routing process may never be

able to deliver packets at all, since the time taken for updates may be too large, such that,

by the time the algorithm succeeds in computing the new tables, the configuration of nodes

changed completely. It turns out therefore that a computation with real-time restrictions

on the input has implicit constraints of similar nature on the output as well. Thus, it seems

logical to include the routing problem in the family of real-time problems.

Analogously, this time from a theoretical point of view, a d-algorithm is an algorithm

whose input data arrive in real time, and the output should be reported at that time when

all the currently arrived data have been processed before the arrival of another datum (see

Section 2.3 on page 23). Here, no real-time restriction is imposed on the output. However,

we shall show in Section 8.2 on page 113 that such a setting actually imposes a real-time

constraint on the output, even if such a restriction is not explicit.

For all these reasons, we conclude that an algorithm with real-time input constraints is

included in the class of real-time algorithms. This notion is captured by the informal def-

inition that we state at the beginning of this chapter (on page 33). In fact, this definition

is the basis of the formal definition that we shall present in Chapter 4 on page 47, so it is

worth repeating: In the systems community, “real-time” refers to those computations in which the

notion of correctness is linked to the notion of time. That is, a computation is considered correct if

the output is correct and the specified time restrictions are met, no matter whether these restrictions

are imposed on input or output. In addition, real time describes a human rather than a machine

sense of time: real time is measured in seconds (nanoseconds, hours. . .) rather than the number of

steps performed by a machine.

With this definition in mind, we are now ready to go in the theoretical area. We sur-

vey the known theoretical models for real-time computations, checking at the same time

whether they are expressive enough to model real-time computations as per the above

definition.

CHAPTER 3. PREVIOUS WORK. 38

3.2 Real-Time and On-Line Turing Machines

One such model is the real-time Turing machine, proposed for the first time in [97]. Machines

belonging to this model, and the languages accepted by them, called real-time definable

languages, were further studied in many papers, e.g., [1, 41, 72, 77, 78]. The model used

is a deterministic one, but nondeterministic extensions were also studied, like the real-

time Turing machines with restricted nondeterminism [42], and nondeterministic real-time

Turing machines [22] (the languages accepted by the latter model being called quasi-real-

time languages).

As noted in the at the beginning of this chapter, real time is closely related to on-line

in the world of Turing machines. In fact, a real-time Turing machine is a further restricted

on-line Turing machine.

Therefore, we take the opportunity here to define on-line algorithms as well. The no-

tion of an on-line algorithm was introduced in order to define a class of algorithms for

which the size of the input may be unknown at the beginning of computation. Informally,

such an algorithm processes each input datum without looking ahead (to the input data

that follow the current one). By contrast, an algorithm that needs to know all the input in

advance is called off-line. Many, equivalent definitions of on-line algorithms are found in

the literature [23, 50, 54]. However, to our knowledge, the only formal definitions of such

algorithms are expressed in terms of Turing machines [48, 71, 77].

Formally, on-line and real-time Turing machines are introduced by the following defi-

nition [77]:

Definition 3.1 1. For some constant k, k ≥ 1, an on-line Turing machine is a deter-

ministic (k + 1)-tape Turing machine (with k working tapes and one input tape)

M = (Kp, Ka, Σ, W, δ, s0), where Kp ∪ Ka is the set of states, not containing the halt

state h, s0 is the initial state, Σ is the input alphabet, W is the alphabet of work-

ing symbols, containing the blank symbol #, and δ is the state transition function,

CHAPTER 3. PREVIOUS WORK. 39

δ : (Kp × Σ×Wk) ∪ (Ka ×Wk) → (Kp ∪ Ka ∪ {h})× (W ∪ {R, L})k. The head on the

input tape is allowed to move only to the right.

A configuration of an on-line k-tape Turing machine is a (k + 2)-tuple C =

(q, t, x1a1 y1, . . . , xkak yk), where q is a state, t ∈ Σ∗ is the (not yet considered) con-

tent of the input tape, for any i, 1 ≤ i ≤ k, xiai yi is the content of the i-th working

tape, and ai is the symbol that is currently scanned by the head of tape i. If a configu-

ration C1 yields another configuration C2, we write C1 `M C2. As usual, `∗M denotes

the transitive and reflexive closure of `M.

The set of states is divided into two subsets: the set of polling states Kp and the set of

autonomous states Ka. All the states that lead to h in one step are polling states, and

the initial state is a polling state.

The form of δ is restricted such that only the following relations are possible:

(q, abv, x1, . . . , xk) `M (q′, bv, x′1, . . . , x′k), (q′′, abv, x1, . . . , xk) `M (q′, abv, x′1, . . . , x′k),

and (q, λ, x1, . . . , xk) `M (h, λ, x′1, . . . , x′k), with q ∈ Kp, q′′ ∈ Ka, and q′ ∈ Kp ∪ Ka.

M accepts the input w if and only if (s0, w, λ, . . . , λ) `∗M (h, λ, x1, . . . , xk).

2. A real-time Turing machine is an on-line Turing machine for which Ka = ∅. A language

accepted by such a machine is called a real-time definable language.

In plain English, an on-line Turing machine has a unidirectional input tape. Therefore,

it has no knowledge about further input data. Between reading two input symbols, such

a machine is allowed to go into a number of autonomous states, where it performs some

work without considering any input. In addition to these requirements, a real-time Turing

machine has no autonomous state, it being forced to consume an input datum at every

step. It follows therefore that a real-time Turing machine should spend constant time only

between considering any two consecutive input data. The nondeterministic extension of a

real-time Turing machine is immediate:

CHAPTER 3. PREVIOUS WORK. 40

Definition 3.2 A nondeterministic real-time Turing machine is a machine that is identical

to the one defined in Definition 3.1 on page 38, except that1 δ : (Kp × Σ ×Wk) ∪ (Ka ×
Wk) → P((Kp ∪ Ka ∪ {h})× (W ∪ {R, L})k). The languages accepted by nondeterministic

real-time Turing machines are called quasi-real-time languages [22].

Almost the same definition, this time in terms of algorithms rather than Turing ma-

chines, can be found in [74]. Here, a linear time algorithm takes O(n) steps to complete

on any input of length n. A real-time algorithm is a linear-time algorithm which has the

additional requirement that it spends only O(1) steps on any input symbol.

We note that the critical shortcoming of real-time definable languages is that a real-

world application usually specifies that the computation should take less than, say, 4 sec-

onds. This is clearly impossible to specify in terms of real-time Turing machines or their

variants. To put it in another way, the human sense of time required in the systems commu-

nity cannot be expressed in terms of real-time Turing machines, which model the machine

sense of time. Thus, these machines are not suitable for modeling real-time applications.

3.3 The Real-Time Producer/Consumer Paradigm

Another model for real-time computations is presented in [51]. This model is based on the

producer/consumer paradigm. In such a paradigm, there are two entities, a producer, that

produces messages, and a consumer, that consumes the produced messages. They commu-

nicate through a buffer, that keeps those messages that were produced, but not consumed

yet. Based on this model, the real-time producer/consumer paradigm (RTP/C) is introduced.

Here, the producer produces messages at a given (real-time) rate, and the consumer must

consume the messages at the rate they are produced (the buffer is thus eliminated). A real-

time system is composed then by a set of such communicating processes, together with

some storage space.

1Recall that P(()Σ) denotes the powerset of Σ.

CHAPTER 3. PREVIOUS WORK. 41

The thesis advanced in [51] is that the RTP/C paradigm applies to a wide variety of

interesting and important real-time applications, where all the data arriving from the ex-

ternal world must be processed in real-time. However, the concept of production rate may

not be expressive enough in some cases. More precisely, given the railway crossing prob-

lem [60], the main event is the arrival of a train at the crossing, which does not happen at

a specified rate (in fact, there is a possibility that the train never arrives). Another exam-

ple where the RTP/C paradigm is not applicable is the case of d-algorithms (presented in

Section 2.3 on page 23), where the arrival rate may vary over time. We conclude thus that

this paradigm is not suitable for modeling real-time applications.

3.4 Real-Time Discrete Steepest Descent

A third, algorithmic definition of real-time computations has been developed recently in,

e.g., [6, 7, 66, 67]. The most complete variant is the one presented in [4]. Conforming to this

definition, input data for a real-time computation is not entirely available at the beginning

of the computation, but arrives instead while the computation is in progress. Then, one or

more of the following conditions may be imposed on a real-time algorithm:

• Each set of input data received simultaneously must be processed within a certain

time after its arrival.

• Each output must be returned within a certain time (deadline) after the arrival of the

corresponding input.

We note that, up to this point, the definition is in effect an extension of the RTP/C

paradigm described in the previous section. In addition though, the input data for a real-

time algorithm can depend on the processing performed by the algorithm itself. This is,

indeed one of the features of real-time algorithms that is encountered in many practical

applications (most notably, in those real-time algorithms controlling industrial processes).

However, to our knowledge such a feature is acknowledged for the first time in [4].

CHAPTER 3. PREVIOUS WORK. 42

By contrast to the RTP/C paradigm, the definition presented in [4] is also able to model

problems such as the railway crossing [60], where input does not arrive periodically. To the

best of our knowledge, this is the most comprehensive definition of real-time computations

to date.

However, this definition still has some limitations that makes it unsuitable for our goal

of constructing a general complexity theoretic approach to real-time computations. Most

notably, the notion of time is still taken in the machine rather than human sense.

Even if we believe that changes which address these limitations can be incorporated

in the model proposed in [4], we prefer to work with a model based on formal languages

instead of an algorithmic model. Such a preference is purely pragmatic, as it would allow

us to take full advantage of existing results from the classical complexity theory. Thus,

our model will be based on the model of timed automata, that shall be described in the

following section.

3.5 Timed Automata

Finally, another real-time model is based on the concept of timed automata [14].

The basis for the theory of timed automata is the ω-automaton. An ω-automaton is a

usual finite state automaton A = (Σ, S, s0, δ, F), whose accepting condition is modified, in

order to accommodate input words of infinite length. More precisely, given an (infinite)

word σ = σ1σ2 . . ., the sequence:

r = s0
σ1−→ s1

σ2−→ s2
σ3−→ . . .

is called a run of A over σ , provided that (si−1, si,σi) ∈ δ for all i > 0. For such a run, inf(r)

is the set of all the states s such that s = si for infinitely many i.

Regarding the accepting condition, a Büchi automaton has a set F ⊆ S of accepting states.

A run r over a word σ ∈ Σω is accepting if and only if inf(r) ∩ F 6= ∅. The acceptance of

a Muller automaton on the other hand does not use the concept of final state. For such an

CHAPTER 3. PREVIOUS WORK. 43

automaton, an acceptance family F ⊆ P(S) is defined (recall that P(()Σ) stands for the

powerset of Σ). Then, a run r over a word σ is an accepting run if and only if inf(r) ∈ F . A

language accepted by some automaton (Büchi of Muller) consists of the words σ such that

the automaton has an accepting run over σ .

Another ingredient of the theory developed in [14] is the time sequence. A time se-

quence τ = τ1τ2 . . . is an infinite sequence of positive real values, such that the following

constraints are satisfied: (a) monotonicity: τi ≤ τi+1 for all i ≥ 0, and (b) progress: for every

t ∈ R, there is some i ≥ 1 such that τi > t. Then, a timed ω-word over some alphabet Σ is

a pair (σ , τ), where σ ∈ Σω, and τ is a time sequence. That is, a timed ω-word is an infi-

nite sequence of symbols, where each symbol has a time value associated with it. The time

value associated with some symbol can be considered the time at which the corresponding

symbol becomes available. A timed ω-language is a set of timed ω-words.

Finally, a clock is a variable over R, whose value may be considered as being externally

modified. Given some clock x, two operations are allowed: reading the value stored in

x, and resetting x to zero. At any time, the value stored in x corresponds to the time

elapsed from the moment that x has been most recently reset. For a set X of clocks, a set

of constraints over X, Φ(X), is defined by: d is an element of Φ(X) if and only if d has one

of the following forms: x ≤ c, c ≤ x, ¬d1, or d1 ∧ d2, where c is some constant, x ∈ X, and

d1, d2 ∈ Φ(X).

Starting from these notions, the concept of timed ω-regular languages is introduced.

A timed Büchi automaton (TBA) is a tuple A = (Σ, S, s0, δ, C, F), where C is a finite set of

clocks. This time, the transition relation δ is defined as δ ⊆ S× S× Σ×P(C)×Φ(C). An

element of δ has the form (s, s′, a, l, d), where l is the set of clocks to be reset during the

transition, and d is a clock constraint over C. The transition is enabled only if d is valued

to true using the current values of the clocks in C.

A run r of a TBA A = (Σ, S, s0, δ, C, F) over some timed ω-word (σ , τ) is an infinite

CHAPTER 3. PREVIOUS WORK. 44

sequence of the form:

r = (s0, ν0)
σ1 ,τ1−→ (s1, ν1)

σ2 ,τ2−→ (s2, ν2)
σ3 ,τ3−→ · · · (3.1)

where σ = σ1σ2 . . ., τ = τ1τ2 . . ., νi ∈ { f | f : C → R} for all i ≥ 0, and the following

conditions hold:

• ν0(x) = 0 for all x ∈ C,

• for all i > 0, there is a transition (si−1, si,σi, li, di) ∈ δ such that (νi−1 + τi − τi−1)

satisfies di, for all x ∈ C− li, νi(x) = νi−1(x)+τi−τi−1, and, for all x′ ∈ li, νi(x′) = 0.

The notions of accepting run, and language accepted by a TBA are defined similarly to

the case of Muller automata. A timed ω-language accepted by some TBA is a timed regular

language.

It should be noted that, even if a timed regular language looks well suited for modeling

general real-time computations, the TBA used in [14] for recognition of such languages is

not sufficiently powerful for this purpose [26]:

Theorem 3.1 There are languages formed by infinite words (ω-languages) that are not ω-regular.

Proof. Let us consider the following language over the alphabet Σ = {a, b, c, d}: L =

{aubxcvdx|u, x, v > 0}. It is immediate that L is not regular. Now, consider the following

ω-language: Lω = {l1$l2$l3$. . . |li ∈ L for any i > 0, and $ 6∈ Σ}.

Assume now that Lω is ω-regular. Then, there is a Büchi automaton A = (Σ, S, s0, δ, F)

that recognizes it. Let x be a word in Lω, x = x1$x2$x3$ Therefore, there exists a run r

of A over x such that inf(r) ∩ F 6= ∅.

In the run r, let Ai, i ≥ 1 be finite automata constructed as follows: The initial [fi-

nal] state of Ai is the state A is into immediately after parsing the symbol $ that pre-

cedes xi [immediately before parsing the symbol $ that terminates xi]. The set of states

[transitions] of Ai contains exactly all the states [transitions] used by A while parsing

CHAPTER 3. PREVIOUS WORK. 45

xi. It is immediate that (a) Ai accepts xi, and (b) Ai does not accept any word outside

L (for assume that Ai accepts such a word x′i; then, run r of A clearly accepts the ω-word

x′ = x1$x2$. . . xi−1$x′i$xi+1$. . ., which is not in Lω; this contradicts our assumption that

A recognizes Lω).

Let now Ax be the set of all the automata Ai constructed as above for a word x ∈ Lω,

x = x1$x2$x3$. . ., and some accepting run r of A over x. Denote by A the set
⋃

x∈Lω
Ax.

Note that both the sets of states and transitions of some A∗ ∈ A are subsets of S and

δ, respectively, and both S and δ are finite. Therefore, the number of distinct automata

A∗ ∈ A is finite, i.e., |A| is finite. In addition, given Properties (a) and (b) above, it is

immediate that (a’) for any v ∈ L, there exists some A∗ ∈ A that accepts v, and (b’) no

automaton A∗ ∈ A accepts any word v′ 6∈ L.

We can now construct then a finite automaton A′ that recognizes L: let the initial [final]

state of A′ be some s′ [s′′], s′, s′′ 6∈ S; the set of states of A′ is S∪ {s′, s′′}, and the transitions

of A′ are exactly all the transitions of the automata A∗ ∈ A, plus λ-transitions from s′ to

each initial state of some A∗ ∈ A, and from each final state of some A∗ ∈ A to s′′.

Clearly, A′ recognizes L (given Properties (a’) and (b’) above and noting that we con-

struct A′ by performing a typical “parallel composition” [49] of the automata from A).

Moreover, A′ is a finite automaton (given that |A| is finite). The existence of A′ is a contra-

diction, since L is not regular.

Corollary 3.2 There are timed ω-languages that are not (timed) ω-regular.

Proof. Simply attach to each word in the language Lω some time sequence, and call the

language obtained in this way L′ω. Then, the proof by contradiction follows from the proof

of Theorem 3.1 on the page before. Indeed, consider a TBA that is identical to A′ from the

mentioned proof, and for which C = ∅. Clearly, this TBA recognizes L′ω. However, such

an automaton is an impossibility.

CHAPTER 3. PREVIOUS WORK. 46

In passing, note that the language Lω built in the proof of Theorem 3.1 is not unin-

teresting from a practical point of view. Indeed, it models a search into a database for a

given key: the database is modeled by the word aubxcv, the key to search for is dx, and the

instance that matches the query is simulated by bx. We just found hence some practical

situation which does not pertain to the class of (timed) ω-regular languages.

Even if not powerful enough, we chose to present in a more extensive manner the for-

malism of timed ω-regular languages, as it is the basis of our model, that shall be defined

in Chapter 4 on the following page.

We close here our survey of the existing work in the area of theoretical models for real-time

computations, with the conclusion that the existing models are not suitable for a unified

and realistic complexity theoretic formalization of real-time computations. We shall there-

fore introduce a new, expressive model that offers a consistent and practically meaningful

characterization of real-time computations in Chapter 4.

Chapter 4

Defining Real-Time Computations:
From Applications to Theory. . .

Summary

Even if the device used for recognition of timed ω-regular languages is not powerful

enough to model all the real-time computations that are meaningful in practice, the notion

of timed languages is very powerful. In this chapter, we introduce a model called well-

behaved timed ω-languages, together with the structure of an acceptor for such languages.

We also define the underlying notions for a complexity theory of real time based on timed

ω-languages, offering definitions for a notion of input size suitable for this domain, as

well as for real-time complexity classes that capture the intuitive notion of resource re-

quirements for real-time computations in a parallel environment.

We believe that our construction captures all the practical aspects of real-time compu-

tations. That is, our thesis is that well-behaved timed ω-languages model exactly all real-time

computations.

4.1 Well-Behaved Timed ω-Languages

Despite the limited scope of the finite state approach, the concept of timed languages is a

very powerful one. We propose therefore a definition that is similar to the one in [14], but

47

CHAPTER 4. FROM APPLICATIONS TO THEORY. 48

is not restricted to finite state acceptors.

However, our presentation is clearer if we use a slightly modified concept of time se-

quence (we use the intuitive notion of subsequence that is formally defined on page 12):

Definition 4.1 A sequence τ ∈ Nω, τ = τ1τ2 . . ., is a time sequence if it is an infinite se-

quence of positive values, such that the monotonicity constraint is satisfied: τi ≤ τi+1 for

all i > 0. In addition, a (finite or infinite) subsequence of a time sequence is also a time

sequence.

A well-behaved time sequence is a time sequence τ = τ1τ2 . . . for which the progress

condition also holds: for any k, i ∈ N+ ∪ {ω} such that τk = τk+1 = · · · = τk+i it holds

that i is bounded, and for every t ∈ N, there exists some finite j ≥ 1 such that τ j > t.

In should be noted that a time sequence may be finite or infinite, while a well-behaved

time sequence is always infinite. In fact, a well-behaved time sequence in our terminology

is similar to the concept of time sequence used in [14], except that, while time is considered

dense in [14], we consider it to be discrete, since in essence the time perceived by a com-

puter is discrete as well (besides, one can define a granularity of time as fine as desired).

Definition 4.2 A timed ω-word over an alphabet Σ is a pair (σ , τ), where τ is a time se-

quence, and, if τ ∈ Nk, then σ ∈ Σk, k ∈ N ∪ {ω}. Given a symbol σi from σ , i > 0, then

the associated element τi of the time sequence τ represents the time at which σi becomes

available as input. A well-behaved timed ω-word is a timed ω-word (σ , τ), where τ is a

well-behaved time sequence. A [well-behaved] timed ω-language over some alphabet Σ

is a set of [well-behaved] timed ω-words over Σ.

Definition 4.2 is a natural extension of the definition of timed regular languages pre-

sented in [14], except that we added the “well-behaved” qualifier, generated by the mod-

ified terminology presented in Definition 4.1. We also take into consideration timed ω-

words that are not well-behaved. Even if our thesis states that such words by themselves

CHAPTER 4. FROM APPLICATIONS TO THEORY. 49

do not model real-time computations, they may be useful as intermediate tools in building

real-time models.

4.2 Accepting Timed ω-Languages

In light of the above definition, we can also establish the general form of an acceptor for

timed languages:

Definition 4.3 A real-time algorithm A consists in a finite control (that is, a program), an input

tape (that is, an input stream) that contains a timed ω-word, and a decision tape (that is, a

decision stream) containing symbols from some alphabet ∆ that are written by A. The input

tape has the same semantics as a timed ω-word. That is, if (σi, τi) is an element of the

input tape, then σi is available for A at precisely the time τi. During any time unit, A may

add at most one symbol to the decision tape. Furthermore, the decision tape is write-only,

that is, A cannot read any symbol previously written on the decision tape. We denote

by ans(A, w) the content of the decision tape of some real-time algorithm A working on

some input w. A may have access to an infinite amount of working storage space (working

tape(s), RAM memory, etc.) outside the input and decision tapes, but only a finite amount

of this space can be used for any computation performed by the algorithm.

It should be noted that the concept of working space has the same meaning as in clas-

sical complexity theory. Like a classical algorithm, a real-time algorithm can make use

of some storage space in order to carry out the desired computation. When considering

space-bounded real-time computations, one can analogously consider the space used by

the real-time algorithm as the amount of this storage space that is used during the compu-

tation, without counting the (content of) input and decision tapes.

Let us fix some designated symbol y ∈ ∆. The symbol y has the same meaning as the

final state used in [14], where only those timed ω-languages accepted by finite automata

are considered (see Section 3.5 on page 42). However, since the configuration of a general

CHAPTER 4. FROM APPLICATIONS TO THEORY. 50

machine may be hard to work with, we prefer to change the state with output on the deci-

sion tape. That is, a real-time algorithm accepts some word if and only if some designated

symbol y appears infinitely many times on the decision tape. Formally,

Definition 4.4 A real-time algorithm A accepts the timed ω-language L if, on any input w,

|ans(A, w)|y = ω if and only if w ∈ L.

It is worth mentioning that the actual meaning of the symbol y on the decision tape

might be different from algorithm to algorithm, but such a distinction is immaterial for the

global theory of timed ω-languages. Indeed, consider an aperiodic real-time computation,

e.g., a computation with some deadline. If, for some particular input, the computation

meets its deadline, then, from now on, the real-time algorithm that accepts the language

which models this problem may keep writing y on the decision tape. That is, the first

appearance of y signals a successful computation, and the subsequent occurrences of this

symbol do not add any information, they being present for the sole purpose of respecting

the acceptance condition (infinitely many occurrences of y). On the other hand, consider

the timed language associated with a periodic computation, e.g., a periodic query in a real-

time database system. Then, y might appear on the decision tape each time an occurrence

of the query is successfully served (obviously, a failure could prevent further occurrences

of y, should the specification of the problem require that all the queries be served). In this

case, each occurrence of y signals a successfully served query. However, even if the actual

meaning of the y’s on the decision tape can vary from application to application, it is easy

to see that the acceptance condition remains invariant throughout the domain of real-time

computations.

It is assumed that the input of a real-time algorithm is always a (not necessarily well-

formed) timed ω-word. That is, any real-time algorithm is fed with two sequences of

symbols σ and τ , the first being a (possibly infinite) word over some alphabet, and the

latter being the associated time sequence. It should be emphasized that a symbol σi with

CHAPTER 4. FROM APPLICATIONS TO THEORY. 51

the associated time value τi is not available to the algorithm at any time t, t < τi.

Note that a TBA (presented in Section 3.5 on page 42) is equipped with a set of clocks,

since a finite automaton does not have access to any amount of storage space. However,

a TBA has to keep track of time. Thus, clocks were provided as a convenient way of

achieving this. One should also note that the restricted access a TBA has to its set of clocks

prevents uses of this set in other ways than for time keeping. On the other hand, such a

mechanism (that is, the set of clocks) is not mentioned in Definition 4.3 on page 49. This

omission is intentional. As opposed to a TBA, a real-time algorithm has access to storage

space, hence it can use (part of) this storage for time-keeping purposes.

The absence of clocks implies that, by contrast to TBA, there are no time constraints on

state transitions in a real-time algorithm. Such constraints are made, however, immaterial

by the semantics of the input tape. Indeed, Definition 4.3 states that an input symbol is

not available to the algorithm at a time smaller than the element from the time sequence

associated to that symbol. We believe that this constraint is sufficient since, conforming to

Definition 4.3, time restrictions are imposed by the input itself. One should note that real

world real-time applications have the same property, namely that their behavior should

conform to time restrictions imposed on their input and/or output rather than internal

temporal constraints.

Should the need to define other classes of timed acceptors (where storage space is lim-

ited and/or the access to that storage space is restricted) arise, the set of clocks as a time

keeping tool is likely to be needed again. For example, the definition of timed push-down

automata can be obtained by naturally restricting Definition 4.3, but one will have to add

clocks to the model, given the limited (stack-like) nature of the storage space access of such

a device. We believe that such models can be easily derived. However, the intended use of

our model is building a complexity theory for general real-time computations, hence we

will not consider such automata.

CHAPTER 4. FROM APPLICATIONS TO THEORY. 52

4.3 Operations on Timed ω-Languages

Traditional formal language theory provides tools for generating new languages from ex-

isting ones, like union, concatenation, Kleene closure, etc. We therefore conclude the sec-

tion that describes our model by defining equivalent operations on timed ω-languages.

The union, intersection, and complement for timed ω-languages are straightforwardly

defined. Moreover, it is immediate that the language that results from such an operation

on two [well-behaved] timed languages is a [well-behaved] timed language as well.

On the other hand, the concatenation is a more complex issue. Indeed, the naive oper-

ation of concatenation of two (finite) timed words (that simply concatenates together the

pair of sequences of symbols and the pair of time sequences) fails to produce a timed word,

since the result of the time sequence concatenation is likely not a time sequence. This naive

approach is even worse in the case of well-behaved timed words, where concatenating two

infinite sequences makes little sense.

However, one can rely on the semantics of timed words in defining a meaningful con-

catenation operation. Recall that a timed word means a sequence of symbols, where each

symbol has associated a time value that represents the moment in time when the corre-

sponding symbol becomes available. Then, it seems natural to define the concatenation of

two timed words as the union of their sequences of symbols, ordered in nondecreasing or-

der of their arrival time. Intuitively, such an operation is similar to merging two sequences

of pairs (symbol, time value), that are sorted with respect to the time values. Formally, we

have the following definition (we use the intuitive notion of subsequence that is formally

defined on page 12):

Definition 4.5 Given some alphabet Σ, let (σ ′, τ ′) and (σ ′′, τ ′′) be two timed ω-words

over Σ. Then, we say that (σ , τ) is the concatenation of (σ ′, τ ′) and (σ ′′, τ ′′), and we write

(σ , τ) = (σ ′, τ ′)(σ ′′, τ ′′), if and only if

1. τ is a time sequence, that is, τi ≤ τi+1 for any i > 0; both (σ ′1, τ ′1)(σ
′
2, τ ′2) . . . and

CHAPTER 4. FROM APPLICATIONS TO THEORY. 53

(σ ′′1 , τ ′′1)(σ ′′2 , τ ′′2) . . . are subsequences of (σ1, τ1)(σ2, τ2) . . .; furthermore, for any i >

0, there exists j > 0 and d ∈ {′,′′ } such that (σi, τi) = (σd
j , τd

j),

2. for any d ∈ {′,′′ } and any positive integers i and j, i < j, such that τd
k = τd

l for any

k, l, i ≤ k < l ≤ j, there exists m such that, for any 0 ≤ ι ≤ j − i, (σm+ι, τm+ι) =

(σd
i+ι, τ

d
i+ι), and

3. for any positive integers i and j such that τ ′i = τ ′′j , there exist integers k and l, k < l,

such that (σk, τk) = (σ ′i , τ
′
i) and (σl , τl) = (σ ′′j , τ ′′j).

Given two timed ω-languages L1 and L2, the concatenation of L1 and L2 is the timed

ω-language L = {w1w2|w1 ∈ L1, w2 ∈ L2}.

In addition to the mentioned order of the resulting sequence of symbols (formalized

in Item 1 of Definition 4.5 on the page before), two more constraints are imposed in Defi-

nition 4.5. These constraints order the result in the absence of any ordering based on the

arrival time, in order to eliminate the nondeterminism. First, if either of the two ω-words

contains some subword of symbols that arrive at the same time, then this subword is a

subword of the result as well, and this is expressed by Item 2 of Definition 4.5. That is, the

order of many symbols that arrive at the same time is preserved. Then, according to Item 3,

if some symbols σ1 and σ2 from the two ω-words that are to be concatenated, respectively

arrive at the same moment, then we ask that σ1 precedes σ2 in the resulting ω-word.

The concept of Kleene closure for timed languages can be then defined based on the

concatenation operation:

Definition 4.6 Given some timed ω-language L, let L0 = ∅, L1 = L, and, for any fixed

k > 1, Lk = LLk−1. Furthermore, let L∗ = ∪0≤k<ωLk. We call L∗ the Kleene closure of L.

The following result is immediate:

CHAPTER 4. FROM APPLICATIONS TO THEORY. 54

Theorem 4.1 The set of [well-behaved] timed ω-languages is closed under intersection, union,

complement, concatenation, and Kleene closure, under a proper definition of the latter two op-

erations. Furthermore, a subset of a [well-behaved] timed ω-language is a [well-behaved] timed

ω-language.

Finally, we provide a way of separating the sequence of symbols and the timed se-

quence from a timed ω-word: For some timed ω-word w = (σ , τ), let detime(w) = σ and

time(w) = τ .

4.4 Sizing Up Real-Time Computations

We are ready now for a complexity theoretic approach to real-time computations. First, we

define complexity classes for timed ω-languages, that capture an intuitive notion of real-

time efficiency. In the subsequent chapters, we study the relations between these classes

and between them and existing complexity classes.

What to measure Classical complexity theory measures the amount of resources required

for the successful completion of some algorithm. Such resources are running time, storage

space, and, to a lesser degree, the number of processors used by a parallel algorithm. Let

us analyze them one by one:

Time is probably the most used measure in complexity theory. On the other hand, in

the real-time area, time is in most cases predetermined by the existence of deadlines im-

posed on the computation or by similar time constraints. Admittedly, there are classes of

real-time algorithms for which running time actually makes sense as a measure of per-

formance. One may also consider algorithms that terminate before the deadline as com-

pared to those that terminate right when the allowed computation time expires (still, while

quicker algorithms may, say, free some resources that can be used by other concurrent pro-

cesses, those (slower) algorithms that still meet their deadlines are by no means less correct

or useless). However, by contrast to its importance in classical complexity theory, time is

CHAPTER 4. FROM APPLICATIONS TO THEORY. 55

no longer a universal performance measure in the real-time environment, and thus we do

not introduce real-time classes related to time complexity.

Things are different as far as space is concerned though. Indeed, space as a perfor-

mance measure bears the same significance in a real-time environment as it does in clas-

sical complexity theory. We therefore introduce the corresponding classes rt-SPACE(f)

(corresponding to SPACE(f) in classical complexity theory, that is, containing problems

solvable in real time by some algorithm that uses no more than f (n) working space for

any input of size n). In general, we prefix all the real-time complexity classes by “rt-”

(from “real-time”).

A third measure of interest is the number of processors. In classical complexity theory this

measure received less attention than the other measures. However, parallel real-time algo-

rithms have been shown to make up for the limited time that is available, and solve prob-

lems that are not solvable by sequential implementations [8, 30, 63]. Thus, we consider the

classes rt-PROC(f), containing those problems solvable in real time by a parallel machine

that uses f (n) processors for any input of size n. We also note an additional issue regard-

ing the number of processors. Indeed, consider the PRAM model, as opposed to, say, the

bounded degree interconnection network. In the first case, communication between two

processors is accomplished by writing to, and reading from the shared memory, at a time

cost equal to the cost of accessing a memory cell. By contrast, in an interconnection net-

work, interprocessor communication uses message passing. Such a communication may

involve many steps (if the two communicating processors are not directly connected), at an

increased temporal cost. It is therefore reasonable to consider that the class rt− PROC(f)

is different from model to model. Therefore, given a model of parallel computation M, we

denote the corresponding rt-PROC(f) class by rt-PROCM(f), with the superscript often

omitted when either the model is understood from the context, or the class is invariant

to the model (in the sense described on page 17 and assumed throughout the thesis). We

write rt-PROC(c) [or rt-SPACE(c), etc.] instead of rt-PROC(f), whenever f (x) = c for all

CHAPTER 4. FROM APPLICATIONS TO THEORY. 56

x ∈ N.

The classes rt-SPACE(f) and rt-PROC(f), informally introduced in the above discus-

sion, are formally defined as follows:

Definition 4.7 Given a total function f : N → N, and some model of parallel com-

putation M (meeting the minimum requirements stated at the beginning of Section 2.2

on page 16), the class rt-SPACEM(f) consists in exactly all the well-behaved timed ω-

languages L for which there exists a real-time algorithm running on M that accepts L and

uses no more than f (n) space, where n is the size of the current input. Analogously, the

class rt-PROCM(f) includes exactly all the well-behaved timed ω-languages L for which

there exists a real-time algorithm running on M that accepts L and uses no more than f (n)

processors on any input of size n. By convention, the class rt-PROCM(1) (that is, the class

of sequential real-time algorithms) is invariant with M (recall from Section 2.2 that all the

parallel models become the RAM in the sequential case).

How to measure The notion of input size is not explained in Definition 4.7. In the clas-

sical theory, the input size is the (total) length of the input. However, using such a defini-

tion, all well-behaved timed ω-words have length ω. A new notion of input size should

be therefore developed.

In the most general case of real-time applications the input data are received in bun-

dles. Take for instance the domain of real-time database systems. Here, the most time

consuming operation is answering queries that appear as input. That is, at any moment

when some new input arrives, this input consists in the n symbols that encode a query.

Motivated by this, we propose the following definition for input size: The size of some

timed ω-word w is given by the largest bundle that arrives as input at the same time.

Indeed, such a definition makes sense only when the real-time algorithms manifest the

pseudo-on-line property (when they process input data in bundles, without knowledge of

future input), but it would appear that this is a common feature of such algorithms [29].

CHAPTER 4. FROM APPLICATIONS TO THEORY. 57

Definition 4.8 Let w = (σ , τ) be some timed ω-word, τ = τ1τ2τ3 . . ., σ = σ1σ2σ3 For

i0 = 0 and any j > 0, let s j = σi j−1+1σi j−1+2 . . .σi j , such that (a) τi j−1+1 = τi j−1+2 = · · · = τi j ,

and (b) τi j+1 6= τi j . Then, the size |w| of w is |w| = max j>0 |s j|.

Chapter 5

. . . And Back [from Theory to
Applications]

Summary

Our thesis is that the theory of timed languages presented in Chapter 4 on page 47 cov-

ers all the practically meaningful aspects of real-time computations, while doing so in a

formal, unified manner. In order to further support this thesis, we take some meaningful

examples, and we construct timed ω-languages that model them.

First, we model two general concepts that are central to real-time systems, namely com-

puting with deadlines (Section 5.1 on the next page), and real-time input arrival (Section 5.2 on

page 61). The appearance of either of these concepts in the specification of some problem

gives the real-time characteristic to that problem (see Section 3.1 on page 34). Thus, be-

ing able to construct a suitable model for these concepts is crucial to the usefulness of the

theory of timed ω-languages, and supports our thesis that the theory of timed languages

covers all the practically relevant aspects of real-time computations.

Once these concepts are successfully modeled, one can use those models in order to

analyze practical real-time applications. Indeed, we provide in Sections 5.3 on page 63

and 5.4 on page 70 timed ω-languages that model problems from two highly practical

areas, namely real-time databases (where we identify a real-time variant of the recognition

problem) and ad hoc networks (where we offer a formal model for the routing problem).

58

CHAPTER 5. FROM THEORY TO APPLICATIONS. 59

5.1 Computing with Deadlines

One of the most often encountered real-time features is the presence of deadlines. The

deadlines are typically classified into hard deadlines, when a computation that exceeds the

deadline is useless, and soft deadlines, where the usefulness of the computation decreases

as time elapses [59, 86].

For example, a hard deadline may be expressed as “this transaction must terminate

within 20 seconds from its initiation.” By contrast, a soft deadline may be “the usefulness

of this transaction is max before 20 seconds elapsed; after this deadline, the usefulness is

given by the function u(t) = max× 1/(t− 20).”

For some problem, let the input [output] alphabet be I [O]. We denote by n and m the

sizes of the input i ∈ I∗ and of the output o ∈ O∗. We consider without loss of generality

that I, O, and N are disjoint.

Let π be a problem whose instances can be classified into three classes: (i) no deadline is

imposed on the computation; (ii) a hard deadline is imposed at time td; (iii) a soft deadline

is imposed at time td, and the usefulness function is u after this deadline, u : [td,ω) → N∩
[0, max]. We build for each instance a timed ω-word (σ , τ) over I ∪O ∪ (N ∩ [0, max]) ∪
{w, d}, w, d 6∈ I∪O as follows:

(i) σ1 . . .σm = o, σm+1 . . .σm+n = i, σi = w for i > m + n, τi = 0 for 1 ≤ i ≤ m + n, and

τi = i−m− n for i > m + n.

(ii) σ1 ∈ N ∩ (0, max], σ2 . . .σm+1 = o, σm+2 . . .σm+n+1 = i, τi = 0 for 1 ≤ i ≤ m + n + 1;

if τi < td and i > m + n + 1, then τi = i−m− n− 1 and σi = w. Let i0 be the index

such that τi = td. Then, for all i ≥ i0, τi = i0 + b(i− i0)/2c, and:

σi =
{

d if i− i0 is even
0 otherwise

(5.1)

CHAPTER 5. FROM THEORY TO APPLICATIONS. 60

(iii) This case is the same as case (ii), except that Relation 5.1 on the preceding page be-

comes:

σi =
{

d if i− i0 is even
bu(τi)c otherwise

(5.2)

Let the language formed by all the ω-words that conforms to the above description be

L. Basically, a timed ω-word in L has the following properties: At time 0, a possible output

and a possible input for π are available. Then, up to the deadline d, the symbols that arrive

are w. After that, each time unit brings to the input a pair of symbols, the first component

being d (signaling that the deadline passed), and the second one being the measure of

usefulness the computation still has (which is 0 for ever when the deadline is hard). When

a deadline is imposed over the computation (cases (ii) and (iii)), a minimum acceptable

usefulness estimate is also present at the beginning of the computation.

Let then L(π) be the language of successful instances of π , L(π) ⊆ L, in the following

sense: Let A be an algorithm for solving π , and let x ∈ L. Suppose that A works on

the input encoded in x. Then, x ∈ L(π) if and only if A produces the output encoded in x

either (a) at a time that is within the imposed deadline, or (b) at a time when the usefulness

of the output is not below the acceptable limit encoded in x.

We are ready to present now an acceptor for L(π). For simplicity, we consider that

this acceptor is composed of two “processes,” Pw and Pm. Pw is an algorithm that solves

π , which works on the input of π contained in the current input ω-word, and stores the

solution in some designated memory space upon termination. If there is more than one

solution for the current instance, then Pw nondeterministically chooses that solution that

matches the proposed solution contained in the ω-word, if such a solution exists. Mean-

time, Pm monitors the input. If, at the moment Pw terminates, the current symbol is w, then

Pm compares the solution computed by Pw with the proposed solution, and imposes to the

whole acceptor some “final” state s f if they are identical, or some other designated state sr

(for “reject”) otherwise.

CHAPTER 5. FROM THEORY TO APPLICATIONS. 61

On the other hand, if at the moment Pw terminates, the current symbol is d, then the

deadline passed. Then, Pm compares the current usefulness measure with the minimum

acceptable one. If the usefulness is not acceptable, then Pm imposes the state sr on the

whole acceptor. Otherwise, Pm compares the result computed by Pw with the proposed

solution, and imposes either the state s f or sr, accordingly.

Once in one of the states s f or sr, the acceptor keeps cycling in the same state. In state

s f , the acceptor writes y on the decision tape (with y being the “accept” symbol, as in

Definition 4.4 on page 50). The decision tape is not modified in any other state.

It is immediate that the language accepted by the above acceptor is exactly L(π). It is

also immediate that L(π) is well-behaved. Thus we completed the modeling of computa-

tions with deadlines in terms of ω-languages. Note that we assumed here that all the input

data are available at the beginning of computation. However, the case when data arrive

while the computation is in progress is easily modeled by modifying the time value that

corresponds to each input datum. This case is covered in more detail by our discussion in

Section 5.2.

5.2 Real-Time Input Arrival

One of the computational paradigms that feature real-time input arrival is the data ac-

cumulating paradigm (see Section 2.3 on page 23), that has been extensively studied in

[27, 28, 62, 63]. The shape of input in this paradigm is very flexible, and any practically

important form of real-time input arrival can be modeled by a particular class of problems

within this paradigm. Therefore, we use in what follows the data-accumulating paradigm

to illustrate the concept of real-time input arrival. Further models of this concept are also

presented in Sections 5.3 on page 63 and 5.4 on page 70.

A d-algorithm works on an input considered as a virtually endless stream. The compu-

tation terminates when all the currently arrived data have been processed before another

datum arrives. In addition, the arrival rate of the input data is given by some function

CHAPTER 5. FROM THEORY TO APPLICATIONS. 62

φ(n, t) (called the data arrival law), where n denotes the amount of data that is available

beforehand, and t denotes the time. The family of arrival laws most commonly used as

example was introduced by Relation 2.1 on page 24:

φ(n, t) = n + knγtβ

where k, γ, and β are positive constants. Any successful computation of a d-algorithm

terminates in finite time.

Again, we denote the input [output] alphabet by I [O], while the input and the output

are denoted by i and o, respectively (i ∈ I∗, o ∈ O∗).

Given a problem π pertaining to this paradigm, we can build the corresponding timed

ω-language L(π) similarly to Section 5.1 on page 59. More precisely, given some (infinite)

input word i for π (together with a data arrival law φ(n, t) and an initial amount of data n),

and a possible output o of an algorithm that solves π with input i, a timed ω-word (σ , τ)

that may pertain to L(π) is constructed as follows: σ1 . . .σm = o, σm+1 . . .σm+n = i1 . . . in,

τi = 0 for 1 ≤ i ≤ m + n. Note that, since both the arrival law and the initial amount of

data are known, one can establish the time of arrival for each input symbol i j, j > n. Let us

denote this arrival time by t j. Also, let i0 = m + n + 1. Then, the continuation of the timed

ω-word is as follows: for all i ≥ 0, σi0+2i = c (where c is a special symbol, c 6∈ I ∪O), and

σi0+2i+1 = ii0+i; moreover, τi0+2i+1 = ti0+i, and τi0+2i = τi0+2i+1 − 1.

Now, an acceptor for L(π) has a structure which is identical1 to the one used in Sec-

tion 5.1: It consists in the two processes Pw and Pm. Pw works exactly as the Pw from

Section 5.1, except that it emits some special signal to Pm each time it finishes the process-

ing of one input datum. Note that, since any d-algorithm is an on-line algorithm (as we

shall show in Section 8.2.1 on page 113), it follows that, once such a signal is emitted the

p-th time, Pw has a (partial) solution immediately available for the input word i1 . . . ip.

Then, suppose that Pm received p signals from Pw, and it also received the input symbol

1In particular, if there is more than one solution for the current instance, then Pw nondeterministically
chooses that solution that matches the proposed solution contained in the ω-word, if such a solution exists.

CHAPTER 5. FROM THEORY TO APPLICATIONS. 63

σi0+2(p−1−i0), but it didn’t receive yet the input symbol σi0+2(p−i0). This is the only case

when Pm attempts to interfere with the computation of Pw. In this case, Pm compares the

current solution computed by Pw with the solution proposed in the input ω-word; if they

are identical, the input is accepted, and the input is rejected otherwise (in the sense that

either state s f or sr is imposed upon the acceptor, accordingly).

Again, in state s f , the acceptor writes y on the decision tape (with y being the “accept”

symbol, as in Definition 4.4 on page 50), and the decision tape is not modified in any other

state. As well, once in one of the states s f or sr, the acceptor keeps cycling in the same state.

It is immediate that L(π) is well-behaved and contains exactly all the successful instances

of π , therefore we succeeded in modeling d-algorithms using timed ω-languages.

Other related paradigms, like c-algorithms (that are similar with d-algorithms, except

that data that arrive during the computation consist in corrections to the initial input rather

than new input—see Section 2.3 on page 23) can be easily modeled using the same tech-

nique.

5.3 Real-Time Database Systems

We start by briefly reviewing the main concepts of the relational and real-time database

systems theory in order to summarize the notations and concepts that are used later, di-

recting the interested reader to [2, 91] for a more detailed presentation. Then, we use our

formalism for modeling the recognition problem for real-time database systems (RTDBS

for short).

Relational Databases Fix two countably infinite sets att (of attributes) and dom (the

underlying domain, disjoint from att). A relation is given by its name and its ordered

set of attributes (its sort). Given a relation R, the arity of R is arity(R) = |sort(R)|. A

relation schema is a relation name R. A database schema is a nonempty finite set R of relation

names. Let R be a relation of arity n. A tuple over R is an expression R(a1, a2, · · · , an),

CHAPTER 5. FROM THEORY TO APPLICATIONS. 64

where ai ∈ att, 1 ≤ i ≤ n. A relation instance over R is a finite set of tuples over R. A

(database) instance I over some database schema R is the union of relation instances over R.

The sets of instances over a database schema R [relation schema R] are denoted by inst(R)

[inst(R)]. The interrogation of a database is accomplished by queries. A query q is a partial

mapping from inst(R) to inst(S), for fixed database schema R and relation schema S.

Complexity of queries We are mainly concerned with data complexity of queries, namely

the complexity of evaluating a fixed query for variable database inputs [2], since the usual

situation is that the size of the database input dominates by far the size of the query (and

therefore this measure is most relevant).

The complexity of queries is defined based on the recognition problem associated with

the query. For a query q, the recognition problem is: Given an instance I and a tuple u,

determine if u belongs to the answer q(I). That is, the recognition problem of a query q is

the language:

{enc(I)$enc(u)|u ∈ q(I)} (5.3)

where enc denotes a suitable encoding over queries and tuples, and $ is a special symbol.

The (data) complexity of q is the (conventional) complexity of its recognition problem.

Then, for each conventional (time, space, processors) complexity class C, one can define a

corresponding complexity class of queries QC.

Another way to define the complexity of queries is based on the complexity of actually

constructing the result of the query. The two definitions are in most cases interchange-

able [2].

Real-Time Databases An active databases support the automatic triggering of updates

(rules) in response to (internal or external) events. The typical form of a rule is “on event

if condition then action.” An action may in turn generate other events and hence trigger

other rules. A fundamental issue in active databases addresses the choice of an execution

CHAPTER 5. FROM THEORY TO APPLICATIONS. 65

model (i.e., a semantics for rule application), with an important dimension of variation

given by the moment the rules are fired: immediate firing (a rule is fired as soon as its event

and condition become true), deferred firing (rule invocation is delayed until the final state

in the absence of any rule is reached) and concurrent firing (a separate process is spawned

for the rule action and is executed concurrently). In the most general model, each rule has

an associated firing mode.

RTDBSs add temporal and timeliness dimensions to active databases. Indeed, a real-

time database interacts with the physical world, and the database is thus active. In addi-

tion, data in a real-time database are time sensitive, and the transactions must be timely,

i.e, they must complete within their time constraints (deadlines). We briefly present in the

following the data model used in [91], which is itself derived from the historical relational

data model [35].

In the following, the valid time associated to some database object is the time at which

the fact represented by that object is true in the real world, and the transaction time is the

time at which the fact represented by the corresponding database object has been recorded

in the database and is available for retrieval. It is assumed that the difference between the

valid time and the transaction time is small, so that we will refer to both the valid time and

the transaction time simply as “valid time.” Time is considered discrete and linear.

The objects from the database are grouped in three categories: Image objects are those

objects that contain information obtained directly from the external environment. Associ-

ated with an image object is the most recent sampling time. A derived object is computed

from a set of image objects and possibly other objects. The time stamp associated with a

derived object is the oldest (i.e., smallest) valid time of the data objects used to derive it.

Finally, an invariant object is a value that is constant with time. Then, a real-time database

instance is defined as B = (I1, I2, ..., In, D, V), where In is the most recent set of image ob-

jects, and I1, I2, . . . , In−1 are archival variants of this set. D is the set of derived objects, and

V is the set of invariant ones. The valid time associated with each temporal object in the

CHAPTER 5. FROM THEORY TO APPLICATIONS. 66

database instance is called the lifespan of the object. The lifespan of a data object is defined

as a finite union of intervals, that form a boolean algebra. A lifespan can also be associated

with a set of objects, in a natural manner. Based on these notions, a variant of relational

algebra can be defined as a query language for real-time databases [91].

Additional issues in RTDBSs include the pattern of queries (periodic, sporadic, aperi-

odic), the nature of deadlines (hard, soft), and the way the updating rules are fired. While

the first two issues received both theoretical and practical attention in the literature, to our

knowledge, there is no special theoretical treatment of the last issue, except for the one that

was spawned by the theory of active databases. The immediate firing in the case of image

objects is implied in [91] and therefore in the above paragraphs.

An aperiodic query q is a partial function from B to inst(S), where S is some relation. A

periodic query returns an answer each time it is issued, therefore such a query is a function

from B to (inst(S))ω.

5.3.1 Real-time Database Systems as Timed Languages

Recall that one of the ways of assessing the complexity of queries and query languages is

based on the reduction of such problems to the problem of language recognition.

However, the real-time component in a real-time database system adds a new dimen-

sion to the model, namely the time. It seems natural therefore to try to model such database

systems using timed languages. We describe such a modeling in what follows. We con-

sider that there is a suitable encoding function enc that encodes objects and sets of objects,

without giving much attention to how such a function is constructed, since such functions

were widely used (see for example [2, 61]). Let $ be a symbol that is not in the codomain

of enc.

Let us ignore the queries for the moment. Recall that a real-time database instance is a

tuple B = (I1, I2, ..., In, D, V). Moreover, assume for now that the database contains exactly

one immediate object, called ok, and that the value of ok is read from the external world

CHAPTER 5. FROM THEORY TO APPLICATIONS. 67

each tk time units. Let D and V be some sets of derived and invariant objects, respectively,

with m = |enc(V)| and p = |enc(D)|, and ok(t) be the value of ok that is read at time t

from the external world. Consider then the timed ω-word dbk = (σ , τ), where σ and τ has

the following form: let2 q = |enc(ok)|; then, for every i ≥ 0, σα+i(q+1)+1 . . .σα+(i+1)(q+1) =

enc(ok(ti))$, where α = m + p + 2; moreover, τ j = iti for α + i(q + 1) + 1 ≤ j ≤ α + (i +

1)(q + 1).

Furthermore, let db0 = (σ , τ), such thatσ1 . . .σm = enc(V), σ(m + 1) = σ(m + p + 2) =

$, and σm+2 . . .σm+p+1 = enc(D); in addition, τi = 0, 1 ≤ i ≤ m + p + 2.

In other words, the sets of both invariant and derived objects are specified at time 0, as

modeled by the word db0. Then, each tk time units a new value for ok is provided. This is

modeled by dbk. It is clear that the database instance is completely specified by the word

db0dbk, since this word models both the invariant and derived objects (by db0), as well as

all the updates for the sole image object (by dbk).

Now, let us consider the general case of a real-time database. That is, we do not restrict

ourselves to one invariant object anymore. Therefore, let the database instance contain r

such objects, called ok, 1 ≤ k ≤ r. However, if we consider a word dbk corresponding to

each object ok, 1 ≤ k ≤ r, then it is immediate that the database is described by the word:

dbB = db0db1 . . . dbr (5.4)

We have now a model for real-time databases, which it trivially a well-behaved timed

ω-language. Now, all that we have to do is to consider the queries. Again, we assume

without further details that there is a function encq for encoding queries and their answers,

whose codomain is disjunct from the codomain of enc. Real-time queries can be classified

in two classes: periodic and aperiodic [69].

Let us focus on aperiodic queries first. Each such query q may have a hard of soft

deadline. However, it seems natural to also consider queries without any deadline, since

2We assume for clarity of presentation that the length of the encoding of ok is constant over time. The
extension to a variable length is straightforward.

CHAPTER 5. FROM THEORY TO APPLICATIONS. 68

they might be present even in a real-time environment. Therefore, the encoding of a query

should include

1. the time t at which the query is issued,

2. the (encoding of) the query itself encq(q),

3. a tuple s that might be included in the answer to the query,

4. the deadline td of the query, if any.

Note that a similar problem is the presence of deadlines, that was presented in Sec-

tion 5.1 on page 59, except that the first item is not modeled (the computation always

starts at time 0). Therefore, our construction is similar to the construction of the language

that models computations with deadlines.

We have thus a query for which either (i) there is no deadline, (ii) a hard deadline

is present, or (iii) a soft deadline is present. The deadline (if any) is imposed at some

relative time td (that is, the moment in time at which the deadline occurs is t + td), and the

usefulness function is denoted by u. For each query q and each candidate tuple s we can

build similarly to Section 5.1 an ω-word aq[q,s,t] = (σ , τ) as follows, where m = |encq(s)$|,
n = |encq(q)$|, and $, wq, dq are not contained in the codomain of encq:

(i) σ1 . . .σm = encq(s)$, σm+1 . . .σm+n = encq(q)$, σi = wq for i > m + n, τi = t for

1 ≤ i ≤ m + n, and τi = t + i−m− n for i > m + n.

(ii) σ1 ∈ N ∩ (0, max], σ2 . . .σm+1 = encq(s)$, σm+2 . . .σm+n+1 = encq(q)$, τi = t for 1 ≤
i ≤ m + n + 1; if τi < td and i > m + n + 1, then τi = t + i−m− n− 1 and σi = wq.

Let i0 be the index such that τi = t + td. Then, for all i ≥ i0, τi = t + i0 + b(i− i0)/2c,
and:

σi =
{

dq if i− i0 is even
0 otherwise

(5.5)

CHAPTER 5. FROM THEORY TO APPLICATIONS. 69

(iii) This case is the same as case (ii), except that Relation 5.5 on the preceding page be-

comes:

σi =
{

dq if i− i0 is even
bu(τi)c otherwise

(5.6)

Let q be a periodic query now. More precisely, q is issued for the first time at time t,

and then it is reissued each tp time units. Each time q is issued, we have to consider a

tuple whose inclusion into the result of q is to be tested. Let si be such a tuple for the i-th

invocation of q, and let s = (s1, s2, s3, . . .). It is easy to see that such a query is modeled by

the word pq[q,s,t,tp] = aq[q,s1 ,t]aq[q,s2 ,t+tp]aq[q,s3 ,t+2tp] However, there is no guarantee that

the resulting word pq[q,s,t,tp] is well-behaved, since the concatenation of an infinite number

of well-behaved timed ω-words is not necessarily well-behaved. In our case, however, the

result of the concatenation is a well-behaved timed ω-word, and this follows immediately

from the following observation.

Lemma 5.1 For a word pq[q,s,t,tp] = (σ , τ), and for any finite positive integer k, there exists a

finite integer k′ such that τk′ ≥ k.

Proof. Without loss of generality, we assume that k = t + itp for some i ≥ 0. However, the

symbols for which τ j < k can be counted as follows: there are i + 1 occurrences of some

word of the form encq(q)$encq(sv)$, 0 ≤ v ≤ i, and at most k occurrences of symbols from

{wx, dx|x = t + ltp, 0 ≤ l ≤ i}. Therefore, j ≤ (i + 1)|encq(q)$encq(s)$| + 2ki, for some

tuple s such that |s| = max0≤v≤i sv. Clearly, the upper bound for j is finite and therefore so

is the number of symbols for which τ j < k.

We modeled therefore the main ingredients of a real-time database system. All we have

to do then is to put the pieces together.

Definition 5.1 Let B be some real-time database instance. Then, given some aperiodic

CHAPTER 5. FROM THEORY TO APPLICATIONS. 70

query q from B to inst(S) (where S is some relation schema), issued at time t, the recogni-

tion problem for q on B is the (well-behaved) timed ω-language:

Laq = {dbBaq[q,s,t]|s ∈ q(B)} (5.7)

Analogously, given a periodic query q from B to (inst(S))ω, issued at time t and with

period tp, the recognition problem for q on B is the (well-behaved) timed ω-language:

Lpq = {dbB pq[q,s,t,tp]|s ∈ q(B)} (5.8)

Note that the recognition problem for real-time queries is similar to the same problem

for conventional queries, shown in Relation 5.3 on page 64, except that the (conventional)

words used in Relation 5.3 are replaced by timed ω-words.

5.4 Ad Hoc Networks

We direct our attention now to another real-time problem, namely the routing problem

in ad hoc networks. We show how to model this problem using the theory of timed ω-

languages. In the process, we also identify an interesting variant of real-time algorithms,

which we believe to be useful in modeling parallel distributed real-time systems.

An ad hoc network is a collection of wireless mobile nodes, that dynamically forms a

temporary network without using any existing network infrastructure or centralized ad-

ministration [25, 46]. Due to the limited transmission range of such nodes, multiple hops

may be needed for one node to exchange data with another.

The main difference between an ad hoc network and a conventional one is the routing

protocol. In such a network, each host is mobile. Therefore, the set of those nodes that can

be directly reached by some host changes with time. Furthermore, because of this volatility

of the set of directly reachable nodes, each mobile node should act not only as a host, but

as a router as well, forwarding packets to other mobile hosts in the network.

Although the concept of ad hoc networks is relatively new, many routing algorithms

were developed (see, for example, [18, 25] and the references therein). However, little is

CHAPTER 5. FROM THEORY TO APPLICATIONS. 71

known about the performances of these algorithms. A comparative performance evalua-

tion was proposed for the first time in [25], where several routing algorithms are compared

based on discrete event simulation. To our knowledge, no analytical model has been pro-

posed to date.

On the other hand, an ad hoc network is obviously a real-time system. Indeed, since

the positions (and implicitly the connectivity) of all the hosts are functions of time, such a

network is close to the correcting algorithms paradigm (see Section 2.3 on page 23). There-

fore, conforming to our claim that timed languages can model all the meaningful aspects

of real-time computations, one can model ad hoc networks using this formalism. This is

what we are attempting in the following.

Assumptions and notations When speaking about ad hoc networks, we assume that, if

a message is emitted by some node at some time t and received by another node that is

in the transmission range of the sender at time t′, then t′ = t + 1. That is, transmitting a

message takes one time unit. Note that we actually established in this way a granularity of

the time domain. This granularity seems appropriate, since transmitting a message is an

elementary operation in a network.

We introduce a notation for the transmission range. We denote this characteristic by

the predicate range(n1, n2, t). That is, a node n2 is in the transmission range of another

node n1 at time t if and only if range(n1, n2, t) = true. We do not give any specific way of

computing this predicate, since such a computation depends on the characteristics of the

particular application. Indeed, this predicate depends on the characteristics of both n1 and

n2, as well as on the geographical characteristic of the area between the two nodes.

5.4.1 Nodes as Timed ω-Words

The main component of a model for ad hoc networks is the mobile host (or the node). It

is consistent to assume that each node in a network is uniquely identified (for example, by

CHAPTER 5. FROM THEORY TO APPLICATIONS. 72

its unique IP address). For convenience, we label such a node by an integer between 1 and

n, where n is the number of nodes in the given network.

We assume that there is an encoding function e of the properties of any node i (like the

label i of the node, the position of i, and other properties that will be explained below) over

some alphabet Σ, with @, $ 6∈ Σ. Denote by P the set of all possible properties. Then, we

say that x is the encoding of some property ρ of node i if and only if x = enc(i, ρ), where

enc : N× P → Σ,

enc(i, ρ) =
{

$e(i)$ if ρ = i,
$e(i)@e(ρ)$ otherwise

In other words, we have a standard encoding, except that each property of some node

i (except i itself) is prefixed by an encoding of i. This will be useful when we put together

the models of all the nodes that form an ad hoc network.

Each node i is characterized by its position, a variable that changes with time. We

denote by pi(t) the (encoding of the) position of node i at time t. In addition, each node has

a set of characteristics that are invariant with time (for example, the transmission range).

The structure of this set is, however, immaterial for the present discussion. Therefore, we

consider that these characteristics are encoded by some string qi for each node i. Finally, it

is sometime assumed that each node has a constant velocity [25]. However, the constant

velocity assumption is made for simulation purposes, and is not necessarily a feature of the

real world. Indeed, the velocity of some node usually varies with time, and/or is unknown

to the other nodes. Such a case is considered in [18], where the only thing known by any

node is its current position. We consider here the most general case, where the only thing

known about some node at some moment in time is its position at that moment.

Given a series of (conventional) words w1, w2, . . ., we denote by w1w2 the concatenation

of w1 and w2. Moreover, we denote by ∏ω
i=1 wi the (infinite) word obtained by successively

concatenating the words wi, i ≥ 1

We are ready now to consider a timed ω-word that models some mobile host. A node

CHAPTER 5. FROM THEORY TO APPLICATIONS. 73

i is modeled by the word hi = (σ , τ), where σ = (qi)(∏ω
t=0 pi(t)), and τ = τ1τ2 . . ., with

τ j = 0 for 1 ≤ j ≤ |qi pi(0)|, and, for any k > 1, τ j = k, 1 + |qi| + ∏k−1
l=0 |pi(l)| ≤ j ≤

|qi|+ ∏k
l=0 |pi(l)|.

In other words, the first part of hi contains the invariant set of characteristics, together

with the initial position of the object that is modeled. The time values associated with this

subword are all 0. Then, the successive positions of the node are specified, labeled with

their corresponding time values. It is immediate that all the necessary information about

node i is contained in the word hi.

5.4.2 A Model for Messages

Now that we have a model for the set of nodes, all we have to do is to connect them

together. We have that is to model message exchanges between nodes.

Consider a message u issued at some time t. Such a message should contain the source

node s and the destination node d. In addition, such a message may contain its type (for

example, message or acknowledgment), the data that is to be transmitted, etc. All this

content (referred to as the body of the message) is, however, immaterial, and we denote

it by bu as a whole. Considering that the encoding function e introduced above encodes

messages over Σ as well, let the encoding of a message be $e(t)@e(s)@e(d)@e(bm)$, and

k = |$e(t)@e(s)@e(d)@e(bu)$|. Then, the timed (finite) word that models u is mu = (σ , τ),

where σ1 . . .σk = $e(t)@e(s)@e(d)@e(bu)$ and τ j = t for 1 ≤ j ≤ k.

Note that mu is not a well-behaved timed ω-word. On the other hand, it is easy to see

that, for any node i, himu is such a word. However, for a message to exist, there must be at

least one node in the network, namely the node that sends it. That is, a model of a message

would always be concatenated to the model of at least one node, and therefore the above

construction is sufficient for our purposes.

Finally, one has to consider the model for the receiving event. For this purpose, assume

CHAPTER 5. FROM THEORY TO APPLICATIONS. 74

that some message u (generated at time tu, by a source s) is received by its intended des-

tination d at some time t′u. We model such an event by the timed word ru = (σ , τ), where

σ1 . . .σk′ = $e(t)@e(s)@e(d)$ and τ j = t′u for 1 ≤ j ≤ k′, with k′ = |$e(t)@e(s)@e(d)$|.
Again, such a word is not well-behaved, but the above argument still holds (namely, some

“acknowledgment” cannot exist in a network with no hosts).

5.4.3 The Routing Problem

It is immediate that an ad hoc network with n nodes and without any message is mod-

eled by the timed ω-word an = h1h2 . . . hn. Then, a network of n nodes and some mes-

sages u1, u2, . . . , uk, k ≥ 1, will be modeled by the word wn,k = h1h2 . . . hnmu1 mu2 . . . muk ,

and the model that includes the event of receiving ui, 1 ≤ i ≤ k, is wrn,k =

h1h2 . . . hnmu1 ru1 mu2 ru2 . . . muk ruk . Moreover, given some countably infinite series of mes-

sages u1u2 . . ., the model of the network in which these messages are transmitted is

wrn,ω = h1h2 . . . hnmu1 ru1 mu2 ru2 Note that wn,ω is a well-behaved timed ω-word under

the reasonable assumption that any node can generate only a bounded number of mes-

sages per time unit.

In the following we may refer to the encoding mu of a message u simply by “the mes-

sage mu.” Whether the term message refers to a message or an encoding of a message will

be clear from the context. For a fixed n, denote by Nn the set of all the words of the form

wn,k, k ∈ N∪ {ω}.

We are ready now to state the routing problem in ad hoc networks as a timed ω-

language. Consider a network with n nodes, and a message u generated at time t,

with body b, that is to be routed from its source s to the destination d. Then, a route

of u is a word in the timed ω-language Rn,u ⊆ Nn, where, for some finite positive

integer f , there exists a set of messages u1, u2, . . . , u f , and possibly a set of messages

rt1, rt2, . . . , rtg, with g a positive, finite integer, such that any word w ∈ Rn,u has the

form w = h1h2 . . . hnmu1 ru1 . . . mu f ru f mrt1 rrt1 . . . mrt f rrt f . Furthermore, for each message

CHAPTER 5. FROM THEORY TO APPLICATIONS. 75

ui, 1 ≤ i ≤ f , denote by ti, t′i, si, di, and bi the generation time, receiving time, source,

destination, and body of ui, respectively. Then,

1. b1 = b2 = . . . = b f = b, s1 = s, d f = d, t1 = t,

2. for any i, 1 ≤ i ≤ f − 1, di = si+1, t′i = ti+1, and range(si, di, ti) = true,

3. t′f is finite.

In other words, the routing process generates f intermediate messages (u1, . . . , u f).

These are one-hop messages that contain the same information as the original message.

Moreover, the time at which one such message arrives at the intended destination of u is

finite (otherwise, the message is never received, and the routing process is hence unsuc-

cessful). In addition, there might exist a finite number of additional messages (rt1, . . . , rtg),

that are exchanges between nodes in the routing process (for example, when the routing

tables at each node are built/updated). In the following, we refer to some language Rn,u as

an (instance of a) routing problem, while some particular word w ∈ Rn,u will be called an in-

stance of Rn,u, or just routing instance when Rn,u is understood from the context. Note that

the actual routing (performed by some routing algorithm) of message u in some n-node

network is modeled by a word in the corresponding routing problem.

Clearly, the language Rn,u models all the relevant characteristics of a routing problem.

Note that two routing algorithms may be compared by comparing their corresponding

words from Rn,u. Moreover, more than one measure of performance may be considered.

The measures of performance that are considered in [25] are the routing overhead (the total

number of messages transmitted), path optimality (the difference between the number of

hops a message took to reach its destination versus the length of the shortest possible path),

and the message delivery ratio (the number of messages generated versus the number of

packets received).

The first two measures have immediate analogs in our model. Indeed, considering

some word w ∈ Rn,u corresponding to a routing algorithm, the routing overhead is given

CHAPTER 5. FROM THEORY TO APPLICATIONS. 76

by f + g, the total number of messages that are generated. The number of hops a message

traveled is given by t′f − t1. The message delivery ratio on the other hand needs some

changes in our model, since we defined the routing problem as consisting in the successful

deliveries of messages. Consider for this purpose the language R′n,u ⊆ Nn, where any

word w ∈ R′n,u has the same properties as above, except the finiteness of t′f . This models a

routing problem where the possibility of a message to be lost (that is, never received by its

intended destination) exists. This property is modeled by the cases where t′f = ω.

However, note that in practice an infinite delivery time usually means that the delivery

time exceeds some finite threshold T. This situation is modeled by our initial construction,

where a lost message is a message for which t′f − t1 > T.

5.4.4 On Routing Algorithms

Up to this moment, we modeled the routing problem. Such an approach offers a basis

for comparing routing algorithms, once the results of these algorithms are modeled as

words from Rn,u. On the other hand, nothing is said about the routing algorithm itself.

The immediate variant for such a model takes the form of real-time algorithm that accepts

the language Rn,u. However, further restrictions to such an acceptor must be imposed:

The real world router consists in n independent algorithms, that have limited means of

communication. That is, two such nodes can communicate only by messages exchanged

between them. A model for a routing algorithm must take this feature into account.

However, there is a second approach to this model: A node in such a network is un-

aware of the properties of another node, unless it receives a message from (or about) that

node. Based on this intuition, we can propose a model for an n-node ad hoc network. For

specificity, we model a routing instance w = h1h2 . . . hnmu1 ru1 . . . mu f ru f mrt1 rrt1 . . . mrt f rrt f .

Such a model has n components, one for each node. These components are the timed

ω-words Hi, 1 ≤ i ≤ n. Each Hi consists in a “local” component Li and a “remote”

CHAPTER 5. FROM THEORY TO APPLICATIONS. 77

component Ri, where:

Li = himu j1
mu j2

. . . mu jx
mrtk1

mrtk2
. . . mrtky

(5.9)

where 0 ≤ x ≤ f , 0 ≤ y ≤ g, 1 ≤ jl ≤ f for any l, 1 ≤ l ≤ x, and 1 ≤ kl ≤ g for any l,

1 ≤ l ≤ y. Moreover, the source of each message u jl or rtkl is i. That is, the local component

consists only in those messages that are sent by the corresponding node, together with the

space coordinates of that node.

Given Li, for each j 6= i, 1 ≤ j ≤ n, denote by Mi, j the set {ru jl
|1 ≤ l ≤ x, du jl

=

j} ∪ {rrt jl
|1 ≤ l ≤ y, drt jl

= j}. That is, the set Mi, j contains the receiving events for all the

messages that are sent from node i to node j. Then:

Ri = υ1 . . . υk (5.10)

where υ1 . . . υk are exactly all the elements in the set ∪n
l=1 Ml,i.

Finally, Hi = LiRi. In other words, the component Hi contains only those messages

that are sent by the corresponding node, and those messages that are received by the node.

Besides this information, no knowledge about the external world exists.

In passing, we notice that such a construction is not limited to routing algorithms in ad hoc

networks. Indeed, the concept of n independent processes that communicate with each

other using messages (as opposed to, say, a shared storage) defines a distributed system.

One of the approaches in developing formal characterizations for such systems [39] is to

model them as n independent words (one for each process), and to provide a mechanism

modeling interprocessor communication. The distributed model of routing algorithms in

ad hoc networks that is presented in this section can be easily generalized [26] to offer a

good basis for the analysis or real-time distributed systems.

Chapter 6

Complexity of Real Time I: A Strong
Infinite Hierarchy

Summary

Consider the following question [75]:

Question 1 Can one find any problem that is solvable by an algorithm that uses p proces-

sors, p > 1, and is not solvable by a sequential algorithm, even if this sequential algorithm

runs on a machine whose (only) processor is p times faster than each of the p processors

used by the parallel implementation?

Though it is standard to assume that each processor on a parallel computer is as fast

as the single processor on the sequential computer used for comparison, Question 1 does

make sense in practice. Besides, questions of this kind are crucial for the process of devel-

oping a parallel real-time complexity theory. Indeed, a meaningful such theory should be

invariant to secondary issues like the speed of some particular machine. Thus, an answer

to the above question is also important from a complexity theoretic point of view.

AN INTUITIVE ASIDE.

On the intuitive level, a positive answer to Question 1 for p = 2 is provided by (a

slightly modified version of) the pursuit and evasion on a ring example presented in [5]:

78

CHAPTER 6. A STRONG INFINITE HIERARCHY. 79

An entity A is in pursuit of another entity B on the circumference of a circle,

such that A and B move at the same top speed. Clearly, A never catches B.

Now, if two entities C and D are in pursuit of entity B on the circumference

of a circle, then C and D always catch B, even if each of them moves at 1/x

the speed of A (and B), x > 1.

This modified version of the pursuit/evasion problem was mentioned for the first

time in [31].

Starting from this intuition, we construct a timed ω-language that models the geomet-

ric problem presented above. We extend this language to a “stack of n identical circles1”

n ≥ 1, and we show that such a language is accepted by a 2n-processor PRAM, but there

does not exist any (2n− 1)-processor algorithm that accepts the language. Thus, we prove

that the hierarchy of parallel machines that solve real-time problems is infinite. To our

knowledge, this is the first time such a result is obtained. Finally, we show that the in-

finiteness of the parallel real-time hierarchy is invariant with the model of parallel com-

putation involved (in the sense described on page 17 and assumed throughout the thesis).

Theorem 6.9 on page 93 is the main result of this chapter, establishing the aforementioned

hierarchy.

As several of the concepts in this chapter may not be immediately obvious, we pro-

vide a number of explanatory asides (as we did above) to help the reader develop some

intuition.

6.1 Two Processors are More Powerful than One

Given some arbitrary word w of length n, we shall index it starting from 0 (however, both

the symbol and time sequences in a timed ω-word are indexed in Chapter 4 on page 47

1For ease of presentation, we shall informally refer to “the stack of n circles,” as “the n-dimensional case.”

CHAPTER 6. A STRONG INFINITE HIERARCHY. 80

0

1

2

3

4

5

6

7

b

b

b

b

b

b

b

b
a 1

a2

a3

(i)

0

1

2

3

4

5

6

7

b

b

b

b b

a1

a2

a3

(i)

a4

a5

(a) (b)

Figure 6.1: PURSUIT1: Insertion modulo r

starting from 1, and we shall keep this convention). For any 0 ≤ i ≤ j < n, we denote by

wi... j the subword wiwi+1 . . . w j of w.

We construct in what follows a timed ω-language2 PURSUIT1 which is accepted by a

two-processor algorithm, but cannot be accepted by a sequential algorithm.

Fix r and q, r > 2q, and Σ = {a, b, +,−}. Let Lo = {(σ , τ)|σ ∈ {a, b}r, τi = 0 for all 1 ≤
i ≤ r}. A word in Lo represents an initial value that will be modified as time passes.

Such a modification is given by Lt = {(σ , τ)||σ | = j, 1 ≤ j ≤ q + 1,σ1 ∈ {+,−},σ2... j ∈
{a, b} j−1, τi = t for all 1 ≤ i ≤ j}. A word in Lt denotes a change arriving at time t; the

first symbol is + or −, followed by at most q a’s and/or b’s. The semantics will become

clear shortly. Let Lu = ∏i>0 Lci, for a given positive c. PURSUIT1 will be constructed as a

subset of LoLu. However, we need some new concepts to precisely define PURSUIT1.

Let w ∈ {a, b}r and u = u0u′, u0 ∈ {+,−} and u′ ∈ {a, b} j, j ≤ q. We define the

insertion modulo r at point i of u in w, 0 ≤ i < r, as a function insr that receives w, u,

and i, and returns a new word w and a new i as follows: Let i′ = i + q if u0 = + and

i′ = i− q otherwise. Then, insr(w, u, i) = (w′, i′ mod r), where w′ is computed as follows

2The languages PURSUITk, 1 ≤ k, were called Lk in [32, 33]. We change here the notation in order to
eliminate any confusion.

CHAPTER 6. A STRONG INFINITE HIERARCHY. 81

(x denoting the reversal of some word x):

1. If i′ < 0, let i′′ = i′ mod r. Note that, in this case, u0 = −. Then, w′ =

u′0...iwi+1...i′′−1u′i+1... j−1.

2. Analogously, if i′ > r− 1 (and thus u0 = +), then w′ = u′r−i... j−1wi′′+1...i−1u′0...r−i−1.

3. Otherwise (that is, when 0 ≤ i′ ≤ r− 1), let i1 = min(i, i′), i2 = max(i, i′), and x = u′

if u0 = + and x = u′ otherwise. Then, w′ = w0...i1−1xwi2+1...r−1.

AN INTUITIVE ASIDE.

The intuition behind insr (also suggested by its name) is simple: Picture the word

w as a circle, in which w0 is adjacent to the right to wr−1. Then, u replaces j consecutive

symbols in the “circle” w, starting from wi, and going either to the left or to the right,

depending on u0 (+ for right). u models the moves of the pursuee over the “circle”

w. The pursuee has a topmost velocity of q/r-th of the circle’s circumference per time

unit. The algorithm that accepts PURSUIT1 (the pursuer) will have to match the moves

of the pursuee, and its “velocity” is proportional to the speed of the processor(s) used.

To clear things up, consider the example in Figure 6.1 on the preceding page. Here,

r = 8 and q = 3. Initially, w = bbbbbbbb, and the insertion point is i = 1. For clarity,

w is represented as a circle, with 8 identified locations that corresponds to the eight

symbols stored in w. These locations are labeled with their indices (inside the circle),

and with the values stored there (outside). Part (a) of Figure 6.1 shows the insertion

of the word u = −a1a2a3 (all the a’s are the same symbol, the subscripts of symbols in

u being provided solely for illustration purposes). Here, the pursued entity moves to

the left (or counterclockwise), rewriting the symbols at indices 1, 0, and 7, in this order.

After such a processing, the new insertion point becomes i = 7, and w = a2a1bbbbba3.

Consider now that the next word to be inserted is u = +a4a5. Now, the indices whose

values are modified are 7 and 0. This processing is illustrated in Part (b) of Figure 6.1.

The final result is i = 0 and w = a5a1bbbbba4.

CHAPTER 6. A STRONG INFINITE HIERARCHY. 82

Denote insr(w, u, i) by (w, i)⊕ u, and let⊕ be a left-associative operator. Then, for some

integers α and β, 1 ≤ α ≤ β, for appropriate words w, uα, uα+1, . . . , uβ, and for some i,

0 ≤ i ≤ r− 1, we define (w, i)
⊕β

j=α u j = (w, i)⊕ uα ⊕ uα+1 ⊕ · · · ⊕ uβ.

AN INTUITIVE ASIDE.

Intuitively, the operator
⊕

is for ⊕ as ∑ is for + in arithmetic. Specifically, such

an operator receives some initial word w and some initial insertion point i, and suc-

cessively inserts modulo r the words uα , . . . , uβ in w, modifying the insertion point ac-

cordingly after each such an insertion. For example, refer again to Part (b) of Figure 6.1

on page 80, which illustrates the result of (bbbbbbbb, 1)
⊕2

j=1 u j, where u1 = −a1a2a3,

and u2 = +a4a5. Incidentally, the result of this operation is (a5a1bbbbba4, 0).

We now introduce the second useful concept: Consider w ∈ LoLu, w = w0 ∏i>0 wi,

with w0 ∈ Lo, and wi ∈ Lci, i > 0. For some t and some i0, 0 ≤ i0 ≤ r− 1, let s(w, t) =

(σ0, i0)
⊕

ci≤t σ
i, where3 σ i = detime(wi), i ≥ 0.

Let A be an algorithm that receives w and uses p processors, p ≥ 1 (A is sequential if

p = 1 and parallel otherwise). A may inspect (i.e., read from memory) the symbols stored

at some indices in s(w, t). Many processors may inspect different indices in parallel. For

each processor l, 1 ≤ l ≤ p, let ιl
t be the most recent index inspected by processor l up

to time t. If some processor inspects no symbols from s(w, t), then ιl
t = −1. Let I l

t be

the “history” of inspected symbols up to time t, i.e., I l
t =

⋃
t′≤t ι

l
t′ \ {−1}. Assume that

A does not inspect any symbol whatsoever from s(w, t) (e.g., A doesn’t even bother to

maintain s(w, t) in memory). Then, for any t, ιl
t = −1 and thus I l

t = ∅, 1 ≤ l ≤ p. Let

lo = min1≤l≤p(ιl
t), hi = max1≤l≤p(ιl

t), and I =
⋃

1≤l≤p I l
t . Then, we define z(w, t), the

3Recall that c is a positive constant and that, for some timed ω-word w = (σ , τ), detime(w) = σ .

CHAPTER 6. A STRONG INFINITE HIERARCHY. 83

0

1

2

3

4

5

6

7

p1

p2

0

1

2

3

4

5

6

7

p1

(a) (b)

Figure 6.2: PURSUIT1: Acceptable insertion zone

acceptable insertion zone at time t, as follows:

z(w, t) =

{i|0 ≤ i < r} if lo = −1,
{i|0 ≤ i < r, i 6= lo} if lo 6= −1 and there exists j 6∈ I

such that j > hi or j < lo,
{i|lo ≤ i ≤ hi} otherwise.

(6.1)

When the area delimited by the latest inspected indices has been seen, then this area

is excluded from z(w, t). Otherwise, z(w, t) contains all the indices, except the smallest (if

any) positive ιl
t.

Observation 2 If p = 1 and at least one index has been inspected, then |z(w, t)| = r− 1

for any t > 0. Generally, if p = 1, then z(w, t) ≥ r− 1.

AN INTUITIVE ASIDE.

In order to support the intuition, we refer again to the geometric version of the

problem. In Figure 6.2, the acceptable insertion zone is denoted by white bullets, while

those indices that do not pertain to this zone are represented by black bullets. Consider

first that there are two pursuers (as we shall see in a moment, this means two proces-

sors used by the accepting real-time algorithm). Part (a) of Figure 6.2 represents the

moment in which the two processors inspect indices 1 and 6, respectively. This figure

CHAPTER 6. A STRONG INFINITE HIERARCHY. 84

shows the acceptable insertion zone, provided that, say, processor p1 started from in-

dex 0 and inspected only indices 0 and 1, and processor p2 inspected only indices 7

and 6, in this order. On the other hand, when only one processor is available, the ac-

ceptable insertion zone is always the whole circle, except the most recently inspected

index. This case is shown in Part (b) of Figure 6.2.

We should emphasize that all the indices outside the acceptable insertion zone

must have been inspected by at least one processor. Indeed, consider that two pro-

cessors are available and we have the same case as the one in Part (a) of Figure 6.2,

except that the index 7 is not inspected by any processor. Then, according to Rela-

tion 6.1 on the page before, the acceptable insertion zone is identical to the one shown

Part (b) of Figure 6.2 on the preceding page. The reason for such a constraint is the

desire to faithfully model the geometric problem. First, we described the insertion

operation such that it models the moves of the pursuee, by introducing the notion of

insertion point, which defines the current position of the pursuee and moves accord-

ingly after each insertion, as illustrated in Figure 6.1 on page 80. Then, since the circle

is “unidimensional,” neither the pursuer(s) nor the pursuee can jump over each other.

This inability is modeled in the pursuee case by the presence of the acceptable inser-

tion zone. However, the pursuers’ inability to jump is another matter. Indeed, since

our result is general, we cannot impose any restriction on the processing performed

by the real-time algorithm that accepts the language. We therefore created a “levelled

field of play,” by making the algorithm lose the advantage of two pursuers if it de-

cides to jump wherever it wants on the circle. Indeed, if the pursuers jump all over the

place, then the definition of the acceptable insertion zone allows the pursuee to change

almost any index in the circle. As we shall see, this makes it uncatchable.

We are now ready to define the language PURSUIT1. For w ∈ LoLu, let zi(w) be the set

of indices whose values are modified by wi ∈ Lci (recall that c is a fixed, positive constant,

CHAPTER 6. A STRONG INFINITE HIERARCHY. 85

as defined at the beginning of Section 6.1 on page 79). Then,

PURSUIT1 = { w ∈ LoLu | zi(w) ⊆ z(w, ci), i > 0, and there exists t > 0 and
i0, 0 ≤ i0 < r, such that |s(w, t)|a = |s(w, t)|b }.

Lemma 6.1 PURSUIT1 is a well-behaved timed ω-language.

Proof. Consider some w = (σ , τ) ∈ PURSUIT1, w = w0 ∏i>0 wi, with w0 ∈ Lo and

wi ∈ Lci, i > 0. Monotonicity of τ follows from Theorem 4.1 on page 53, since PURSUIT1 ⊆
Lo ∏i>0 Lci. Progress of τ is immediate, since all wi, i ≥ 0, are bounded in length.

Recall now from Definition 4.7 on page 56 that the class rt-PROC(1) is invariant

with the model of computation that is considered (and is in effect the same as the class

rt-PROCRAM(1) of sequential real-time computations). Since our results in this chapter

refer exclusively to the rt-PROC hierarchy, we do not specify a particular model of compu-

tation when stating real-time sequential results, with the understanding that these results

are stated in terms of RAM processing.

Lemma 6.2 There exists no RAM deterministic real-time algorithm that accepts PURSUIT1.

Proof. Assume that there exists such an algorithm and call it A. Denote by w the current

input.

In order to simplify the proof, we make the following changes to the problem of ac-

cepting PURSUIT1: First, we assume that A does not have to build s(w, t). Instead, this

structure is magically updated, and the algorithm has access to the up-to-date s(w, t) at

any given time t. Next, we consider that, given some string x, A is able to decide whether

|x|a = |x|b in |x| steps. Note that these assumptions make the problem easier, so that

proving the nonexistence of an algorithm for this version implies the nonexistence of an

algorithm deciding PURSUIT1.

Consider now that the processor used by A has the ability to inspect c1 symbols per

time unit, c1 > 0, and choose q such that q = c× c1 + 1. It is then immediate that, during

CHAPTER 6. A STRONG INFINITE HIERARCHY. 86

each interval of c times units, A can inspect at most q− 1 symbols, and therefore, at any

time t, there exists at least one symbol in s(w, t) whose value is unknown to A (and thus A

cannot decide whether |s(w, t)|a = |s(w, t)|b), provided that the input inserts q symbols at

any time ci, i > 0.

Therefore, in order to complete the proof, it is enough to show that there exists a word

w such that, at each time ci, i > 0, exactly q symbols are inserted in s(w, t). Without loss of

generality, consider the insertion point at time t = ci to be j = br/2c (given the circularity

of s(w, t), another insertion point can be considered in the same manner, by performing a

simple translation). According to Observation 2 on page 83, z(w, t) contains exactly all the

indices in s(w, t), except one (denote the latter by zt). If 0 ≤ zt < j, then choose wi+1 = +x,

with |x| = q. Otherwise (that is, if j < zt ≤ r− 1), choose wi+1 = −x, again with |x| = q.

Note that, since A is deterministic, the index zt is uniquely determined at any time t. It is

clear that wi+1 is legal, since r > 2q and thus its insertion does not affect any index outside

z(w, t) (informally, zt is “in the other half of the circle” than wi+1).

We have yet to prove the second part of the result (namely, that there exists a 2-

processor real-time algorithm that accepts PURSUIT1). The crux of this proof is given by

the following observation:

Observation 3 For some 2-processor PRAM algorithm A′ and some input w (w =

w0 ∏i>0 wi, with w0 ∈ Lo, and wi ∈ Lci, i > 0), and under a judiciously chosen order

of inspection of s(w, t), it holds that: (a) |z(w, t)| is decreasing with respect to t, and (b) for

any x ≥ 0, there exists a finite t such that |z(w, t)| < x. Therefore, there exists a finite time

t f for which |z(w, t f)| = 0.

Proof. Consider that the two processors used by A′ are able to inspect εc1 symbols per

time unit, where c1 is as in the proof of Lemma 6.2 on the preceding page, andε is a positive

constant, arbitrarily close to 0.

Let ι1
0 = 0, and ι2

0 = 1 (recall that we denote by ιl
t the most recent index inspected by

CHAPTER 6. A STRONG INFINITE HIERARCHY. 87

processor l up to time t; this notation is introduced on page 82). Thus, at each time t1

when processor 1 inspects a new index in s(w, t), let the newly inspected index be ι1
t1

+ 1

(that is, processor 1 advances always to the “right,” whenever it has a chance to do so).

Analogously, at each time t2 when processor 2 inspects a new index, let this index be

(ι2
t2
− 1) mod r. Then, according to Relation 6.1 on page 83, |z(w, t)| ≥ |z(w, t + 1)|. It

follows that |z(w, t)| has property (a).

As far as property (b) is concerned, let us look at the processing that A′ needs to per-

form. First, A′ needs to update s(w, t) as it is changed by the timed ω-word w. However,

s(w, t) depends on ∏c j≤t w j only and, by Lemma 6.1 on page 85, ∏c j≤t w j is a finite word.

Therefore, s(w, t) can be built in finite time. Then, A′ needs to keep track of the number of

a’s and b’s that it already inspected. This is clearly achievable in finite time. Hence all the

other processing that A′ is required to perform (except inspecting indices in s(w, t)) takes

finite time. Thus, after some finite time, A′ inspects at least one new index. As shown

above, any newly inspected symbol decreases |z(w, t)|. Condition (b) follows.

Lemma 6.3 There exists a 2-processor PRAM deterministic real-time algorithm that accepts

PURSUIT1 and that uses arbitrarily slow processors.

Proof. Given Observation 3, the ability of A′ to accept PURSUIT1 is immediate. Indeed,

note that at time t f the acceptable insertion zone is empty. That is, at that time, no index in

s(w, t f) can be changed, and A′ can compare the number of a’s and b’s in s(w, t f). In other

words, A′ caught the input (or the pursuee) at time t f . After this moment in time, A′ keeps

writing y on the decision tape.

In addition, recall that the two processors used by A′ are able to compare εc1 symbols

per time unit, where c1 is as in the proof of Lemma 6.2 on page 85, and ε is a positive

constant, arbitrarily close to 0. That is, the processors used by A′ are arbitrarily slow, as

desired.

Lemmas 6.1, 6.2, and 6.3 imply:

CHAPTER 6. A STRONG INFINITE HIERARCHY. 88

Theorem 6.4 rt-PROC(1) ⊂ rt-PROCPRAM(2) (strict inclusion).

Theorem 6.4 states that a parallel real-time algorithm is more powerful than a sequen-

tial one, even if the speed of the processors that are used by the former is arbitrarily smaller

than the speed of the unique processor used by the latter. To our knowledge, this is the first

result of this nature to date. In fact, we can improve on the result stated in Theorem 6.4.

6.2 The Hierarchy rt-PROCPRAM

A form of Theorem 6.4 holds for any number of processors n, n > 1; i.e., not only parallel

real-time implementations are more powerful than sequential ones, but they also form

an infinite hierarchy with respect to the number of processors used: Given any number

of processors available to a parallel real-time algorithm, there are problems that are not

solvable by that algorithm, but that are solvable if the number of available processors is

increased, even if each processor in the new (augmented) set is (arbitrarily) slower than

each processor in the initial set. To show this, we develop a language PURSUITk similar

to PURSUIT1, that extends the “circle” expressed by PURSUIT1 to k stacked such circles

(the “k-dimensional version”). Fix k > 1, q > 0, r > 2q, r′ = kr. Put L′o = {(σ , τ)|σ ∈
{a, b}r′ , τi = 0 for all 1 ≤ i ≤ r′}.

Let Nk = {enc(i)|1 ≤ i ≤ k}, where enc is a suitable encoding function from N to {I}∗,
I 6∈ Σ. It is assumed that |enc(j)| ≤ j for any j ∈ N, and that enc−1 is defined everywhere

and computable in finite time (these properties clearly hold for any reasonable encoding

function). Define LNt = {(σ , τ)|σ ∈ Nk, τi = t for all 1 ≤ i ≤ |σ |}. Then, the multi-

dimensional version of Lt is L′t = LNt Lt (a word in L′t also provides the “dimension,” from

1 to k, along which the insertion takes place). Let L′u = ∏i>0 L′ci (recall that c is a fixed,

positive constant, as defined at the beginning of Section 6.1 on page 79). PURSUITk will be

a subset of L′oL′u.

We will now extend the notion of insertion modulo r to the new problem. For w ∈

CHAPTER 6. A STRONG INFINITE HIERARCHY. 89

0
1

2

3

4

5

6

7

• • •

k “circles”

0
1

2

3

4

5

6

7

0
1

2

3

4

5

6

7

Figure 6.3: PURSUITk: The k-dimensional circle

{a, b}r′ , let w = w(1)w(2) . . . w(k), |w(i)| = r, 1 ≤ i ≤ k (w(i) is a segment of w), and

u = u′u′′, u′ ∈ Nk and u′′ ∈ Σ j, 1 ≤ j ≤ q + 1, u′′1 ∈ {+,−}, u′′2...q ∈ {a, b} j−1. For 0 ≤ i < r,

define (w, i)⊗ u =
(

∏d−1
j=1 w(j)

)
((w(d), i)⊕ u′′)

(
∏k

j=d+1 w(j)
)

, where d = enc−1(u′). In

other words, the word to be inserted contains two components, one of them (u′) encoding

a number, and the other one (u′′) denoting the actual word that is to be inserted; the left-

associative operator ⊗ inserts (modulo r) u′′ into that segment of w which is given by u′.
⊗

is defined analogously to
⊕

.

For some w ∈ L′oL′u (w = w0 ∏i>0 wi, with w0 ∈ L′o, and wi ∈ L′ci), and for some i0,

0 ≤ i0 ≤ r− 1, let s′(w, t) = (σ0, i0)
⊗

ci≤t σ
i, where σ i = detime(wi), i ≥ 0.

One should note that s′(w, t) is a generalization of s(w, t) defined in Section 6.1. As a

consequence, the concept of acceptable insertion zone can be naturally extended. Indeed,

consider the same algorithm A that receives some w ∈ L′oL′u as input and uses p processors.

Then, for some t ≥ 0, define z j(w, t) = z(w(j), t), 1 ≤ j ≤ k, with z(w(j), t) defined as

in Relation 6.1 on page 83, except for the following change4: if, at time t, some processor l

inspects an index outside s(w(j), t), then ιl
t(j) = −1 and I l

t(j) = ∅. Finally, let z′(w, t) =

4Recall that we denote by ιl
t the most recent index inspected by processor l up to time t (−1 if no symbol is

inspected), and Il
t is the “history” of inspected symbols up to time t, i.e., Il

t =
⋃

t′≤t ι
l
t′ \ {−1}. These notation

are introduced on page 82.

CHAPTER 6. A STRONG INFINITE HIERARCHY. 90

⋃k
j=1 z j(w, t), and call z′(w, t) the acceptable insertion zone at time t.

AN INTUITIVE ASIDE.

The k-dimensional geometric version is a straightforward extension of the one-

dimensional one. In order to present the intuitional support, we refer to Figure 6.3

on the page before. Each dimension is represented by a circle whose circumference

has length r. There are, therefore, k such circles. Each collection of k identical indices

(one on each circle) is connected by a special path (there are r such paths, represented

by thinner lines in Figure 6.3). These paths can be used by the pursuee at no cost.

However, the pursuers are too bulky to take such narrow paths, such that they are

prohibited to use them. More precisely, pursuers can travel on them, but such a thing

is suicidal: Once a pursuer uses such a path, it looses the advantage gained by the

existence of the acceptable insertion zone, similarly to the case of jumping pursuers in

the one-dimensional case (see Figure 6.2 on page 83).

We have now all the concepts that are necessary for defining PURSUITk: Recall from

the beginning of Section 6.2 on page 88 that PURSUITk is a subset of L′o ∏i>0 L′ci for a fixed

positive constant c.Then, with z′i(w) the set of indices whose values are modified by the

subword wi ∈ Lci of w, let

PURSUITk = { w ∈ L′oL′u | for i > 0, z′i(w) ⊆ z′(w, ci), and there exists t > 0
and i0, 0 ≤ i0 < r, such that |s′(w, t)|a = |s′(w, t)|b }.

Lemma 6.5 PURSUITk is a well-behaved timed ω-language for any k > 1.

Proof. Trivial generalization of the proof of Lemma 6.1 on page 85. Indeed, note that any

word u ∈ LNt has a finite length (specifically, a length smaller than k).

Lemma 6.6 There exists no (2n− 1)-processor PRAM deterministic real-time algorithm that ac-

cepts PURSUITn, n ≥ 1.

CHAPTER 6. A STRONG INFINITE HIERARCHY. 91

Proof. The proof is by induction over n. Let A be a (2n− 1)-processor PRAM determinis-

tic real-time algorithm that accepts PURSUITn. The inexistence of A in the base case (n = 1)

is established by Lemma 6.2 on page 85.

Given some word s′(w, t), let s′(w, t) = s1(w, t)s2(w, t), such that |s1(w, t)| = r and

|s2(w, t)| = r′ − r.

We first note that PURSUIT1 and PURSUITn−1 are both (strict) subsets of PURSUITk. In-

deed, nothing prevents some word from PURSUITk to change only a segment of s(w, t) (and

we can consider that words from PURSUIT1 [PURSUITn−1] change only s1(w, t) [s2(w, t)]).

Now, since A accepts PURSUITn, it accepts all the words w1 ∈ PURSUIT1 (that change

indices from s1(w, t)). By Lemma 6.2, A has to allocate at least two processors to inspect

s1(w, t). However, A also accepts PURSUITk (whose words change indices from s2(w, t)).

Thus, A should allocate at least 2(n − 1) processors for the inspection of s2(w, t) (since

2(n− 1)− 1 processors are not enough by inductive assumption). In all, A should use at

least 2n processors, a contradiction.

Therefore, the only possible processor allocation remaining must require that (at least)

one of the processors that inspect s1(w, t) also inspects from time to time indices from

s2(w, t). Let’s say that such an inspection takes place each tp time units. Then, given the

definition of the acceptable insertion zone of s1(w, t), each tp time units an input word is

allowed to change any index of s1(w, t). By the same argument as the one used to prove

Lemma 6.2, it follows that A can no longer decide whether at some moment in time the

number of a’s equals the number b’s in s1(w, t). Therefore, A is no longer able to accept

PURSUITn. In other words, the processor allocation in which only a part of the computa-

tional power of some processor is allocated to s1(w, t) is not acceptable, since such a proces-

sor has no influence on the acceptable insertion zone of s1(w, t) and thus such a processor

becomes useless. Indeed, without the restrictions imposed by the acceptable zone, the al-

gorithm cannot keep up with the changes for q large enough (specifically, for q > 2c× c1,

where c1 is the maximal number of symbols that can be inspected by a processor in one

CHAPTER 6. A STRONG INFINITE HIERARCHY. 92

time unit). Again, we reach a contradiction.

We exhausted all the possible processor allocation schemes, so the induction is com-

plete.

Lemma 6.7 There exists a 2n-processor PRAM deterministic real-time algorithm that accepts

PURSUITn and that uses arbitrarily slow processors, n ≥ 1.

Proof. By allocating two processors for each s′(w, t)(j), 1 ≤ j ≤ n, it is possible to handle

the changes, as shown by Lemma 6.3 on page 87. Since there are 2n processors, such an

allocation is clearly achievable.

By Lemmas 6.5, 6.6 and 6.7, the hierarchy rt-PROCPRAM is infinite:

Theorem 6.8 For any n ∈ N, n ≥ 1, rt-PROCPRAM(2n − 1) ⊂ rt-PROCPRAM(2n) (strict

inclusion).

6.3 The Strong Hierarchy rt-PROC

One may wonder whether Theorem 6.8 holds for other models of computation beside

the PRAM. A model that allows a straightforward implementation, as opposed to the

PRAM, is the bounded-degree network (BDN) [5], where communication between proces-

sors is achieved using a sparse interconnection network of fixed degree. However, it is

well-known that even the most powerful version of the PRAM (namely, the CRCW PRAM

[5]) can be simulated on a BDN with bounded slowdown and bounded memory blowup.

Specifically, there exists a simulation [47] for which the slowdown is O(log2 n/ log log n),

and the memory blowup is O(log m/ log log m), where n is the number of processing ele-

ments, and m is the amount of memory used by the PRAM.

However, a bounded slowdown does not affect the result in Theorem 6.8, since this

result is invariant to the speed of the processors involved. Furthermore, the PRAM al-

gorithm uses a finite amount of memory; thus, a bounded memory blowup results in a

CHAPTER 6. A STRONG INFINITE HIERARCHY. 93

finite amount of memory as well for the BDN that simulates the PRAM algorithm. In ad-

dition, given that the BDN allows for an immediate physical implementation, we make

the following assumption: The BDN is the most elementary model of parallel computa-

tion. Indeed, such a claim is consistent with the notion of “invariant with the model of

computation” used throughout the thesis and described on page 17. With this assumption

in mind, the following result is an immediate corollary of Theorem 6.8:

Theorem 6.9 Given any model of parallel computation M, and for any n ∈ N, n ≥ 1,

rt-PROCM(2n− 1) ⊂ rt-PROCM(2n) (strict inclusion).

That is, we have not only an infinite hierarchy rt-PROCPRAM, but such a result holds

for rt-PROCM as well, for any model of parallel computation M.

It should be noted that the languages PURSUITk, k ≥ 1, faithfully model the geometrical

variant of the problem. We chose this direction in order to preserve the clear and intuitive

support provided by the geometrical case. However, the notion of insertion point (that

moves after each insertion) is not necessary. It is immediate that the results in this chapter

hold even if the input is allowed to change (any number of) arbitrary indices within the

acceptable insertion zone at any time ci, i > 0.

6.4 On Practical Issues and Why the Hierarchy rt-PROC does not
Collapse

Questions could be raised regarding whether the infinite hierarchy developed in this chap-

ter contains any practically interesting problems. In addition, one may also wonder why

is the case that such a hierarchy does not collapse when standard simulation techniques

(of several processors by one) are used. We thus conclude this chapter by a discussion on

these two issues.

We address first the possible collapse of the hierarchy by simulation techniques. The

standard simulation of a parallel machine is applicable as long as the input is oblivious

CHAPTER 6. A STRONG INFINITE HIERARCHY. 94

to the machine that accepts it. Once the input is aware of the algorithm that drives the

machine (and vicious enough to take advantage of it), such a simulation is no longer be

applicable (because the input becomes aware that a simulation takes place as soon as this

happens). In particular, the real-time processing described by the languages PURSUITk,

k > 0, implies that

1. the input depends on the actions performed by the algorithm (the system is interac-

tive), and

2. the input reacts to the number of physical processors that are used by the algorithm.

We showed in fact that, in such a (time-sensitive and interactive) setting, no simula-

tion can collapse the hierarchy—in other words, simulation techniques are not necessarily

applicable in such environments.

As for the practicality of such a computational setting, we note that both Property 1 and

Property 2 do appear in practice. Indeed, algorithms whose input depends on the actions

performed by the algorithm are common for example in systems that control industrial pro-

cesses: Such a system receives input (from various sensors); based on the received data,

it then alters the state of the controlled process. Future input (from the same sensors)

depends on the state of the process and thus on the output produced in previous compu-

tational steps. This example clearly illustrates the existence of Property 1 in practice.

Following the same idea, this time in the processor hierarchy, the input depends on the

processing performed by the acceptor. Specifically, the way the “circle” is inspected deter-

mines which symbols from that circle can be changed by the input (formally, input words

that modify symbols outside the permitted locations are immediately rejected, as they do

not belong to the language). The way in which the permitted locations are established does

depend on the number of processors used by the acceptor (and the way those processors

inspect the circle).

One should note that the real-time task described by some PURSUITk language is at

CHAPTER 6. A STRONG INFINITE HIERARCHY. 95

the same time more complex and more restricted than algorithms that control industrial

processes. In particular, no industrial process cares about the structure of the computer

that controls it, and thus Property 2 on the page before in not applicable. However, such a

property does manifest itself in real-time operating systems. Indeed, it is likely that the (real-

time) operating system of a parallel machine will behave differently when the number

of processors it manages varies (scheduling, concurrency, and calibration of kernel loops

are just some processes that depend on the number of actual, physical processors driven

by the operating system). It is immediate that a real-time operating system is a real-time

computation itself, and thus it is a relevant example of processing for which the pursuit

hierarchy may be relevant.

Chapter 7

Complexity of Real Time II:
Logarithmic Space Computations are
Real Time

Summary

Based on the theory of timed ω-languages, we study (classical) languages that can be rec-

ognized in nondeterministic logarithmic space (NLOGSPACE), augmented with real-time

constraints (including but not limited to deadlines). The main result of this chapter is

Theorem 7.10 on page 108, showing that all such computations can be carried out success-

fully in parallel on the reconfigurable bus machine (RMBM), no matter how tight the time

constraints are (refer to page 18 for a definition of RMBM, its variants, and its properties).

Besides the main result, we also offer a tight characterization of constant time compu-

tations on RMBM. We show that constant time directed RMBMs have the same compu-

tational power as the directed reconfigurable networks, and that there is no need for such

powerful write conflict resolution rules as Priority or Common. Indeed, they do not add

computational power over the easily implementable Collision rule. We also find an inter-

esting gap result. Indeed, as far as constant time computations on RMBMs are concerned,

we show that a unitary bus width is enough. That is, a simple wire as bus will do for all

constant time computations on directed RMBM.

96

CHAPTER 7. LOGARITHMIC SPACE IS REAL TIME. 97

7.1 RMBM and NLOGSPACE Computations

In this section, we first show that the graph accessibility problem (GAP) can be solved

by a DRMBM in constant time. Then, we investigate the relation between RMBM and

NLOGSPACE computations. We show that directed RMBMs with polynomially bounded

resources and constant running time recognize exactly all the languages in NLOGSPACE.

Recall from Section 2.2 on page 16 that, in the Collision resolution rule for a CRCW RMBM

(CRCW RN, etc.), two values simultaneously written on a bus result in the placement of a

special collision value on that bus.

Definition 7.1 GAP1,n denotes be the following problem: Given a directed graph G =

(V, E), V = {1, 2, ..., n} (expressed, for example, by the (boolean) incidence matrix I), de-

termine whether vertex n is accessible from vertex 1. In general, the problem of determin-

ing whether vertex j is accessible from vertex i is denoted by GAPi, j.

Lemma 7.1 GAP1,n ∈ CRCW F-DRMBM((n2 − n)/2, n, 2). Furthermore, the F-DRMBM

family that solves GAP1,n uses the Collision resolution rule and has bus width 1.

Proof. The following RMBM algorithm is a variant of the algorithm that computes the

shortest path in a directed graph [67] (which is itself an adaptation of the algorithm for the

minimum spanning tree [87]). However, we are not interested in the length of an eventual

path, so that our construction requires considerably less resources.

For convenience, each processor is denoted by pi j, 1 ≤ i < j ≤ n. When we say that

some processor fuses buses k and l, we imply that this fusion is directional, such that a

signal placed on bus k is seen on bus l, but not vice versa. We assume that each processor

pi j knows the value of both Ii j and I ji, where I is the incidence matrix. Then, the algorithm

performs the following steps:

1. Each processor pi j, 1 ≤ i < j ≤ n, fuses buses i and j if and only if Ii j = True.

Simultaneously, pi j fuses buses j and i if and only if I ji = True.

CHAPTER 7. LOGARITHMIC SPACE IS REAL TIME. 98

2. p13 places a signal on bus 1, and p12 listens to bus n. p12 reports1 True if it receives

some signal (either the original one emitted by p13 or the signal corresponding to a

collision), and False otherwise.

Note that, even if only one processor writes on the buses, the algorithm cannot be

implemented on an exclusive-write RMBM, as the signal emitted by p13 may reach some

bus on more than one path. We must show that p12 reports true if and only if vertex n is

accessible from vertex 1. In fact, it can be easily proved by induction on the length of the

path from s to t that, for any s, t, 1 ≤ s, t ≤ n, a signal placed on bus s reaches bus t if and

only if vertex t is accessible from vertex s, and this completes the proof (just put s = 1 and

t = n). Indeed, both steps of the algorithm can be clearly performed in one machine cycle

each. As well, note that the content of the signal emitted by p13 is immaterial, so that a bus

width of 1 suffices.

Corollary 7.2 If the input graph G = (V, E) of GAP1,n is given by a list of vertices L instead of an

incidence matrix, then GAP1,n ∈ CRCW F-DRMBM(m, n, O(1)), where m = |E| and n = |V|.

Proof. Identical to the algorithm in the proof of Lemma 7.1 on the preceding page, except

that, at step 1 of this algorithm, processor pi j fuses buses i and j if and only if (i, j) ∈ L.

It is worth mentioning that the algorithm presented in [87] uses a CREW DRMBM

(as opposed to the CRCW F-DRMBM used in Lemma 7.1 on the page before and Corol-

lary 7.2). Furthermore, this algorithm computes the shortest path between two ver-

tices. Therefore, it implicitly computes GAP1,n. This lets us conclude that GAP1,n ∈
CREW DRMBM(2mn, n2, O(1)). However, in what follows, we will use the result based

on the CRCW F-DRMBM since, on one hand, it uses resources more efficiently, and, on

the other hand, we believe that a Collision conflict resolution rule is just as realistic as

exclusive write.
1In fact, neither p13 nor p12 have any special characteristics, and any pair of distinct processors will do.

CHAPTER 7. LOGARITHMIC SPACE IS REAL TIME. 99

Consider now some language L in NSPACE(log n). It follows that there exists a nondeter-

ministic Turing machine M = (K, Σ, δ, s0) that accepts L and uses O(log n) working space

(by abuse of notation, we call M an NSPACE(log n), or NLOGSPACE, Turing machine).

Without loss of generality, we consider that the working and input alphabet of M are both

Σ = {0, 1}. Let k be the number of states of M, that is, k = |K|. The transition function is

denoted by δ, δ : (K × Σ× Σ) → P((K ∪ {h})× (Σ ∪ {L, R})× {L, R, λ}), and the initial

state by s0 (recall that P(()Σ) stands for the powerset of Σ). For the sake of simplicity, we

consider that M has one working tape only (the extension for multiple working tapes is

immediate [45, 84]).

Recall from Section 2.1 on page 12 that poly(n) represent the upper bound for polyno-

mial functions of one variable n, that is, poly(n) = nO(1). As well, recall that a configuration

of M working on input x is defined as containing the current state, the content of its tapes,

and the head position on each tape. Denote such a configuration by (s, i, w, j), where s is

the state, i and j are the positions of the heads on input and working tape, respectively,

and w is the content of the working tape. Note that the content of the input tape is estab-

lished at the beginning of the computation (indeed, the input tape contains the input x)

and does not change. Therefore, the input tape does not change the configuration, except

for its head position.

Since M is nondeterministic, the set of possible configurations of M working on x forms

a directed graph (denote it by G(M, x) = (V, E)) as follows: V contains one vertex for each

and every possible configuration of M working on x, and (v1, v2) ∈ E if and only if the

configuration corresponding to v2 can be reached from the configuration corresponding to

v1 in one step of M (that is, if and only if v1 ` v2). In the following, we refer to both a

configuration and the vertex denoting that configuration in the associated graph simply

as “configuration,” since there exists a one to one correspondence between vertices and

configurations.

CHAPTER 7. LOGARITHMIC SPACE IS REAL TIME. 100

It is clear that x ∈ L if and only if some configuration (h, ih, wh, jh) is accessible in

G(M, x) from the initial configuration (s0, i0, w0, j0). One should also note that there are

poly(n) possible configurations of M. Indeed, for any configuration (s, i, w, j), i can take

n = |x| values. Furthermore, since |w| = O(log n), there are at most poly(n) possible

contents of the working tape, and j can take O(log n) values. Given that the set of states K

is fixed, the number of possible configurations is poly(n).

Therefore, for any language L ∈ NSPACE(log n) and for any x, determining whether

x ∈ L can be reduced to the problem of computing the graph accessibility problem

(GAP) for the graph G(M, x) = (V, E), where M is some Turing machine deciding L,

M ∈ NSPACE(log n). In fact, a stronger result is immediate: Given x, L, M, and G(M, x)

as above, we consider without loss of generality that the initial state is represented by

vertex 1 and the (unique) final state by vertex n in G(M, x). Then, any problem in

NSPACE(log n) can be reduced to GAP1,n. Indeed, we are interested only in the reach-

ability of vertex n (final state) from vertex 1 (initial state).

Lemma 7.3 Fix a language L ∈ NSPACE(log n). Let M = (K, Σ, δ, s0) be an NSPACE(log n)

Turing machine that accepts L. Then, given some word x, |x| = n, there exists a CREW F-

DRMBM algorithm that computes G(M, x) (as an incidence matrix) in O(1) time, and uses

poly(n) processors and poly(n) buses of width 1.

Proof. The configurations of G(M, x) do not depend on x, but only on M. Therefore, we

consider that these configurations are known in advance. That is, the set V of vertices of

G(M, x) is known beforehand, even if the set E of edges changes with x. In addition, the

transition function δ is known to all the processors.

Put n′ = |V| (n′ = poly(n)). Then, the RMBM algorithm uses (n + (n′2 − n′)/2) pro-

cessors, as follows: The first n processors, denoted by pi, 1 ≤ i ≤ n, contain the current

input x (in the sense that each pi contains xi, the i-th symbol of x). At the beginning of each

computational step, pi writes xi to bus i. Since xi ∈ {0, 1}, a bus width of 1 is enough.

CHAPTER 7. LOGARITHMIC SPACE IS REAL TIME. 101

We shall refer to the remaining (n′2 − n′)/2 processors as pi j, 1 ≤ i < j ≤ n′. Initially,

a processor pi j holds a false initial value for the elements Ii j and I ji of the incidence matrix

I. Then, each pi j considers the (potential) edges (vi, v j) and (v j, vi) corresponding to Ii j

and I ji, respectively. If such edge(s) exist, pi j writes True to Ii j and/or I ji as appropriate.

Otherwise, it does nothing. There is no interprocessor communication between processors

pi j, 1 ≤ i < j ≤ n′, thus any RMBM model is able to carry on this computation.

It remains to show that determining whether there exists an edge (vi, v j) is computable

in constant time by one processor (pi j or p ji). Clearly, given a configuration vi, pi j can com-

pute in constant time any configuration vl accessible in one step from vi (if vi = (s, z, w, y),

then vl is obtained by possibly changing the state s, incrementing, decrementing or keeping

z and/or y unchanged, and changing at most one symbol from w, everything according

to δ). Recall now that δ : (K× Σ) → P((K ∪ {h})× (Σ ∪ {L, R})× {L, R}), and note that

|P((K ∪ {h})× (Σ ∪ {L, R, λ})× {L, R})| = O(2k) (since |Σ| = 2, and |K| = k). That is,

the number of configurations that are accessible from some given configuration is constant

(O(2k)). In other words, pi j computes (in constant time) a constant number (at most O(2k))

of possible configurations. Note that, in addition, pi j can hold s and w in two of its regis-

ters, and it has access to any symbol xi of the input by simply reading bus i. After this, pi j

can decide whether v j is accessible from vi in constant time by simply checking the mem-

bership of v j in the set of the newly computed configurations. It follows that pi j computes

Ii j and I ji in constant time, and this completes the proof.

Some comments on the RMBM algorithm developed in the proof of Lemma 7.3 are in

order. One can note that the constant running time of this algorithm may be quite large

(O(2k); furthermore it depends on the number of states in the initial Turing machine). On

the other hand, the subsequent use of Lemma 7.3 will emphasize the need for the RMBM

algorithm to be as fast as possible. Thus, even if theoretically sound, the dependency of

the running time on the number of states is not a desirable feature.

CHAPTER 7. LOGARITHMIC SPACE IS REAL TIME. 102

However, given some nondeterministic Turing machine M = (K, Σ, δ, s0), one can

build an equivalent Turing machine M′ = (K′, Σ′, δ′, s0) such that, for any s2 = δ′(s1),

|s2| ≤ 2. Indeed, take some state s ∈ K such that S′ = δ(s,α, β) for some α, β ∈ Σ,

and |S′| > 2. Then, introduce a set Ks of new, distinct states (which do not change the

tapes’ content or head positions) to K′, such that the graph corresponding to δ′ restricted

to Ks ∪ {s} is a binary tree rooted at s, with exactly all the terminal nodes in S′, and with

all the nonterminals (except the root) from Ks. Clearly, M′ is equivalent to M, in the sense

that they accept the same language and use the same amount of space.

One can now build the algorithm A from Lemma 7.3 based on M′ instead of M. Then,

although G(M, x) may grow (still, |V| remains O(n)), the running time of A is now upper

bounded by a very small constant, and this constant no longer depends on the number of

states of M (or M′ for that matter).

From Lemma 7.1 on page 97 and Lemma 7.3 on page 100, it follows that

Lemma 7.4 NLOGSPACE ⊆ CRCW F-DRMBM(poly(n), poly(n), O(1)), with the Collision

resolution rule and bus width 1.

Proof. Given some language L in NSPACE(log n), let M be the (NSPACE(log n)) Turing

machine accepting L. For any input x, the F-DRMBM algorithm that accepts L works

as follows: Using Lemma 7.3, it obtains the graph G(M, x) of the configurations of M

working on x (by computing in effect the incidence matrix I corresponding to G(M, x)).

Then, it applies the algorithm from Lemma 7.1 in order to determine whether vertex n

(halting/accepting state) is accessible from vertex 1 (initial state) in G(M, x), and accepts

or rejects x, accordingly. In addition, note that the values Ii j and I ji computed by (and

stored at) pi j in the algorithm from Lemma 7.3 are in the right place as input for pi j in

the algorithm from Lemma 7.1. It is immediate given the aforementioned lemmas that the

resulting algorithm accepts L and uses no more than poly(n) processors and poly(n) buses

of constant width.

CHAPTER 7. LOGARITHMIC SPACE IS REAL TIME. 103

Conforming to Lemma 7.4, any NLOGSPACE language can be accepted in constant

time by a directed RMBM. In fact, the relation between directed RMBMs and NLOGSPACE

languages is even stronger:

Lemma 7.5 CRCW DRMBM(poly(n), poly(n), O(1)) ⊆ NLOGSPACE, for any write con-

flict resolution rule and any bus width.

Proof. Let R be some RMBM in CRCW DRMBM(poly(n), poly(n), O(1)) performing

step d of its computation (d ≤ O(1)). Suppose that there exists a Turing machine Md

that generates the description of R after step d using O(log n) space. Then, by standard

techniques [45], one can modify Md (obtaining M′
d) such that M′

d receives n and some i,

1 ≤ i ≤ n, and outputs the (O(log n) long) description for processor i instead of the whole

description. We establish the existence of Md (and thus M′
d) by induction over d, and thus

we complete the proof.

Clearly, M0 exists by the definition of a (uniform) RMBM family. We now assume the

existence of Md−1 (and thus M′
d−1) and show how Md is constructed. For each processor pi

and for bus k read by pi during step d, Md performs (sequentially) the following computa-

tion: Md maintains two words b and ρ, initially empty. For every p j, 1 ≤ j ≤ poly(n), Md

determines whether p j writes on bus k. This implies the computation of GAPj,i. GAPj,i is

clearly computable in nondeterministic O(log n) space (it is a simplification of the Graph

Accessibility Problem, which is NLOGSPACE-complete [84]; the local configurations of

fused and segmented buses at each processor are obtained by calls to M′
d−1). If p j writes

on bus k, then Md uses M′
d−1 to determine the value v written by p j, and updates b and

ρ as follows: If b is empty, then it is set to v (p j is currently the only processor that writes

something to bus k), and ρ is set to j. Otherwise,

1. If R uses the Collision resolution rule, the collision signal is immediately placed in b.

The value of ρ is immaterial.

CHAPTER 7. LOGARITHMIC SPACE IS REAL TIME. 104

2. When the Common rule is used, Md compares b and v. If they are different, the input

is rejected immediately. The value of ρ is again immaterial.

3. If the conflict resolution rule is Priority, ρ and j are compared; if the latter denotes a

processor with a larger priority, then b is set to v and ρ is set to j. Otherwise, neither

b nor ρ are modified. The Arbitrary rule is handled similarly, except that the decision

whether to modify b and ρ is made arbitrarily instead of being based on the values

of j and ρ.

4. If R uses the Combining resolution rule with ◦ as combining operation, b is set to the

result of b ◦ v. The operation can be performed in O(log n) space, since the length of

both b and v is O(log n), and ◦ is computable in linear space. As well, the operation

◦ is associative. It follows that, once all the processors p j have been considered, the

content of b is the correct combination of all the values written on bus k.

Once the content of bus k has been determined, the configuration of pi is updated

accordingly, b and ρ are reset to the empty word, and the same computation is performed

for the next bus read by pi or for the next processor.

The space required by Md is the space for the configuration of pi itself, plus the space

for the configuration of one other processor, plus the space required by b, v, and ρ. The

latter three values cannot be of size larger than O(log n) (since the word size of any pro-

cessor is O(log n) and the number of processors is poly(n)), and the configurations clearly

take O(log n) space. Thus, the whole computation of Md takes O(log n) space, and the

induction is complete.

Lemma 7.4 on page 102 and Lemma 7.5 on the page before imply the following results:

Theorem 7.6 CRCW DRMBM(poly(n), poly(n), O(1)) = NLOGSPACE, for any write con-

flict resolution rule and any bus width. For any write conflict resolution rule and any bus width,

CRCW DRMBM(poly(n), poly(n), O(1)) = CRCW F-DRMBM(poly(n), poly(n), O(1))

with the Collision resolution rule and bus width 1.

CHAPTER 7. LOGARITHMIC SPACE IS REAL TIME. 105

Corollary 7.7 DRMBM(poly(n), poly(n), O(1)) = DRN(poly(n), O(1)).

Proof. Immediate from Theorem 7.6, since NLOGSPACE = DRN(poly(n), O(1)) [19].

The following is a generalization of Theorem 7.6:

Corollary 7.8 Consider a problem π solvable in constant time by some (directed or nondirected)

RMBM family using poly(n) processors and poly(n) buses. For any such a problem π , it holds

that π ∈ CRCW F-DRMBM(poly(n), poly(n), O(1)) with the Collision resolution rule and bus

width 1.

Proof. From Theorem 7.6 and Observation 1 on page 22.

We note that the power of (nondirected) RMBMs has been investigated in [88], where

it is shown that nondirected RMBMs are exactly as powerful as nondirected RNs, and that

the Collision, Common, Arbitrary, and Priority rules are equivalent in power. In addition,

RNs (and thus RMBMs) solve in constant time exactly all the problems in LOGSPACE [19].

By Theorem 7.6 on the page before and Corollary 7.7 we extend these results to the directed

variants of RMBMs and RNs running in constant time. As expected, DRMBMs, DRNs, and

logarithmic space bounded nondeterministic Turing machines are found to have the same

computational power. Corollary 7.8 shows that, again, the Collision, Common, Arbitrary,

and Priority rules are equivalent to each other. In addition though, we show2 in Corol-

lary 7.8 that a resolution rule apparently much more powerful than the others, namely

Combining, adds no computational power either. Then, for constant time computations

on DRMBM, bus width does not matter; any problem can be solved using buses of unitary

width. Finally, as is the case of (nondirected) RMBMs, it follows from Corollary 7.8 that

segmenting buses does not add computational power over fusing buses.

2Also see the proof of Lemma 7.5 on page 103.

CHAPTER 7. LOGARITHMIC SPACE IS REAL TIME. 106

7.2 Small Space Computations Are Real-Time

We have now all the necessary ingredients to state the first result linking real time with

logarithmic space computations. First though, we have to make an additional assumption:

We henceforth consider that the deadlines imposed on real-time computations are reason-

ably large compared to the processor clock frequency. We believe that this is a reasonable

assumption. Indeed, nowadays processors operate at frequencies around (and sometimes

exceeding) 1GHz; still, we are not aware of any real-time application that requires dead-

lines measured in nanoseconds.

We have shown in Section 5.1 on page 59 that the potential existence of a deadline can

be modeled as a well-behaved timed ω-word (denote such a word by Wd). Recall that Wd

has the following semantics: The special symbol w is present whenever the current time

does not exceed the deadline; if the deadline passed, then the symbols that arrive as input

are all d. If the computation is completed at a moment in which the input symbol is w,

then it has met the associated deadline; otherwise, the deadline has passed.

With this definition of Wd, and for any problem π ∈ NSPACE(log n), let

πτ = { (σσd, τ) | σ is some input for π , σd = detime(Wd) for some
timed word Wd modeling a deadline, and τ is some
well-behaved time sequence with τ1 = τ2 = · · · = τ|σ | }.

In other words, πτ represents the problem π in the (potential) presence of deadlines.

Then, the relation between NLOGSPACE and real-time computations can be informally

stated as follows: Suppose one has a (possibly infinite) set of inputs for a collection of

problems in NLOGSPACE. We impose some (any) deadline for each of these inputs, and

we feed them at various time moments to some machine. If that machine happens to be

a CRCW F-RMBM, then it is able to handle the input successfully. Formally, given Theo-

rem 7.6 on page 104 (and noting that the size complexity of an RMBM with poly(n) proces-

sors and poly(n) buses is poly(n)), we have the following relation linking NLOGSPACE

with real-time computations.

CHAPTER 7. LOGARITHMIC SPACE IS REAL TIME. 107

Theorem 7.9
⋃ (

∏π∈NSPACE(log n) πτ

)
⊆ rt-PROCCRCW F-DRMBM(poly(n)), where n is the

maximum input size for problems π .

Proof. All the processing implied by Theorem 7.6 on page 104 (namely, the algorithms

from Lemmas 7.1 and 7.3) takes very little (and constant) time, and thus accommodates

any reasonable (in the sense of the above assumption) time sequence τ associated with the

computation.

In Theorem 7.9, we added deadlines (that is, real-time constraints) to problems. We

conclude this chapter by considering the reversed problem, namely how can one eliminate

the real-time qualifier from the specification of some problem. This will allow us to offer

a more concise formulation of Theorem 7.9, and will also form a basis for strengthening

Theorem 7.9, as we shall see in Chapter 8 on page 109.

Analyzing the form of the word Wd (see Section 5.1 on page 59) modeling deadlines

offers the clue. Indeed, one can notice that, from some time on, the symbols from Wd no

longer represent the input. Instead, they consists of symbols w and d that model the timing

constraints imposed on the computation. Similarly, in a real-time problem for which the

input is virtually endless, a prefix of that input represents the same problem, except that in

the case of such a prefix, the input “stops coming” at some time. This is the most general

restriction to a classical environment one can model, since the input is finite in such an

environment:

Definition 7.2 Consider some well-behaved timed ω-language L. For some (σ , τ) ∈ L,

i > 0 is a progression point if and only if3 τi 6= τi+1.

Let Ls = {σ ′| there exists some finite progression point n such that (σ , τ) ∈ L and

σ ′ = σ1...n} (each word in Ls is constructed by taking a word from L, restricting its length

to some finite n, and discarding the time sequence). If, for some complexity class C, Ls ∈ C,

then we say that L ∈ C/rt (L is the real-time counterpart of Ls; alternatively, Ls solves the

3One does not want to split a bunch of symbols arriving at the same time, since such a bunch often repre-
sents a nondivisible piece of the input. . .

CHAPTER 7. LOGARITHMIC SPACE IS REAL TIME. 108

same problem as L, but without real-time constraints, and thus Ls is the static version of L;

by abuse of notation, we also say that L = Ls/rt).

Definition 7.2 allows us to study the pursuit problem in the context of Theorem 7.9 on

the preceding page (as we shall do in Chapter 8 on the next page). As promised, it also

offers a more concise formulation of Theorem 7.9:

Theorem 7.10 NSPACE/rt(log n) ⊆ rt-PROCCRCW F-DRMBM(poly(n)).

It is immediate that the two formulations are equivalent, while the one expressed by

Theorem 7.10 is easier to understand.

Chapter 8

Complexity of Real Time III: Real
Time Computations are Logarithmic
Space?

Summary

In some sense, one may argue that the inclusion relation from Theorem 7.10 on the pre-

ceding page is in fact an equality, conforming to Theorem 7.6 on page 104. Indeed,

NLOGSPACE computations are the only computations in the classical sense that can be

performed in constant time by DRMBMs, no matter how many processors and buses are

used; thus, given any deadline (in effect imposing a constant upper bound on the running

time), it follows that no computation outside NLOGSPACE can be successfully carried out.

Still, there might exist real-time computations (not exhibiting explicit deadlines and

thus not necessarily having constant time constraints) that are not in NLOGSPACE but

can still be performed within the given resource bounds (that is, a polynomial number

of processors and buses). We now study this issue. In other words, we ask whether it

holds that any real-time problem is in NLOGSPACE once real-time constraints are elimi-

nated, and thus the inclusion from Theorem 7.10 is actually an equality. We present strong

evidence that this is in fact the case.

Indeed, one candidate for such computations can be the family of timed ω-languages

109

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 110

PURSUITk, k ≥ 1, presented in Chapter 6 on page 78. Those languages, modeling the k-

dimensional version of the pursuit and evasion on a ring problem, do not feature explicit

deadlines. The real-time qualifier is instead given by the “movements of the pursuee,”

that is, by the real-time input arrival. We show in Section 8.1 on the next page that the non-

real-time versions of languages PURSUITk are solvable in deterministic logarithmic space,

even if these languages are quite hard to solve in real time (recall that they form an infinite

hierarchy with respect to the number of processors).

Another paradigm pertaining to the same class of real-time problems (without explicit

deadlines) is the data-accumulating paradigm. In Section 8.2 on page 113 we give further con-

sideration to d-algorithms (introduced in Section 2.3.1 on page 23), and we show first that

d-algorithms are nothing more than on-line algorithms, over which some real-time con-

straints are imposed. Since on-line algorithms are a restricted case of general algorithms,

this is already good evidence that successful d-algorithms are based on NLOGSPACE com-

putations according to the results from Chapter 7 on page 96. We can, however, go even

further, showing that the real-time input constraints of a d-algorithm impose in effect ex-

plicit output deadlines. Thus, we are closer to showing that Theorem 7.10 on page 108 can

be strengthened.

Do real-time input restrictions impose deadlines on other computations than d-

algorithms (which are of quite reduced relevance in practice)? Indeed, they do. We con-

clude this chapter with Section 8.3 on page 122, where we consider correcting algorithms

(introduced in Section 2.3.2 on page 28), a more realistic class of real-time computations

(indeed, one of the most general settings for the real-time input arrival paradigm). We

show that they have the same properties as d-algorithms. In particular, this implies that

real-time input arrival implies explicit output deadlines.

All these results allow us to state the following:

Claim 2 NSPACE/rt(log n) = rt-PROCCRCW F-DRMBM(poly(n)).

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 111

In other words, we conjecture that NLOGSPACE contains exactly all computations that

can be carried out in real time on RMBM.

Theorem 7.10 on page 108 and Claim 2 are stated for RMBM computations. However,

RMBM is a feasible model [20, 44, 88], so we feel in fact confident in dropping the “on

RMBM” qualifier from the statement above, claiming that, in general, NLOGSPACE con-

tains exactly all computations that can be carried out in real time.

According to the current body of knowledge regarding the power of various computa-

tional models, it appears that the power offered by reconfigurable buses is needed in order

to establish Theorem 7.10 and Claim 2. However, similar results may hold for other models

of parallel computation. We address this issue in Section 8.4 on page 129, where we offer

a generic characterization of minimum requirements for models on which Theorem 7.10

and Claim 2 hold.

8.1 Non-Real-Time Pursuit Is Easy

We show now that pursuing something is easy outside the real-time paradigm: Recall from

Chapter 6 on page 78 that PURSUITk denotes the “k-dimensional version” of the pursuit

and evasion problem. Then1,

Theorem 8.1 For any k > 0, PURSUITk ∈ SPACE/rt(log n).

Proof. Let C be a class such that PURSUITk ∈ C/rt. We shall show that C = LOGSPACE

and we are done. According to Definition 7.2 on page 107, a word ws in the static version

of PURSUITk has the following structure: Denote |ws| by n; then, ws contains

• An initial word w0 ∈ {a, b}r for some r ≤ n; this is the initial configuration, which

the pursuee modifies as time passes.

1Recall from Definition 7.2 on page 107 that, for some complexity class C, C/rt denotes the class of problems
from C in the presence of real-time constraints.

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 112

• Some number m of moves by the pursuee (denoted by some words wi ∈ Lci, 1 ≤ i ≤
m); such a move in effect changes a maximum of p symbols from w0, p < r.

It is clear that r, p, m ≤ n, since n is the length of the whole input. Consider now

a deterministic Turing machine M accepting the static version of PURSUITk. In order to

determine the number of a’s and b’s in w0, M simply keeps two counters Ca and Cb, one

for a’s and the other for b’s, respectively. As the input is scanned, the two counters are

incremented accordingly.

Once the end of w0 is reached, M performs the following step for each wi, 1 ≤ i ≤ m:

M identifies that portion of w0 which is changed by wi. Then, M scans this portion, decre-

menting Ca or Cb for each a or b it encounters during this procedure. Finally, M identifies

that portion of wi that changes w0 and scans it, incrementing Ca and/or Cb accordingly.

It is clear that, at the end of step m of such a computation, Ca and Cb contain precisely

the number of a’s and b’s, respectively, that are present in w0 as it is changed by all wi,

1 ≤ i ≤ m. Therefore, when the end of the input is reached, M simply compares Ca and Cb

and accepts the input if and only if they are identical.

Clearly, Ca and Cb take log r space each (since there are at most r a’s and at most r b’s in

w0). The identification procedure mentioned above uses two pairs of counters, each pair

delimiting the portions of interest in w0 and the current wi, respectively. Each of these

four counters holds an index in the current input, hence it can be stored in log n space.

Finally, setting these counters involves simple arithmetic operations on indices (that is,

numbers bounded above by n), hence they are computable in LOGSPACE. Therefore, the

space required by the whole computation is O(log n), as desired.

Theorem 8.1 is an interesting result. Indeed, even if PURSUITk is a problem that re-

quires a lot of computational effort (in particular, it cannot be solved at all if less than 2k

processors are available according to Theorem 6.9 on page 93), it becomes a very simple

problem (not only in NLOGSPACE, but even in LOGSPACE) once the real-time constraints

are eliminated. Thus, Theorem 8.1 justifies Claim 2 on page 110. We can offer even stronger

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 113

evidence for this conjecture though.

8.2 The Characterization of D-Algorithms

Recall from Section 2.3 on page 23 that a d-algorithm works on an input considered as a

virtually endless stream. The computation terminates when all the currently arrived data

have been processed before another datum arrives. In addition, the arrival rate of the

input data is given by some function φ(n, t) (called the data arrival law), where n denotes

the amount of data that is available beforehand, and t denotes the time. The family of

arrival laws most commonly used as example was introduced by Relation 2.1 on page 24:

φ(n, t) = n + knγtβ

where k, γ, and β are positive constants. Any successful computation of a d-algorithm

terminates in finite time.

8.2.1 D-Algorithms Are On-Line

The notion of on-line algorithm was introduced in Section 3.2 on page 38. In essence, such

an algorithm (or Turing machine) processes each input datum without looking ahead (by

contrast to an off-line algorithm). From the above informal characterization for the on-

line class, one can already identify a strong similarity between on-line algorithms and

d-algorithms. In this section we formally show that these two classes are in fact identical.

Recall that on-line algorithms were formally defined (in terms of Turing machines) in

Item 1 of Definition 3.1 on page 38, which is, to our knowledge, the only formal definition

of this class. As well, recall that Definition 2.4 on page 27 provides a Turing machine model

for d-algorithms. The remainder of this section is based on these two definitions.

As in Section 2.3.1 on page 23, we denote by Di the i-th datum in the input stream. The

ordering is naturally defined as follows: D j is examined before Di is examined for the first

time if and only if i > j. As well, we say that an algorithm A [Turing machine M] is able to

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 114

terminate at point k if, before visiting any Dk′ , k′ > k, it has built a solution identical to the

solution returned by A [M] when working on the input set D1, . . . , Dk. It is immediate that

an example of termination point for some d-algorithm is N (the amount of data processed

by that d-algorithm).

Lemma 8.2 A Turing machine M as in Definition 2.4 on page 27, working on any sufficiently

large input data set of size Nω, is able to terminate at some point N1 < Nω, N1 being constant

with respect to Nω, if and only if it is able to terminate at two finite points N1 and N2 strictly

smaller than Nω and constant with respect to Nω.

Proof. The “if” part is immediate. We provide a proof for the “only if” part.

When M terminates at point N1 it must have reached the special state h′. Obviously,

this happened after some constant number of steps (since both K and Σ are of constant

size, and the number of tape cells visited is N1 which is constant as well). Therefore, we

have a cycle, from h′ (the initial state) back to h′, after a number of steps bounded by some

constant ζ . Assume now that M chooses not to halt at the point N1 and instead goes to

another state q. The state h′ is accessible from q (otherwise, M won’t terminate even after

processing all the Nω input data) and, since M already reached h′ for an arbitrary input,

it will reach it again, after a number of steps bounded by ζ and after visiting a constant

number of new tape cells, because M is deterministic. This point is the point N2 whose

existence we want to prove.

Theorem 8.3 A Turing machine M as in Definition 2.4 on page 27, working on any input data

set of size Nω, where Nω tends to infinity, is able to terminate at some finite point N1 if and only

if it is able to terminate at all of the points in a countably infinite set S ⊆ {1, 2, . . . , Nω}, where S

has the following properties: (a) the least element of S is upper bounded by a finite constant ζ , and

(b) the distance between any two consecutive elements in S is upper bounded by ζ .

Proof. Again, the “if” part is immediate. The “only if” part is easily proved by induction

over the size of S, using Lemma 8.2.

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 115

For any alphabet X and positive integer y, let Xy be the set of all the words of length

y over the alphabet X. Given a constant ζ , one can compact a Turing machine’s tape by

simply considering Σζ ∪{#}, where # is the blank symbol, as the tape alphabet instead of Σ,

then “folding” each sequence of ζ non-blank tape cells into one cell, and finally modifying

the function δ accordingly (see for example the proof given in [61] of the fact that a k-

tape Turing machine can be simulated by a one-tape Turing machine). We have thus the

following corollary:

Corollary 8.4 A Turing machine M as in Definition 2.4 on page 27, working on any input data

set of size Nω, where Nω tends to infinity, is able to terminate at some finite point N1 if and only if

it is able to terminate at all of the points in the set {1, 2, . . . , Nω}.

Corollary 8.4 and Item 1 of Definition 3.1 on page 38 establish the main result of this

section (D and O denote the classes of d-algorithms and on-line algorithms, respectively):

Theorem 8.5 D = O.

Proof. Let us take a closer look at our model from Definition 2.4 on page 27. Let M

be a Turing machine that conforms to this definition. Then, it is easy to build an on-line

Turing machine M′ such that M′ performs the same computation as M: just make h′ the

only polling state of M′, and modify the transition function of M such that h′ lead to h

in one step if and only if the end of the input is reached. Clearly M′ is deterministic and

performs the same computation as M, except that it halts only at the end of the input. Note

that Corollary 8.4 implies that M does not need to move its head on the left on the input

tape. The reverse transformation (that is, the transformation of an on-line Turing machine

to a Turing machine conforming to Definition 2.4) is analogous, except that new states may

need to be added.

The above argument proves the inclusion D ⊆ O. M’s nondeterministic choice of

halting or continuing to work (modeled by the state h′) should be viewed as the decision

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 116

made conforming to the first item in Definition 2.1 on page 23 (that is, whether no new

data arrived during the current computation). However, when showing how to transform

M into an on-line Turing machine, we lost this feature (the on-line Turing machine halts at

the end of the input only). Hence, we also proved O ⊆ D, except that the second point of

Definition 2.1 is not accounted for. Therefore, in order to complete the proof, we have to

show that, for any on-line algorithm A and any size n of the initial data set, there is a data

arrival law φ such that, when working on a data-accumulating input set, A terminates in

finite time, and considers at least n + 1 data.

Let the complexity of A be C(n). In general, C(n) depends on the actual values of the

input data. For any positive integer n1, denote by t1 a lower bound on C(n1), and let t2

be an upper bound on C(n1 + 1), for any possible input data sets of size n1 and n1 + 1,

respectively. It is easy to build a function φ(n, t), strictly increasing with respect to its

second argument, such that φ(n1, 0) = n1, φ(n1, t1) = n1 + 1.1, and φ(n1, t2) = n1 + 1.5

(for example, this could be done by interpolation). Then, the behavior of A working on

an initial data set of size n1, for any value of n1, and under the data arrival law φ clearly

satisfies the requirements stated in the second item of Definition 2.1.

8.2.2 Real-Time Input Imposes Deadlines

We continue our investigation into the computational power of data-accumulating algo-

rithms. We found that these algorithms are in effect on-line algorithms. We further limit

their computational power by showing that deadlines are implicitly imposed on their run-

ning time. It has been shown [63] that, if the data arrive fast enough, then a successful algo-

rithm (i.e., one that terminates) must have a running time upper bounded by a constant;

when the running time exceeds that constant, the algorithm never terminates. Our results

indicate that the qualifier “fast enough” is not necessary, and a constant upper bound for

the running time exists for any polynomial data arrival law, and for any (parallel of sequen-

tial) d-algorithm. This is a negative, yet important result as it establishes a limit that was

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 117

not previously known. Such a limit, however, is consistent with the conjectured inclusion

of real-time problems in NLOGSPACE (Claim 2 on page 110).

We begin by studying sorting d-algorithms, introduced in Example 2.1 on page 25.

Note that a similar problem is investigated in [63], but there the result is a search tree.

Conceivably, there exist applications working in real time on large sequences of data for

which the O(log n) access time to the elements in a search tree is not acceptable. Therefore,

the sorting algorithms discussed here output an array of sorted elements (the access time

is thus O(1)). Henceforth, we refer to such processing as sorting on a linear structure (or

simply sorting when there is no ambiguity). For comparison, we use an optimal static

sorting algorithm whose running time is Θ(n log n) [89].

By definition, data accumulates as the computation proceeds. Generally, we consider

that the incoming data are buffered until some amount q is reached, and then the buffered

data are inserted into the already sorted sequence (for the non-buffered case simply set q

to 1). The time complexity of such an operation is given by the following lemma.

Lemma 8.6 Let the length of the already sorted sequence be l. Then, the time complexity of insert-

ing q new elements into the sorted sequence is Θ(q log q + l), for any q and l such that either q = 1

or l ≥ (q log q)/(q− 1).

Proof. The upper bound is immediate. For the lower bound, we have the following:

Supposing that the distance between the insertion point of some element and the end of

the buffer is Ω(l) (the general case), the time required for inserting a datum into some

sorted sequence is Ω(l). If the newly arrived data are not sorted, then one should insert

them into the buffer one by one. Therefore, the insertion time for the whole sequence is

Ω(ql). On the other hand, the number of operations needed to sort q data is Ω(q log q)

[89], while merging the sorted sequences requires Ω(q + l) operations [89].

We did not consider the case in which more than q elements come before the processing

of the already arrived data is finished. However, this case is equivalent to the one in

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 118

which the data arrive too fast and the d-algorithm never stops. Indeed, as seen below,

the necessary condition for the algorithm to terminate in finite time given by Relation 8.1

covers this case.

Let tq be the time in which a buffer of size q is filled. At some time tx, when the buffer

is filled and is ready to be inserted, the length of the already sorted sequence will be l =

n + knγ(tβx − tβq), because all the arrived data have been inserted, except the data which

are in the buffer (otherwise, some elements are lost). We will consider for simplicity that

β = 1, but similar results can be obtained for other values as well. In this context, the

time interval between two arrivals is dt = 1/knγ. Suppose that the algorithm stops at

time t. This means that, at time t, all the buffered data have been inserted before another

datum arrives. Thus, the time required to insert the buffer (given by Lemma 8.6 on the

page before) should be no larger than dt, i.e.,

dt ≥ q log q + n + knγ(t− tq). (8.1)

Considering the data arrival law of Relation 2.1 on page 24, the time tq in which the

buffer is filled is given by q = knγtβq . Then, simple calculations let us derive the following

bound on the computation time:

t ≤ 1
(knγ)2 +

1
knγ

q(1− log q)− n
knγ

. (8.2)

This imposes a limit on the running time of any sequential sorting d-algorithm that

terminates for the polynomial data arrival law given by Relation 2.1. Henceforth, the right-

hand side of Relation 8.2 will be denoted by t′B
2. We are now ready to determine the

complexity of sorting on a linear structure.

Theorem 8.7 Under the polynomial data arrival law given by Relation 2.1 on page 24, the running

time of any RAM d-algorithm for sorting on a linear structure is Θ(N2).

2This notation was chosen in order to be consistent with the notation used in [63]. There, tB denotes an
upper bound on the running time. Obviously, Relation 8.2 also defines an upper bound.

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 119

Proof. Assume first that q is constant with respect to the running time (however, if it is a

function of n, then the proof is not affected). By Lemma 8.6 on page 117, the time required

to insert the q elements from the buffer is Θ(q log q + l), where l is the number of already

sorted elements. This time is Θ(l), since q is constant. Thus, the total time required for

sorting N elements is Θ(∑N/q
l=n ql) = Θ(N2), as desired, since l increases by q each time a

new buffer is inserted.

Assume now that the size q of the buffer varies with time. We have ∂t′B
∂t = − 1

knγ log q ∂q
∂t .

Obviously, q ≥ 1 and t′B > 0 (otherwise, the algorithm never terminates). If there is some

constant (with respect to the time) Q such that q ≤ Q everywhere, then the relation derived

for constant buffer size holds (as q may then be approximated by Q and the rate of growth

does not change). Therefore, it is enough to consider the case of q being an increasing

function. Then, ∂q
∂t > 0, and this implies ∂t′B

∂t < 0, because log q > 0 for q > 1. That is,

t′B is a decreasing function. Since t′B(0) is finite, there exists some Q such that t′B(q) ≤ 0,

for all q ≥ Q. By Relation 8.2 on the page before, the termination time of the algorithm is

less than t′B. Therefore, when q ≥ Q, the upper limit for the termination time is negative,

which means that the algorithm never stops. Thus the values q for which the algorithm

terminates are bounded again and we are in the case covered by constant buffer size.

Note that a side consequence of the proof of Theorem 8.7 is that the best value for

the buffer size q is the minimal possible, i.e., 1, because t′B is a decreasing function with

respect to q. In other words, there is no reason to buffer data; it is better to insert each

arrived datum in linear time. Hence, we will consider q = 1. Second, the time required to

insert one element (q = 1) into the already sorted sequence is cl, for some constant c. The

expression for t′B becomes in this case t′B = 1
c(knγ)2 − n

knγ .

We have considered β = 1. This implies that the product αβ is larger than 1, and

the existence of a limit on the running time in this case was established in [63]. More

interesting is the situation where β ≤ 1/2, for αβ ≤ 1. Under these conditions, no limit on

the running time is known. We now study this case.

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 120

Theorem 8.8 For the polynomial data arrival law given by Relation 2.1 on page 24, if a sorting

RAM d-algorithm terminates, then its running time is upper bounded by a constant T that does

not depend on n.

Proof. We have the restriction γ = 1 for easier calculations. The time dt after which

a new datum arrives is given by 1 = knγ((t + dt)β − tβ), for some moment t. That is,

(t + dt)β − tβ = 1/knγ. On the other hand, Relation 8.1 on page 118 in the general case

becomes dt ≥ q log q + n + knγ(tβ − q/knγ). From these two relations, 1/knγ ≥ (q(log q−
1) + n + knγtβ + t)β − tβ. In particular, for γ = 1,

1
kn
≥ (q(log q− 1) + n + kntβ + t)β − tβ. (8.3)

The complexity of the sorting algorithm is O(N2) by Theorem 8.7 on page 118. That is,

for γ = 1, n = t1/2/c(1 + ktβ). By substituting this value in Relation 8.3 and manipulating

the obtained expression,

qc
k
≥ b(t)× a(t). (8.4)

where a(t) = (q(log q − 1) + t1/2

c + t)β − tβ and b(t) = t1/2/(1 + ktβ). Then, ∂b(t)
∂t =

t−1/2

(1+ktβ)2 (1/2 + k(1/2−β)tβ), and hence, for β ≤ 1/2, ∂b(t)
∂t > 0. That is, b(t) is an increasing

function. Analogously, a(t) is an increasing function as well:

∂a(t)
∂t

= β

(
t−1/2

c
+ 1

) (
q(log q− 1) +

t1/2

c
+ t

)β−1

−βtβ−1

> β

(
q(log q− 1) +

t1/2

c
+ t

)β−1

− tβ−1

 [because t−1/2/c > 0]

> 0 [because q(log q− 1) + t1/2/c > 0 for large enough t].

Therefore, b(t) × a(t) is increasing. Moreover, it is easy to see that, for β < 1/2,

limt→ω b(t) = ω , and limt→ω a(t) > 0. Therefore, limt→ω b(t)× a(t) = ω for β < 1/2. For

β = 1/2, limt→ωb(t) = 1/k, and, for large enough t, a(t) ≥ t1/8 and thus limt→ωa(t) = ω.

Then again, limt→ω b(t)× a(t) = ω. Since b(t)× a(t) is an increasing function and its limit

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 121

is infinite, there exists some finite T such that b(t)× a(t) > qc
k for any t > T. Then, such a

t larger than T will contradict the necessary condition for algorithm termination given by

Relation 8.4 on the page before. Hence, T is an upper bound for the running time and this

completes the proof.

Note that the theorem implicitly gives an upper bound for the maximum amount of

data that can be processed, because this amount is given by N = n + knγtβ and its upper

bound is obviously n + knγTβ. We contradict by Theorem 8.8 the results derived in [63],

where it is claimed that such a bound does not exist for αβ < 1.

In the case of sorting on a linear structure we found an upper bound on the running

time for any data arrival law. Sorting is not the only case in which such a bound exists

though.

Theorem 8.9 For the polynomial data arrival law given by Relation 2.1 on page 24, let A be any

RAM d-algorithm with time complexity Ω(Nα), α > 1. If A terminates, then its running time is

upper bounded by a constant T that does not depend on n.

Proof. We consider only the case β ≤ 1/α, because the limit has been already found for

αβ > 1 [63]. Let ε = α − 1, ε > 0. If the algorithm terminates at some finite time t, then

N data have been processed, N = n + knγtβ. That is, the time for processing one datum

is cNα/N = cNε for some positive constant c. Following the same idea as the one used

for deriving Relation 8.1 on page 118, we obtain dt ≥ c(n + knγtβ)ε, which is similar to

Relation 8.1. Therefore, analogously to the proof of Theorem 8.8 on the preceding page,

we obtain for γ = 1

qc
k
≥ t1/2

(1 + ktβ)

(
(c(n + kntβ)ε + t)β − tβ

)
. (8.5)

The left-hand side of this relation is increasing, because c(n + kntβ)ε > 0, and it is

immediate that the limit of the right-hand side is infinite. Hence, the limit T is derived in

the same way as in the proof of Theorem 8.8.

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 122

We now consider parallel d-algorithms. Recall that p is the number of processors in the

parallel model. It is immediate that the process described in Lemma 8.6 on page 117 ad-

mits linear speedup. Indeed, sorting q elements admits linear speedup [5] (page 179), and

inserting the buffer into the previously sorted sequence may be achieved by using an op-

timal merging algorithm [5] (page 209). Thus, Relation 8.2 on page 118 becomes in the

parallel case t ≤ p/(knγ)2 + q(1− log q)/knγ − n/knγ. As expected, this relation is similar

to Relation 8.2 for the sequential case. Therefore, all the above sequential results hold for

the parallel case as well. That is, the best value for q is 1 (buffering does not help), and a

limit t′′B(p), similar to t′B, for the running time can be found, t′′B(p) = p
cp(knγ)2 − n

knγ . It is

then easy to see that Theorem 8.9 holds for the parallel case as well.

Theorem 8.10 For the polynomial data arrival law given by Relation 2.1 on page 24, let A be any

p-processor d-algorithm, running on some parallel model of computation (meeting the minimum

requirements stated at the beginning of Section 2.2 on page 16), with time complexity Ω(Nα),

α > 1. If A terminates, then its running time is upper bounded by a constant T that does not

depend on n but depends on p.

Proof. It is enough to replace the first term from the right-hand side of Relation 8.5 on the

page before in the proof of Theorem 8.9 by p× t1/2/(1 + ktβ). The proof is then analogous,

as this replacement introduces a multiplicative constant, which does not change the sign

of the derivative. As well, the appearance of p does not change the limit.

8.3 The Characterization of C-Algorithms

Theorems 8.9 and 8.10 support Claim 2 on page 110. We show in what follows that such a

feature does hold for the class of correcting algorithms (c-algorithms for short). We believe

that c-algorithms form the most general setting for the real-time input arrival paradigm, so

that we are confident in the validity of Claim 2 and thus this section concludes the chapter.

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 123

It should be noted that we show the validity of Theorems 8.9 and 8.10 in the case of c-

algorithms in an indirect way. Indeed, Theorem 8.16 on page 128 shows that the analysis of

c-algorithms can be reduced to the analysis of d-algorithms. The validity of the mentioned

theorems follows immediately.

Recall from Section 2.3.2 on page 28 that a c-algorithm is defined as being an algorithm

that works on an input data set of n elements, all available at the beginning of computation,

but V(n, t) variations of the n input data occur with time. We also denote by φ(n, t) the

sum n + V(n, t). We call the the function V the corrections arrival law.

We first consider the case in which the c-algorithm processes the incoming corrections

one at a time.

Theorem 8.11 Consider some problem π solvable by a dynamic algorithm. Let As be the best

known dynamic RAM algorithm that solves π , and let Aps be a parallel version of As, which uses

p processors, runs on some parallel model of computation M (meeting the minimum requirements

stated at the beginning of Section 2.2 on page 16), and exhibits a speedup S′(1, p). Then, there exist

a RAM c-algorithm A and a p-processor c-algorithm Ap running on M that solve π . Moreover,

when A and Ap work on an initial set of data of size n and with the corrections arrival law given

by Relation 2.4 on page 32, there exist n′, k′, and γ′, where γ′ and k′ are constants and n′ is a

function of n, such that the properties of A and Ap (namely, time complexity, running time, and

parallel speedup) are the same as the properties of some sequential d-algorithm Ad and some p-

processor d-algorithm Apd running on M, which work on n′ initial data and with the data arrival

law φ(x, t) = x + k′xγ′tβ, where the complexity of Ad is cN, and the parallel speedup manifested

in the static case by Apd is S′(1, p).

Proof. Assuming that such d-algorithms Ad and Apd exist, recall that the running time

t of Ad is given by t = cN, where N = φ(n′, t). That is, the relations from which all the

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 124

properties of Ad and Apd can be derived are

t = c(n′ + k′n′γ
′
tβ), (8.6)

tp =
cp(n′ + k′n′γ

′
tβ)

S′(1, p)
. (8.7)

Therefore, if we show that there exist n′, γ′, and k′ such that we can consider two c-

algorithms A and Ap whose running times respect Relations 8.6 and 8.7, respectively, we

complete the proof. We do this in what follows.

The computation performed by As can be split in two parts: the initial processing, and

the processing of one correction. Let the algorithm A′ that performs the initial processing

be of complexity C′(n) = cnα, and the algorithm Au that processes a correction be of

complexity Cu(n) = cunε, ε ≥ 0.

The algorithm A performs then the following computations: (a) compute the solution

for the initial amount of data n, using A′ (this takes C′(n) time), and (b) for each newly

arrived correction, compute a new solution, using Au; terminate after this only if no new

correction arrived while the solution is recomputed, otherwise repeat this step (the com-

plexity of this step is Cu(n)).

The complexity of A is then C(N) = C′(n) + Cu(n)(N − n), and this gives the fol-

lowing implicit equation for the termination time: t = cnα + cunε(n + knγtβ − n) =

c(nα + cu
c knγ+εtβ). Then, considering n′ = nα, γ′ = γ+ε

α
, and k′ = kcu/c, we obtain for

the running time of A the implicit equation 8.6.

With regard to the parallel implementation, considering that the static version of A

provides a speedup S′(1, p) when using p processors, and that the complexity of A is

C(N), it is immediate that the complexity in the parallel case is C(N)/S′(1, p). Relation 8.7

as the implicit equation for the running time of Ap follows immediately. This is enough to

prove that the properties of A and Ap are identical to the properties of Ad and Apd.

However, in order to finalize the proof, we have to take into consideration the second

item from Definition 2.5 on page 29. That is, we have to prove that A terminates for at

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 125

least one corrections arrival law and for any value of n′. To do this, it suffices to notice that

it has been proved in [63] that a d-algorithm of complexity cN terminates for any initial

amount n of input data if β < 1.

An algorithm A is given which solves the corresponding problem π correctly is given

in Theorem 8.11 . However, nothing is said in the theorem about the optimality of A. This

issue is now studied. We show in what follows that there are instances of the input for

which there is indeed an algorithm better than A, but that a form of Theorem 8.11 holds

for this new algorithm as well. Specifically, one may wonder why a c-algorithm cannot

consider the incoming corrections in bundles of size b instead of one by one.

Recall that we denote by Ab
u the best known algorithm that applies b corrections. Let

the complexity of Ab
u be Cb

u(n, b), and the complexity of Au, the (best known) algorithm

that applies one correction only, as in Theorem 8.11, be Cu(n).

Suppose that algorithm A of Theorem 8.11 terminates at some time t for some initial

data and some corrections arrival law. Further, let Abw be an algorithm that performs the

same processing as A, except that, instead of applying each correction immediately, it waits

until some number b of corrections have been accumulated and applies them at once using

algorithm Ab
u described above. Note that we do not impose any restriction on b; it may be

either a constant, or a function of either n or t or both. We have the following immediate

observation:

Lemma 8.12 Given some solution σ to a problem π and a set of input data of size n, let Ab
u be the

best known RAM algorithm that receives σ and b corrections, and computes a solution σu for the

corrected input. Also, let Au (of complexity Cu) be the best known RAM algorithm that receives σ

and one correction only and returns the corresponding corrected solution. Then, bCu ≥ Cb
u ≥ Cu

for any strictly positive b.

Let Ab be a variant of algorithm Abw for which the buffer size is correctly chosen, such

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 126

that Ab does not wait until b corrections have arrived, but instead processes whatever cor-

rections are available whenever it has time to do so (that is, as soon as it finishes processing

the previous bundle). For simplicity, we assume that the complexity of the initial process-

ing C′(n) is the same for A, Abw, and Ab. We believe that this is a reasonable assumption,

since the processes are essentially the same in the two c-algorithms. It follows immediately

from Claim 1 on page 30 that

Lemma 8.13 Given A, Abw, and Ab as above, let S1, S2 and S3 be the speedup of the static version

of A, Abw, and Ab, respectively, when implemented using p processors on some parallel model of

computation meeting the minimum requirements stated at the beginning of Section 2.2 on page 16.

Then, S1 = S2 = S3.

Recall that we consider the complexity of Au as being Cu(n) = cunε. Also, let the

complexity of Ab
u be Cb

u(n) = cubεb nε. Then, Lemma 8.12 on the page before implies that εb

is a positive number, no larger than 1.

Lemma 8.14 Ab is no better than A if and only if either εb = 1, or β > 1, or β = 1 and

βkcunε+γ ≥ 1.

Proof. The running time tb of Ab is given by tb = cnα + cunε ∑m
i=1 bεb

i , where m is the

number of times Ab
u has been invoked, and, when Ab

u is invoked the i-th time, the size

of the buffer b is bi. Note that exactly all the buffered corrections are processed, that is,

∑m
i=1 bi = V(n, tb). Then, it follows that

tb ≤ cnα + kcunε+γtβb . (8.8)

Let R(n, t) be the function R(n, t) = cnα + kcunε+γtβ − t. Moreover, since there is at

least one i such that bi > 1, then ∑m
i=1 bεb

i = ∑m
i=1 bi if and only if εb = 1. Therefore, we have

from Relation 8.8

R(n, t) < R(n, tb) if εb < 1, (8.9)

R(n, t) = R(n, tb) if εb = 1. (8.10)

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 127

When εb = 1, Relation 8.10 holds. Therefore, in this case, Ab is no better than A. For

εb < 1, considering Relation 8.9, we have:

1. If β > 1, then ∂R
∂t > 0 for t large enough. In this case, given Relation 8.9, it follows

that t < tb. In other words, Ab is no better than A in this case.

2. If β < 1, then, ∂R
∂t < 0 for t large enough. Therefore, analogously, A is no better than

Ab.

3. If β = 1, then ∂R
∂t is positive if and only if βkcunε+γ > 1. Therefore, if βkcunε+γ ≥ 1,

then we are in the same case as in item 1 above. Otherwise, A is no better than Ab.

We found therefore that A is optimal if and only if either εb = 1, or β > 1, or β = 1

and βkcunε+γ ≥ 1. In the other cases, Ab may be better than A. Recall here that Abw

is the algorithm that waits for b corrections to have accumulated before processing them

(unlike Ab which processes any available corrections as soon as it has time to do so). It is

somewhat intuitive that Abw is no better than Ab, but we give a proof for this below.

Lemma 8.15 Abw is no better than Ab when β ≤ 1.

Proof. When speaking of Abw we denote by mw and bwi the values that correspond to m

and bi in the case of Ab, respectively. We denote by tbw the running time of Abw, which has

the form

tbw = cnα + cunε
mw

∑
j=1

bεb
w j + tw, (8.11)

where tw is the extra time generated by the waiting process. We denote by twi the waiting

time before each invocation of the algorithm that applies the corrections, and by ai the

number of corrections Abw waits for before each such invocation. Note that tw = ∑mw
i=1 twi.

Moreover, it can be shown that ai ≤ knγtβwi.

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 128

For any i, 1 ≤ i ≤ mw, we have bεb
wi ≥

bwi+1−knγ tβwi
a . Note that ∑mw

i=1 bwi = knγtβbw, since all

the corrections that arrive before the termination time must be processed. Then, by sum-

mation over i of the above relation and from Relation 8.11, tbw ≥ cnα + b
a tβbw − b

a ∑mw
i=1 tβwi +

tw, where b = cunεknγ. Considering Relation 8.8 on page 126 we have then

ρ(tbw)− ρ(tb) ≥ tw − b
a

mw

∑
i=1

tβwi +
(

b− b
a

)
tβbw, (8.12)

where ρ(t) = t− (b/a)tβ. Let us denote the right hand side of Relation 8.12 byR. It can be

proved that R is positive. Then, Relation 8.12 leads to ρ(tbw) ≥ ρ(tb) and it is immediate

that tbw ≥ tb, since ρ is an increasing function for any t ≥ 1.

The proof of Lemma 8.15 contains yet another interesting result. We show there

that bwi+1 ≤ abβεb
wi + ai. Since Ab does not wait for any correction, we have analo-

gously bi ≤ abβεb
i . Applying this relation recursively i times, we observe that bi+1 ≤

a(1−(βεb)i)/(1−βεb)(b1)(βεb)i
. However, 0 ≤ βεb ≤ 1, hence bi+1 ≤ b1. On the other hand,

b1 = knγ(cnα)β, since the first invocation of the algorithm that processes the corrections

happens exactly after the initial processing terminates. Therefore, in the case of Ab, the

size of the buffer is bounded by a quantity that does not depend on time, but only on n.

Then, the running time of Ab is given by an equation of the form tb = c(n′′ + k′′n′′γ
′′
tβb),

which is similar to the form obtained in the case of A in Theorem 8.11 on page 123. Starting

from this expression, one can follow the same reasoning as in the proof of Theorem 8.11 to

derive an implicit equation for the parallel case of Ab similar to Relation 8.7 on page 124.

Lemmas 8.14 and 8.15 therefore imply:

Theorem 8.16 The (parallel and sequential) c-algorithms of Theorem 8.11 on page 123 are optimal

if and only if the corrections arrival law has the following property: Either β > 1, or β = 1 and

βkcunε+γ ≥ 1. If this property does not hold, then the optimal RAM algorithm is Ab, where Ab

processes at once all the corrections that arrived and have not been processed yet.

Moreover, let Ab work on n initial data and with the corrections arrival law given by Rela-

tion 2.4 on page 32, and let Abp be the p-processor parallel implementation of Ab that runs on the

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 129

same parallel model of computation M from Theorem 8.11, where the static version of Abp exhibit

a speedup S′(1, p). Then, there exist n′′, k′′, and γ′′, where γ′′ and k′′ are constants and n′′ is

a function of n, such that the properties of Ab and Abp (namely, time complexity, running time,

and parallel speedup) are the same as the properties of some sequential d-algorithm Ad and some p-

processor d-algorithm Apd running on M, which work on n′′ initial data and with the data arrival

law φ(x, t) = x + k′′xγ′′tβ, where the complexity of Ad is cN, and the parallel speedup manifested

in the static case by Apd is S′(1, p).

8.4 The Graph Accessibility Problem and Real Time

By Claim 2 on page 110, we establish a strong relation between NLOGSPACE and real-

time computations. This relation, however is stated in terms of one particular model of

parallel computation. True, this model (namely, the RMBM) is a feasible one—variants of

it have been already implemented [44]. Still we can also extend this result to other models

of computation.

Recall from Definition 7.1 on page 97 that GAP1,n denotes the following version of

the Graph Accessibility Problem: Given a directed graph G = (V, E), V = {1, 2, ..., n},

determine whether vertex n is accessible from vertex 1. Incidentally, note that GAP1,n is

NLOGSPACE-complete [84].

Consider now the classes M<GAP, M≡GAP, and M>GAP of parallel models of compu-

tations using polynomially bounded resources (processors and, if applicable, buses), such

that:

M<GAP contains exactly all the models that cannot compute GAP1,n in constant time, and

cannot compute in constant time any problem not in NLOGSPACE. An example of

such a model is the Common CRCW PRAM [88, 95] (and thus the less powerful

PRAM variants).

M≡GAP contains exactly all the models that can compute GAP1,n in constant time, but

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 130

cannot compute in constant time any problem not in NLOGSPACE. RMBM and RN

(refer to Section 2.2 on page 16 for definitions of these models and their properties)

are two examples of such models.

M>GAP contains exactly all the models that can compute GAP1,n in constant time and can

compute in constant time at least one problem not in NLOGSPACE. To our knowl-

edge, no model has been proved to pertain to such a class. However, a good candi-

date is the broadcast with selective reduction model [13].

Theorem 8.17 For any models of computation M1, M2, and M3 such that M1 ∈ M<GAP, M2 ∈
M≡GAP, and M3 ∈ M<GAP, it holds that

rt-PROCM1(poly(n)) ⊆ rt-PROCDRMBM(poly(n)) = NLOGSPACE/rt (8.13)

rt-PROCM2(poly(n)) = rt-PROCDRMBM(poly(n)) = NLOGSPACE/rt (8.14)

rt-PROCM3(poly(n)) ⊃ rt-PROCDRMBM(poly(n)) = NLOGSPACE/rt (8.15)

Proof. Minor variations of the arguments used to prove Theorem 7.9 on page 107 and The-

orem 7.10 on page 108 show that those computations which can be performed in constant

time on Mi, 1 ≤ i ≤ 3, can be performed in the presence of however tight time constraints

(and thus in real time in general). Then, Relations 8.13 and 8.15 follow immediately from

Claim 2 on page 110.

By the same argument, rt-PROCM2(poly(n)) ⊇ rt-PROCCRCW F-DRMBM(poly(n)) holds

as well. The equality (and thus Relation 8.14) is given by the arguments that support

Claim 2.

Thus, the characterization of real-time computations established by Claim 2 on

page 110 does hold in fact for any machines that are able to compute GAP1,n in constant

time. One particular such a model is the DRN: by Corollary 7.7 on page 105 it is immediate

that Relation 8.14 holds for M2 = DRN.

CHAPTER 8. REAL TIME IS LOGARITHMIC SPACE? 131

The characterization presented in Theorem 8.17 emphasizes in fact the strength of

Claim 2. Indeed, as noted above, no model more powerful than the RMBM is known

to exist. That is, according to the current body of knowledge, M>GAP = ∅. Unless this rela-

tion is found to be false, it follows from Claim 2 that no problem outside NLOGSPACE can

be solved in real time in general, not only as far as RMBM computations are concerned.

Chapter 9

Real-Time Characterization of
Optimization Problems

Summary

We have given in Claim 2 on page 110 a tight characterization of problems solvable in real

time by a parallel machine. In this chapter, as well as the subsequent one, we focus our

attention on applications of this characterization.

Specifically, we now consider optimization problems. In this context, we identify the

class M of such problems that can be computed in real time if a parallel machine is used

(Theorem 9.5 on page 137). It is well-known [45] that all the problems that can be expressed

as matroids (a restricted case of independence systems) admit a fast (i.e., polylogarithmic

running time) parallel greedy algorithm. Since real time intuitively means “faster than

fast,” it is expected that optimization problems that are solvable in real time form a subclass

of problems admitting fast parallel algorithms. We show that this is indeed the case, but we

also find that the relation between matroids and optimization problem solvable in real time

is even stronger: By contrast to the independence systems with fast parallel algorithms

(which are not restricted to matroids), we show that matroids for which the size of the

optimal solution can be computed in parallel real time are exactly all the independence

systems whose exact solution can be found in real time.

Such a precise characterization has important consequences on both the theory and

132

CHAPTER 9. REAL-TIME OPTIMIZATION. 133

the practice of real-time optimization problems. From a practical point of view, once an

optimization problem does not fall into the class M, one knows for sure that it cannot

be solved in real time. Thus, different approaches have to be found (for example, further

restricting the problem, or finding a good real-time approximation algorithm for it).

The identification of class M leads to immediate generalizations of previous results.

We note that it has been shown that a parallel implementation can do more than merely

speed up the computation [9, 10, 11]. In particular, in certain real-time environments

parallel means (arbitrarily) better [9]. Specifically, the parallel solution for the real-time

minimum-weight spanning tree problem can be made arbitrarily better than the solution

reported by a sequential algorithm that solves the same problem. We show that such a

property holds in fact for a whole class of problems, and for any set of real-time con-

straints. In other words, we extend the results presented in [9] by showing that, given

almost any optimization problem in M, the solution obtained by a parallel algorithm is

arbitrarily better than the solution reported by a sequential one.

9.1 Independence Systems and Matroids

If S is a set referred to as the set of feasible solutions, over which a mapping c is defined

(c : S → R), then a problem of the form

{max c(s)|s ∈ S} or (9.1)

{min c(s)|s ∈ S} (9.2)

is an optimization problem over S. Form 9.1 defines a maximization problem, while form 9.2 is

a minimization problem; c is referred to as the objective function. In the following, we shall

refer to maximization problems whose set of feasible solutions contains only elements of

{0, 1}n. In this case, S can be considered a subset of P(E), with E = {1, 2, . . . , n} (recall

that P(()Σ) stands for the powerset of Σ). Therefore, problems of the form 9.1 can be

CHAPTER 9. REAL-TIME OPTIMIZATION. 134

algorithm GREEDYMAX (E, S; sg)
1. let (e1, e2, . . . , en) be an ordering of E with c(ei) ≥ c(ei+1)
2. sg ← ∅
3. for i ← 1 . . . n do
3.1. if sg ∪ {ei} ∈ S then sg ← sg ∪ {ei}

Figure 9.1: A RAM greedy algorithm for maximization problems

restated as

max

{
∑
i∈R

ci

∣∣∣∣∣ R ∈ S

}
. (9.3)

Notice that in this case c(s) is implicitly defined as ∑i∈s ci for any set s ⊆ E. We consider

without loss of generality that ci ≥ 0, 1 ≤ i ≤ n. The set of optimal solutions to the

maximization problem 9.3 is thus not changed if one replaces S by its hereditary closure S∗

defined as S∗ = S ∪ {s|s ⊆ s′, s′ ∈ S for some s′ ⊆ E}. (E, S∗) is an independence system as

per Definition 9.1.

Definition 9.1 [53] Let E be a finite set and S ⊆ P(E), such that S has the monotonicity

property: s1 ⊆ s2 ∈ S ⇒ s1 ∈ S. Then, (E, S) is an independence system, and members of S

are said to be independent.

Let (E, S) be an independence system. For each F ⊆ E, the lower rank lr(F) [upper rank

ur(F)] of F (with respect to S) is defined as the cardinality of the smallest [largest] maximal

independent subsets of F: lr(F) = min{|s||s ∈ S; s ⊆ F and s∪{e} ∈ S for all e ∈ F \ {s}};

ur(F) = max{|s||s ∈ S; s ⊆ F}.

A greedy algorithm for Problem 9.3 on general independence systems is given in [53].

GREEDYMAX, a variant of this algorithm running on the RAM, is shown in Figure 9.1.

Proposition 9.1 [53] Let (E, S) be an arbitrary independence system, sg the solution returned by

algorithm GREEDYMAX from Figure 9.1, and s∗ the optimal solution of Problem 9.3. Then, for

CHAPTER 9. REAL-TIME OPTIMIZATION. 135

any weight function c : E → R+,

min
F⊆E

lrF
urF

≤ c(sg)
c(s∗)

≤ 1.

It should be noted that the algorithm GREEDYMAX from Figure 9.1 contains one state-

ment which depends on the actual independence system being considered, namely the

boolean expression on line 3.1. Indeed, for a general independence system one does not

know how the test “sg ∪{ei} ∈ S” is done. Thus, in order to analyze the complexity of such

an algorithm, one can assume the existence of an oracle that can answer whether some set

s is in S or not.

Definition 9.2 [53] An independence system (E, S) is called a matroid if, for any F ⊆ E, it

holds that lr(F) = ur(F).

From Proposition 9.1 on the page before and Definition 9.2 it follows that:

Corollary 9.2 Algorithm GREEDYMAX from Figure 9.1 on the preceding page on a matroid

(E, S) yields the optimal solution for Problem 9.3 on the page before for all objective functions

c, c : E → R+.

9.2 A Real-Time Perspective

To put Definition 9.2 in another way [38, 45], matroids are independence systems with the

additional property that all the maximal independent subsets have the same size (there-

fore, since ci ≥ 0, 1 ≤ i ≤ n, the greedy algorithm obtains the optimal solution). In light of

this formulation, the parallel implementation of GREEDYMAX from Figure 9.1 on the page

before is immediate [37, 45]. Algorithm PARALLELGREEDYMAX presented in Figure 9.2 on

the following page is such a parallel implementation (where PARALLELGREEDYMAX runs

on some model of parallel computation that meets the minimum requirements stated at

the beginning of Section 2.2 on page 16).

CHAPTER 9. REAL-TIME OPTIMIZATION. 136

algorithm PARALLELGREEDYMAX (E, S; sg)
1. sort E, obtaining (e1, e2, . . . , en) s.t. c(ei) ≥ c(ei+1)
2. sg ← ∅; r0 ← 0
3. for i ← 1 . . . n do in parallel
3.1. ri ← ur{e1, e2, . . . , ei}
3.2. if ri−1 < ri then sg ← sg ∪ {ei}

Figure 9.2: A parallel greedy algorithm for maximization problems

Algorithm PARALLELGREEDYMAX from Figure 9.2 uses a rank oracle: The function

ur{e1, e2, . . . , ei} introduced by Definition 9.1 on page 134 and used at step 3.2 gives the

size of some (hence, whenever (E, S) is a matroid, any) maximal independent set over

{e1, e2, . . . , ei}.

Lemma 9.3 Suppose ur{e1, e2, . . . , ei} ∈ DRMBM(poly(i), poly(i), t(i)) (i.e., a DRMBM with

polynomially bounded number of processors and buses can compute ur{e1, e2, . . . , ei} in time t(i)).

Then, PARALLELGREEDYMAX ∈ DRMBM(poly(n), poly(n), O(t(n))).

In particular, PARALLELGREEDYMAX ∈ DRMBM(poly(n), poly(n), O(1)) whenever

t(i) = O(1).

Proof. The initial sorting (step 1) can be achieved in constant time on a DRMBM with

polynomially bounded resources [5]. It follows that step 1 is computable in constant time

on a DRMBM using poly(n) processors and poly(n) buses by Corollary 7.8 on page 105.

Steps 2 and 3.2 are trivially computable in constant time with polynomially bounded re-

sources.

However, each on the calls to ur in step 3.1 can be performed in t(n) time by using

n copies of the RMBM computing ur, each of them working independently from each

other. Finally, each of the n RMBMs communicate with one other processor. These n

new processors implement step 3.2 and report the result. Since both the argument of

CHAPTER 9. REAL-TIME OPTIMIZATION. 137

ur and the result returned by this function are polynomial in size, poly(n) buses suf-

fice for such a communication. All the resources are polynomially bounded, and thus

PARALLELGREEDYMAX ∈ DRMBM(poly(n), poly(n), O(t(n))), as desired.

If t(i) = O(1), PARALLELGREEDYMAX ∈ DRMBM(poly(n), poly(n), O(1)) is immedi-

ate by Corollary 7.8.

Lemma 9.4 Let (E, S) be some independence system, E = {e1, e2, . . . , en}, and let A be an al-

gorithm that solves a maximization problem of the form 9.3 on page 134 over (E, S). Denote by

tA(n) (tur(n)) the running time of A (the time required to compute ur(E)) on a DRMBM using a

polynomially bounded number of processors and buses. Then, tur(n) is a lower bound for tA(n).

Proof. Let s∗ = {s1, s2, . . . , sk} be the solution computed by A. Since s∗ is an optimal

solution, it follows that ur(E) = k. However, given s∗, k can be computed in constant time

on a DRMBM: Assume without loss of generality that the elements of s∗ are stored in the

registers of n processors pi, 1 ≤ i ≤ n, such that exactly k processors hold one element from

s∗ each. Then, each processors pi, 1 ≤ i ≤ n, sets a designated register vi such that vi = 1

if pi holds a value from s∗ and vi = 0 otherwise. Then, a prefix sum1 over vi, 1 ≤ i ≤ n,

computes k. It follows that |s∗| (and thus ur(E)) can be computed in constant time given

s∗, since prefix sum takes constant time on RMBM [87]. Therefore, tur(n) = O(tA(n))

(alternatively, tA(n) = Ω(tur(n))), as desired.

Theorem 9.5 Let M be the class of maximization problems that can be described as a matroid

and for which ur ∈ DRMBM(poly(i), poly(i), O(1)). Let π be some maximization problem of

form 9.3 on page 134 over some independence system (E, S). Then2,

• π ∈ DRMBM(poly(n), poly(n), O(1)),

1The parallel prefix sum problem is defined as follows [70]: given n input numbers (x1 , x2 , . . . , xn), com-
pute (y1 , y2 , . . . , yn), such that yi = ∑i

j=1 xi, 1 ≤ i ≤ n.
2Recall from Definition 7.2 on page 107 that, for some problem π , π/rt denotes the problem π in the

presence of real-time constraints.

CHAPTER 9. REAL-TIME OPTIMIZATION. 138

• π ∈ NLOGSPACE, and

• π/rt ∈ rt-PROCCRCW F-DRMBM(poly(n)),

if and only if π ∈ M.

Proof. The “if” part follows from Lemma 9.3 on page 136, and the “only if” part is

established by Lemma 9.4 on the preceding page.

By Theorem 9.5 we have precisely identified—among those optimization problems that

can be expressed as independence systems—the class of such problems solvable in parallel

real time. We believe that this result may be of interest for at least two reasons:

1. On one hand, consider those independence systems—or problems that can be formu-

lated as such—not in M (with M as defined in Theorem 9.5). For these problems,

finding an exact solution in real time is asymptotically impossible, even if a parallel

machine is available (in the sense that the running time of any (poly(n)-processor)

algorithm solving such a problem exceeds for large enough input size any (implicit

or explicit) constant deadline). In such a case, one should probably look for either

further restricting the problem (in order to bring it within M), or find a reasonable

approximation algorithm that is in NLOGSPACE.

2. On the other hand, Theorem 9.5 easily extends previous results, as we shall show in

what follows.

9.3 Beyond Speedup, Extended

For a connected and undirected graph G = (V, E), a spanning tree of G is a tree (i.e., an

acyclic, connected, and undirected graph) T = (V, E′), with E′ ⊆ E. A graph G = (V, E)

is weighted if there exists a function w : E → R. For some edge e ∈ E, w(e) is the weight

of e. A minimum-weight spanning tree of a weighted graph G = (V, E) is a spanning tree

T = (V, E′) of G such that ∑e∈E′ w(e) is minimum over all the spanning trees of G. The

CHAPTER 9. REAL-TIME OPTIMIZATION. 139

minimum-weight spanning tree problem is defined as follows: given a weighted, connected,

and undirected graph G, compute a minimum-weight spanning tree of G. Whenever the

exact meaning will be clear from the context, we shall use the acronym MST for both a

minimum-weight spanning tree and the problem of computing such a tree.

The real time variant of MST is investigated in [9], where it is shown that the best

approximate solution returned by a sequential algorithm can be arbitrarily worse than the

solution obtained by a parallel algorithm (which actually returns the optimal solution).

Specifically, the following incremental variant of MST is analyzed in [9]: A connected,

undirected, and weighted graph G = (V, E) with |V| = n, n ≥ 1, is given. Initially, the

minimum-weight spanning tree of G is also known; it consists of n vertices and the n− 1

weighted edges connecting them. Time is divided into intervals of cnε time units, where c

is a positive constant and 0 < ε < 1. At the beginning of each such a time interval, a new

vertex and its associated edges are received. A new MST, or a best approximation possible

to it, incorporating the new data must now be computed. The new tree should be reported

at the beginning of the next time interval. At most n2 − n new vertices are received in all.

A parallel CRCW PRAM algorithm using O(|V|2) processors can compute the exact

updated MST within one time interval of cnε time units [9]. On the other hand, all a

sequential algorithm can do in this limited time is to replace up to nε of the existing edges

with an equal number of new edges of smaller weight. This, of course, does not guarantee

that the resulting tree is a minimum-weight spanning one. In fact, the ratio of the weight of

the sequential solution to the weight of the parallel (exact) solution can be made arbitrarily

large. We also note that the above sequential algorithm is optimal. Indeed, it is immediate

that, in general,

Observation 4 Replacing [adding, deleting] α edges in [to, from] a minimum-weight

spanning tree takes Ω(α) time on the RAM.

One can notice that MST can be trivially transformed from a minimization problem

CHAPTER 9. REAL-TIME OPTIMIZATION. 140

into a maximization one: just negate all the edge weights, and then add to every weight

the absolute value of the maximum edge weight. Furthermore, it is immediate that the

MST problem can be expressed as a matroid [38]. Thus, we can both tighten and extend

the result described in [9] by using Theorem 9.5 on page 137.

First, we shall not restrict ourselves to connected graphs, since the extension to uncon-

nected ones (when the tree becomes a forest) is immediate (we will, however continue to

denote the problem by MST for uniformity). As well, our result is not restricted to incre-

mental version presented in [9]; indeed, our result holds for any real-time variant of the

MST problem.

We note that the result in [9] is not tight: Time up to cnε is allowed for each (parallel

or sequential) real-time computation leading to the result. This running time, however,

asymptotically exceeds any (however large) constant deadline imposed to the computa-

tion by some real-time environment. Still, the same result holds for true real-time com-

putations as well. Indeed, we show in what follows that, for any real-time environment

one can encounter, a parallel algorithm can solve MST arbitrarily better than a sequential

one. That is, while the parallel implementation is able to return an optimal solution, even

an optimal sequential algorithm can only report an approximate result in the limited time

which is available due to the real-time constraints. This result, an immediate consequence

of Theorem 9.5 on page 137, is given in Lemma 9.6 below3.

Lemma 9.6 Let MST denote the problem of computing the minimum-weight spanning forest on

nondirected and weighted graphs. Then, MST ∈ DRMBM(poly(n), poly(n), O(1)) (and thus

MST ∈ NLOGSPACE, MST/rt ∈ rt-PROCCRCW F-DRMBM(poly(n))), and the best approx-

imate solution to MST/rt returned by a RAM algorithm is arbitrarily worse than the solution

obtained by a parallel RMBM algorithm with polynomially bounded resources.

Proof. Function ur for MST can be computed in logarithmic space (and thus in real-time

3Recall from Definition 7.2 on page 107 that, for some problem π , π/rt denotes the problem π in the
presence of real-time constraints.

CHAPTER 9. REAL-TIME OPTIMIZATION. 141

on RMBM): ur{e1, e2, . . . , ei} is simply i minus the number of connected components in the

graph induced by {e1, e2, . . . , ei}, and can thus be computed by performing a reflexive and

transitive closure (which is an NLOGSPACE-complete problem [84]). By Theorem 9.5, it

follows that MST can be computed exactly in real time on an RMBM, no matter how tight

the deadlines are.

However, an optimal sequential algorithm that solves the same problem has a running

time that cannot accommodate even the most generous deadline, and thus a sequential

algorithm to some real time variant of MST can only guess some solution, and the guess

can be arbitrarily bad. Indeed, such a result is shown in [9] for the incremental version

presented at the beginning of this section. The generalization for any variant of MST and

any abstract machine follows from Observation 4 on page 139.

In fact, the second part of the proof of Lemma 9.6 also proves that this type of behavior

(namely a parallel algorithm being able to compute an arbitrarily better solution than the

optimal sequential one) is not an exclusive feature of the MST problem, but it applies to

many more real-time computations instead.

Indeed, consider those problems π in M, with M as in Theorem 9.5 on page 137,

for which any optimal solution incorporate Ω(|i|ξ) input data on any instance i of π , for

some constant ξ > 0. Denote the class of such problems by M′. We note that all but the

most trivial optimization problems return a subset of the input data of non-constant size,

and thus they belong to the class M′. For any π ∈ M′, consider now the (possibly non-

optimal) solution returned by a sequential algorithm in constant time. Such an algorithm

cannot inspect more than O(1) input data. Therefore, the ratio between the sequential,

constant time solution and the optimal one is of the order of nξ for any instance of size n.

The following result is then immediate:

Corollary 9.7 For any π ∈ M′, the best approximate solution to π/rt returned by a RAM algo-

rithm is arbitrarily worse than the solution obtained by a parallel RMBM algorithm with polyno-

mially bounded resources.

CHAPTER 9. REAL-TIME OPTIMIZATION. 142

In other words, the results obtained in [9] do hold even for the tightest real time envi-

ronment, as shown in Lemma 9.6. In addition, these results are not applicable only to the

MST, but to a whole class of problems instead, namely M′. Given that, for all practical

purposes, M′ and M are identical, Theorem 9.7 shows that there exists not only a prob-

lem, but a whole family of problems for which a parallel implementation can do something

other than speed up computation, namely improve the offered solution.

Chapter 10

On Real-Time Approximation
Algorithms

Summary

As a consequence of Claim 2 on page 110, the problem of finding approximate solutions

computable in real time (in those cases when the exact solution cannot be computed within

the given time restrictions) becomes a worthy pursuit. Such an approach is common

in classical complexity theory. Indeed, in the sequential case, NP-hard problems are for

all practical purpose (unless P equals NP) not computable but for the smallest instances,

and thus deterministic polynomial time approximations are usually sought [43]. Simi-

larly, this time in the context of parallel computations, efficient parallel approximations to

P-complete (that is, inherently sequential unless NC equals P) problems were also investi-

gated [45].

The identification from Claim 2 of NLOGSPACE as the class containing exactly all the

problems solvable in real time naturally extends such a search for approximation algo-

rithms: Once a problem is shown as being likely not solvable in real time (that is, not in

NLOGSPACE), then an approximate solutions may become attractive. We now offer a in-

cipient discussion on this matter. In particular, we show that many P-complete problems

do not admit good real-time approximation algorithms, but that the bin packing problem

143

CHAPTER 10. REAL-TIME APPROXIMATION ALGORITHMS. 144

(an NP-complete one!) does admit such a good approximation parallel real-time algo-

rithm.

10.1 Real-Time Approximation Schemes and Problems not Ad-
mitting Real-Time Approximation Algorithms

First, we define the notion of “good” approximation algorithms by adapting the defini-

tions already used [43, 45] to our framework. The following definition is applicable to any

(parallel or sequential) algorithm (running on any computational model).

Definition 10.1 Consider some algorithm A working on instance i of a minimization (max-

imization) problem, and suppose that A delivers a candidate solution with value A(i).

With Opt(i) denoting the value of the optimal solution for input i, the performance ratio of

A on i is RA(i) = A(i)/Opt(i) (RA(i) = Opt(i)/A(i)). The absolute performance ratio of A is

defined as RA = inf {r ≥ 1|RA(i) ≤ r for all instances i}.

An algorithm A with inputs ε > 0 and i ∈ π is an approximation scheme for π if and only

if A delivers a candidate solution with performance ratio RA(i) ≤ 1 + ε for all i ∈ π . In

addition, if A ∈ rt-PROC(poly(|i|)), then A is a real-time approximation scheme for π .

The body of knowledge regarding NC approximations [45] gives some negative results:

Once it is proved that some problem does not admit an NC approximation algorithm, it

follows that no NLOGSPACE (and thus real-time) approximation algorithm exists either,

since NLOGSPACE ⊆ NC.

Theorem 10.1 If P 6= NC, then there exists no real-time approximation scheme for the following

problems:

• Lexicographically first maximal independent set [45].

• Unit resolution (the problem of whether the empty clause can be deduced from a given propo-

sitional formula in conjunctive normal form) [80].

CHAPTER 10. REAL-TIME APPROXIMATION ALGORITHMS. 145

• Generability (given a finite set W, a binary relation • on W, a subset V ⊆ W, and w ∈ W,

determine whether w is in the smallest subset of W that contains V and is closed under •)

[80].

• Path systems (given a path system P = (X, R, S, T), S, T ⊆ X, R ⊆ X×X×X, determine

whether there exists an admissible vertex in S) [80].

• Circuit value (given a combinational circuit built from two-input Boolean gates and an as-

signment for its inputs, compute the output) [80].

• High degree subgraph (given a graph G and an integer k, does G contain an induced subgraph

with minimum degree at least k?) for k ≥ 3 [80].

• Linear programming, in both the following cases: the approximation solution should be a

vector close to the optimal one, and the approximation solution seeks the objective function to

have a value close to optimal [79].

Proof. It has been proven (references to proofs are given within the theorem) that any

approximation scheme for these problems is P-complete. Since P 6= NC and NSPACE ⊆
NC, Claim 2 on page 110 implies that the above problems do not admit any real-time

approximation scheme.

10.2 A Real-Time Approximation Scheme for Bin Packing

We focus now our attention to the bin packing problem. True, there is a wide gap be-

tween bin packing (an NP-complete problem) and the class of real-time computations

(NLOGSPACE), so one may think that there is little hope to find a good real-time ap-

proximation scheme to such a problem. However, we note that good NC approximation

schemes (still not real time but closer) for this problem already exist [15]. Besides, bin

packing is closely related to certain scheduling problems (since the item to be packed can

CHAPTER 10. REAL-TIME APPROXIMATION ALGORITHMS. 146

be viewed as tasks to be scheduled), and it is thus conceivable that real-time approxima-

tion algorithms can be of use for scheduling tasks in real time on a parallel machine (the

utility of such a processing being evident). There is thus a good motivation for seeking

real-time approximation schemes for such a problem.

The input for the bin packing problem consists in n items, each of size within interval

(0, 1). The n items should be packed in a minimal number of bins of unit capacity.

One of the successful approaches in developing sequential (that is, in P) bin packing

approximation algorithms is the use of simple heuristics. In this respect, one should men-

tion the first fit decreasing (FFD) heuristic, which considers the items in nondecreasing order

of their size, and places each item into the first available (that is, with enough free space)

bin. Even if simple, the length of the packing returned by FFD, of at most 11/9×Opt + 3

(where Opt is the length of the optimal solution), is a good approximation, qualifying FFD

as an approximation scheme. Still, it is not only intuitive that FFD is inherently sequential

(that is, P-complete):

Proposition 10.2 [15] Given a list of items, each of which having a size in the interval (0, 1), in

nonincreasing order, and two indices i and b, it is P-complete to decide whether the FFD heuristic

will pack the ith item into the bth bin. This is true even if the item sizes are represented in unary.

Even if FFD is inherently sequential, an NC algorithm that achieves the same perfor-

mance as FFD (although by using different techniques) is given in [15]. This algorithm

works in two stages, as follows:

1. The first stage packs all the items that have a size of at least 1/6. Such a stage starts

by sorting the list of items in nonincreasing order. Then, a constant number of passes

are performed, each pass involving two algorithms: (a) merge two sorted lists of n

elements each into a sorted list, and (b) in a string of length n of opening and closing

parentheses, find the matching pairs.

CHAPTER 10. REAL-TIME APPROXIMATION ALGORITHMS. 147

2. In the second stage, the remaining items are packed. This stage involves a (rela-

tively large) number of parallel prefix computations. The parallel prefix problem [70] is

defined as follows: given n input numbers (x1, x2, . . . , xn), compute (y1, y2, . . . , yn),

such that yi = ∑i
j=1 xi, 1 ≤ i ≤ n.

Theorem 10.3 Bin packing admits a real-time approximation scheme A such that A(i) ≤ 11/9×
Opt(i) + 3 for any instance i.

Proof. We follow the algorithm presented in [15], showing how this algorithm can be

implemented in real time. According to Theorem 7.6 on page 104, we have a choice of

showing that this algorithm is in NLOGSPACE or in DRMBM(poly(n), poly(n), O(1)).

We chose the latter variant.

First, we note that sorting can be done in constant time on a (nondirected or directed)

CREW RMBM using poly(n) processors and poly(n) buses [87]. Then, it is immediate

that merging two sequences into a sorted sequence is also computable in constant time

on RMBM. Indeed, the quick and dirty method of sorting (using the algorithm mentioned

above) the two lists concatenated together will do the trick.

The problem of matching parentheses can be implemented in two steps as follows:

First, the unmatched parentheses can be eliminated by a parallel prefix computation. Then,

there exists a constant time algorithm on DRN using poly(n) processors for matching the

remaining sequence of parentheses [5]. However, this implies the existence of a similar

algorithm on RMBM with polynomially bounded number of processors and buses, ac-

cording to Corollary 7.7 on page 105.

Thus, the only algorithm that is still needed is the parallel prefix computation, which

is in CREW RMBM(poly(n), poly(n), O(1)) according to [87] (in fact, such an algorithm is

the basis for the aforementioned sorting algorithm).

In conclusion, all the algorithms used by the two stages on the NC approxi-

mation scheme described in [15] are in CREW RMBM(poly(n), poly(n), O(1)). Since

CHAPTER 10. REAL-TIME APPROXIMATION ALGORITHMS. 148

these algorithms are applied a constant number of times, the whole processing is in

CREW RMBM(poly(n), poly(n), O(1)) and thus in rt-PROC(poly(n)). This completes the

proof.

In passing, one should note that the algorithm from the proof of Theorem 10.3 ap-

parently requires a large (albeit constant) amount of time to complete. However, such

a construction is enough to prove that bin packing admits a real-time approximation

scheme. Indeed, the existence of an algorithm in CREW RMBM(poly(n), poly(n), O(1))

implies the existence of another algorithm, that solve the same problem, but this time

in CRCW F-DRMBM(poly(n), poly(n), O(1)), and whose running time is very small, as

shown in Corollary 7.8 on page 105. True, we do not offer a constructive proof for this

corollary, and thus the CRCW F-DRMBM(poly(n), poly(n), O(1)) algorithm cannot be ef-

fectively constructed using only the results from this chapter. Still, if needed, we believe

that, although not a trivial matter, developing such a constructive transformation is feasi-

ble.

Chapter 11

The Characterization of Constant
Time RN Computations

Summary

In the process of characterizing real-time computations, we also determined in Section 7.1

on page 97 the computational power of DRMBM running in constant time. We showed

that DRMBM and DRN with constant running time have the same computational power

(refer to Section 2.2 on page 16 for a precise definition of these models). In addition, we

showed that, in the case of constant time RMBM computations, no conflict resolution rule

is more powerful than Collision, and that a unitary bus width is enough. These results are

presented in Theorem 7.6 and Corollary 7.8 on page 105—also see the proof of Lemma 7.5

on page 103 that provides the crux of the whole result.

We now study whether such properties (Collision being the most powerful resolution

rule and unitary bus width being sufficient) hold for the other model with reconfigurable

buses, namely the RN. Indeed, we find that the same properties do hold, as shown in

Theorems 11.2 on the next page and 11.3 on page 151.

Theorem 11.1 All the results developed throughout this thesis on the relations between real-time

computations and RMBM computations continue to hold if one replaces RMBM by RN.

149

CHAPTER 11. CONSTANT TIME RN COMPUTATIONS. 150

11.1 Write Conflict Resolution Rules on RN

The generality of the Collision resolution rule is not limited to RMBM computations. In-

deed, the same property holds for constant time computations on RN as well.

Theorem 11.2 For any X ∈ {CRCW, CREW}, Y ∈ {D, λ}, and for any write conflict resolu-

tion rule, it holds that X YRN(poly(n), O(1)) ⊆ CRCW DRN(poly(n), O(1)) with the Colli-

sion resolution rule.

Proof. First, note that CRCW DRN(poly(n), O(1)) = NLOGSPACE for the Collision res-

olution rule [19]. Thus, we complete the proof by showing that, for any conflict resolution

rule, CRCW DRN(poly(n), O(1)) ⊆ NLOGSPACE.

This result is however given by the proof of Lemma 7.5 on page 103. Indeed, it is

immediate that the Turing machines Md and M′
d, 0 ≤ d ≤ c for some constant c ≥ 1,

provided in the mentioned proof work in the case of a RN R just as well as for the RMBM

simulation. The only difference is that buses are not numbered in the RN case. So, we

first assign arbitrary (but unambiguous) sequence numbers for the RN buses as follows:

There exists an O(log n) space-bounded Turing machine that generates a description of R,

since R belongs to a uniform RN family (in fact, such a Turing machine is M0). Then, in

order to find “bus k,” Md uses M0 to generate the description of R until exactly k buses

are generated. The description is discarded, except for the last generated bus, which is

considered to be “bus k.” Since M0 is deterministic, it always generates the description in

the same order. Thus, it is guaranteed that “bus k” is different from “bus j” if and only if

k 6= j. The proof of Lemma 7.5 follows then unchanged.

The extra space used in the process of generating bus k consists in two counters over

the set of buses (one to keep the value k and the other one to count how many buses have

been already generated). The counters take O(log n) space each, since there are at most

poly(n) processors, and (poly(n))2 = poly(n). Thus, the overall space complexity remains

O(log n), as desired.

CHAPTER 11. CONSTANT TIME RN COMPUTATIONS. 151

11.2 Bus Width Bounds on RN

We identified in Theorem 7.6 and Corollary 7.8 on page 105 a gap in the complexity hier-

archy of RMBM computations: As far as constant time computations are concerned, there

is no need for a large bus width; instead, buses composed of single wires are sufficient.

It is natural to wonder whether a similar result holds for DRNs, so we investigate now

this matter. As expected, we find that a bus width of 1 is enough for all constant time

computations on RNs:

Theorem 11.3 For any problem π solvable in constant time on some variant of RN, it holds that

π ∈ CRCW DRN(poly(n), O(1)) with Collision resolution rule and bus width 1.

The proof of Theorem 11.3 follows from the following two lemmas. Recall from Defi-

nition 7.1 on page 97 that GAP1,n denotes the following version of the Graph Accessibility

Problem: Given a directed graph G = (V, E) (expressed by the (boolean) incidence matrix

I), V = {1, 2, ..., n}, determine whether vertex n is accessible from vertex 1.

Lemma 11.4 GAP1,n ∈ CRCW DRN(n2, O(1)) with Collision resolution rule and bus width 1.

Proof. Let R be the DRN solving GAP1,n instances of size n. Then, R uses n2 processors

(referred to as pi j, 1 ≤ i, j ≤ n), connected in a mesh. That is, there exists a (directional)

bus from pi j only to p(i+1) j if and only if i + 1 ≤ n, and to pi(j+1) if and only if j + 1 ≤ n,

as shown in Figure 11.1 on the following page. As shown in the figure, we also denote by

E, S, N, and W the ports of pi j to the buses going to pi(j+1), going to p(i+1) j, coming from

pi(j−1), and coming from p(i−1) j, respectively.

We assume that the input graph G = (V, E), |V| = n, is given by its incidence matrix I,

and that each processor pi j knows the value of Ii j.

The DRN R works as follows: Each processor pi j, i < j fuses its W and S ports if and

only if Ii j = True. Analogously, each processor pi j, i > j fuses its N and E ports if and only

if Ii j = True. Finally, each processor pii fuses all of its ports.

CHAPTER 11. CONSTANT TIME RN COMPUTATIONS. 152

. . .

.

. . .

. . .

. . .

1n
p

nnp

ijp

n1
p

21
p

11
p 12

p

22
p

. . .

. . .

. . .

. . .

. . .

N

S
E

W

Figure 11.1: A mesh of n× n processors

Then, a signal is placed by p11 on both its outgoing buses. If pnn receives some signal

(either the original one emitted by p11 or the signal corresponding to a collision) the input

is accepted; otherwise, the input is rejected.

It is immediate that R solves GAP1,n, by the same argument as in Lemma 7.1 on page 97

(also note that a similar construction is presented and proved correct in [94]). In addition,

the content of the signal received by pnn is clearly immaterial, so a bus of width 1 suffices.

The proof is thus complete.

Recall now that the graph G(M, x) is the graph of configurations of the Turing machine

M working on input x (see the discussion immediately following Corollary 7.2 on page 98

for a precise definition).

Lemma 11.5 For any language L ∈ NSPACE(log n) (with the associated NSPACE(log n) Tur-

ing machine M accepting L), and given some word x, |x| = n, there exists a constant time CREW

DRN algorithm using poly(n) processors and buses of width 1 that computes G(M, x) (as an

incidence matrix I).

Proof. This fact is obtained by the same argument as the one presented in the proof of

Lemma 7.3 on page 100. Indeed, except for the distribution of input x to processors, there

CHAPTER 11. CONSTANT TIME RN COMPUTATIONS. 153

R

k+1R

kR

k−1R

1R

. . .

. . .

. . .

. . .

.

. . .

. . .

. . .

. . .

. . .
. . .

1

k−1

k+1

n+1

k

U

D

ij

ij

ij

ij

ij

p

p

p

p

p

Figure 11.2: A collection of n meshes connected together

is no interprocessor communication; as such, any parallel machine will do.

Thus, the computation of G(M, x) = (V, E) will be performed by the same mesh of

processors R depicted in Figure 11.1 on the preceding page, this time of size n′× n′ (where

n′ = |V|). In addition, the desired input distribution will be accomplished by n additional

meshes identical to R. We will denote these meshes by Ri, 1 ≤ i ≤ n. For any 1 ≤ i, j ≤ n′

and 1 ≤ k ≤ n, the processor at row i, column j in mesh Rk [R], will be denoted by pk
i j

[pn+1
i j]. Each processor pk

i j has two new ports U and D. There exists a bus connecting port

D of pk
i j to port U of pk+1

i j for any 1 ≤ k ≤ n. The n + 1 meshes and their interconnection

are shown in Figure 11.2.

At the beginning of the computation, xk, the kth symbol of input x, is stored in a register

of processor Pk
11, 1 ≤ k ≤ n.

We note from the proof of Lemma 7.3 that each processor pn+1
i j of R is responsible

CHAPTER 11. CONSTANT TIME RN COMPUTATIONS. 154

for checking the existence of a single edge (i, j) of G(M, x). In order to accomplish this, it

needs only one symbol xhi j from x, namely the symbol scanned by the head of the input tape

in configuration i. We assume that all the processors pk
i j, 1 ≤ k ≤ n, know the configuration

i (and thus the value of hi j).

It remains therefore to show now how xhi j reaches processor pn+1
i j in constant time and

we are done. Indeed, after this distribution is achieved, R is able to compute the incidence

matrix I exactly as shown in the proof of Lemma 7.3. The set of n + 1 meshes performs the

following computation: For all 1 ≤ k ≤ n and 1 ≤ i, j ≤ n′,

1. Each pk
11 broadcasts xk to all the processors in Rk. To do this, all processors pk

i j fuse

together their N, S, E, and W ports, and then pk
11 places xk on its outgoing buses.

2. Each pk
i j compares k and hi j, and writes True in one of its registers d if they are equal

and False otherwise.

3. Each pk
i j fuses its U and D ports, thus forming i× j “vertical” buses.

4. Each pk
i j for which d = True places xk on its port D.

5. Finally, each pn+1
i j stores the value it receives on its U port. This is the value of xhi j it

needs in order to compute the element Ii j of the incidence matrix.

It is immediate that the above processing takes constant time. In addition, it is also

immediate that exactly one processor writes on each “vertical” bus, and thus no concurrent

write takes place. Indeed, there exists exactly one processor pk
i j, 1 ≤ k ≤ n, such that

k = hi j. Therefore, we realized the input distribution.

Ii j is then computed by processor pn+1
i j without further communication, as shown in

the proof of Lemma 7.3. The construction of the DRN algorithm that computes I is there-

fore complete. Clearly, buses of width 1 are enough for the whole processing, since x is

a word over an alphabet with 2 symbols (as per the discussion immediately following

Corollary 7.2 on page 98).

CHAPTER 11. CONSTANT TIME RN COMPUTATIONS. 155

Given Lemmas 11.4 and 11.5, the proof of Theorem 11.3 on page 151 is immediate:

Proof of Theorem 11.3. That the Collision resolution rule is the most powerful follows

from Theorem 11.2 on page 150. It remains to be shown only that a bus width 1 suffices.

Given some language L in NSPACE(log n), let M be the (NSPACE(log n)) Turing ma-

chine accepting L. For any input x, the DRN algorithm that accepts L works as follows:

Using Lemma 11.5 on page 152, it obtains the graph G(M, x) of the configurations of M

working on x (by computing in effect the incidence matrix I corresponding to G(M, x)).

Then, it applies the algorithm from Lemma 11.4 on page 151 in order to determine whether

vertex n (halting/accepting state) is accessible from vertex 1 (initial state) in G(M, x), and

accepts or rejects x, accordingly. In addition, note that the values Ii j computed by (and

stored at) pn+1
i j in the algorithm from Lemma 11.5 are in the right place as input for pi j

in the algorithm from Lemma 11.4 (that uses only the mesh R). It is immediate given

the aforementioned lemmas that the resulting algorithm accepts L and uses no more than

poly(n) processors, and unitary width for all the buses.

The proof is now complete, since all the problems solvable in constant time on RN are

included in NLOGSPACE.

11.3 Open Problems

By Theorem 11.2 on page 150 and Theorem 11.3 on page 151 we found that there exists

a very strong similarity between the two models with reconfigurable buses, the RN and

the RMBM: Not only they solve the same problems (namely, exactly all the problems in

NLOGSPACE, or, conforming to Claim 2 on page 110, exactly all the problems solvable in

real time), but in both cases (a) the smallest possible bus width is enough for all problems,

and (b) the Collision resolution rule is the most powerful (even more powerful than the

Combining rule).

We conclude this chapter by mentioning a set of intriguing open problems related to

CHAPTER 11. CONSTANT TIME RN COMPUTATIONS. 156

such a characterization:

First, the Collision resolution rule is established as the most powerful only for constant

time algorithms. Minor changes to the proof of Theorem 11.2 also extend the result to

the RMBM and RN algorithms using polynomially bounded resources and running in

poly(n) time. Thus, the extreme cases are established. As such, a possible generalization

of our results is to investigate whether this property holds for intermediate cases, e.g., for

RMBM/RN algorithms running in polylogarithmic time. We expect an affirmative answer.

As well, we note an apparent contrast between the power of conflict resolution rules

for models with reconfigurable buses (RMBM and RN) on one hand, and for shared mem-

ory models (PRAM) on the other hand. According to our results (and with the expected

generalization mentioned in the above paragraph), Collision is the most powerful rule on

RMBM/RN. By contrast, it is widely believed that the Combining CRCW PRAM is more

powerful than the CRCW PRAM using the equivalent of a Collision resolution rule. To our

knowledge however no proof with this respect exists to date. We believe that an investi-

gation in this direction is an interesting pursuit. We also believe that the contrast between

RN and PRAM is not only apparent (that is, we believe that the Combining CRCW PRAM

is indeed more powerful than the Collision CRCW PRAM).

Chapter 12

Conclusions and Open Problems

Classical complexity theory is of central concern not only for theorists, but also for prac-

titioners. For example, the existence of a lower complexity bound for some problem is an

important fact: No matter how clever a program is, the bound cannot be overcome. On

the other hand, as noted in Chapter 2 on page 10, the term “real time” is used by the com-

plexity theorists in a somewhat different manner than in the real-time systems community.

Thus, as useful as a complexity theory is, practitioners in the real-time systems area do not

have such a theory to refer to. As a consequence, any question related to resource alloca-

tion and even solvability for a real-time problem is unique, in the sense that the answer

to such a question should be developed from scratch (either by experiments or using in-

dividualized proofs). A complexity theoretic approach to the real-time algorithms should

offer a common ground to which practitioners can refer in order to get readily available

answers to this kind of questions.

The model of well-behaved timed ω-languages intends to bridge the gap between theo-

rists (i.e., complexity theory) and the systems researchers (i.e., practice): While it is a formal

model, it captures all the features of real-time computations as understood by the systems

community. Therefore, this model has little in common to the theorists’ real-time concept

(which more often than not stands for on-line and linear time). In particular, we believe

157

CHAPTER 12. CONCLUSIONS. 158

that well-behaved timed ω-languages accurately model the notion of real-time computa-

tion used in the systems community.

A note on the differences and similarities between timed ω-languages (that is, real-time

algorithms) and classical formal languages (that is, classical algorithms) is in order. On one

hand, it is immediate that formal languages are particular cases of timed ω-languages. In-

deed, save for the time sequence, any word is a timed ω-word. If one relies on the seman-

tics of the time sequence, one can add the time sequence 00 . . . 0 to a classical word and

obtain the corresponding timed ω-word. However, none of the timed ω-words obtained

in this manner is well-behaved. We have thus a crisp delimitation between real-time and

classical algorithms, while keeping the formalisms as unified as possible. Moreover, the

devices that are used for recognition of timed ω-languages enjoy the same crisp delimita-

tion. Indeed, an acceptor for a timed language is simply an algorithm running on some

existing model of computation. The timeliness constraints are given by the semantics of

the timed ω-word that is received as input. Not only such a construction takes full advan-

tage of the existing results from classical complexity theory, but it is also close to the real

world, where real-time computations are carried out by normal computers under timing

constraints that are imposed by the external environment (that is, imposed by the time

sequence included in the input) over input and/or output.

We defined complexity classes for timed ω-languages, that capture an intuitive notion

of real-time efficiency, and studied the relations between these classes and between them

and existing complexity classes. In particular, we showed that parallel real-time compu-

tations form an infinite hierarchy with respect to the number of processors. In addition,

this result is invariant with respect to the model of parallel computation involved, and

independent of the characteristics (that is, speed) of the particular processors used by the

algorithms. From a practical point of view, Theorem 6.9 on page 93 emphasizes the need

for looking into parallel implementations, since this theorem shows that parallelism can

CHAPTER 12. CONCLUSIONS. 159

add computational power, in a more general sense than mere speed, to a real-time appli-

cation.

Granted, the languages PURSUITk are primarily of theoretical interest. Most practical

real-time applications feature explicit deadlines imposed on the computation. As such, we

focused next on characterizing this latter class of computations. Given any language that

can be accepted by a machine using logarithmic work space, we showed in Theorem 7.10

on page 108 that such a language can be accepted by a parallel machine with polynomially

bounded resources, in the presence of any (that is, however tight) real-time constraints.

The way Theorem 7.10 has been obtained (by means of Theorem 7.6 on page 104) sug-

gests an even stronger result. Indeed, according to Theorem 7.6, NLOGSPACE computa-

tions are the only computations in the classical sense that can be performed in constant time

by DRMBMs. This suggests that the relation between real time and NLOGSPACE is even

stronger, the two classes being in fact identical. If it were not, that is, for those real-time al-

gorithms that do not feature explicit deadlines. . . We offered, however, good evidence that

such class of computations in included in NLOGSPACE once the real-time constraints are

eliminated. Specifically, we showed that pursuing outside the real-time domain is easy (in-

deed, we found in Theorem 8.1 on page 111 that, though hard to recognize, the languages

PURSUITk are even in LOGSPACE once the real-time constraints are eliminated). Then,

Theorems 8.5 on page 115, 8.9 on page 121, 8.10 on page 122, and 8.16 on page 128 show

that both d-algorithms and c-algorithms (arguably the archetype of real-time input arrival)

are little more than on-line algorithms with added real-time constraints on input, and that

in both cases these restrictions on input impose in effect explicit deadlines on the output.

This allows us to state Claim 2 on page 110, which offers a nice counterpart of the paral-

lel computation thesis [45, 70]. In this thesis, NC is conjectured to contain exactly all the

computations that admit efficient (poly(n) processors and polylogarithmic running time)

parallel implementations. By contrast, we conjecture that NLOGSPACE contains exactly

CHAPTER 12. CONCLUSIONS. 160

all the computations that admit efficient (poly(n) processors) real-time parallel implemen-

tations.

To summarize, we believe that the two main points of the research described in this

thesis are the following:

1. We offered a consistent, expressive, and realistic model for real-time computations.

2. We offered a complexity theoretic characterization for parallel real-time computa-

tions. Most importantly, we find that real-time computations pertain to a well stud-

ied class (NLOGSPACE).

12.1 Open Problems

We believe that this thesis opens several directions for future research. We presented some

incidental open problems in Section 11.3 on page 155. We summarize now what we believe

to be the major directions opened by our work.

12.1.1 Timed Languages In Practice

One of the conjectured properties of timed ω-languages is their applicability and useful-

ness in practice. We believe that this model would be a useful additional tool in charac-

terizing problems from many areas of the real-time systems practice such as real-time and

active database systems [16, 69, 68, 91, 92], industrial applications [58, 86], or routing in ad

hoc networks [18, 25, 46].

This is supported by the models developed in Chapter 5 on page 58. Indeed, we have

offered there a formulation of the recognition problem in real-time database systems. Since

the recognition problem is an important tool for determining the complexity of queries

in classical database systems [2], we believe that one is able to derive similar complexity

results in the real-time domain using our model.

CHAPTER 12. CONCLUSIONS. 161

In particular, one of the practical areas that we are especially interested in is the prob-

lem of computing approximate answers to queries in real-time database systems whenever

exact answers cannot be returned within the given time constraints (a data model and

a query language—which is an extension of relational algebra—for such a processing is

given in [91, 92]). At first sight, this is almost a non-problem, as relational algebra queries

can be computed in constant time with a polynomially bounded number of processors [2].

That is, exact answers can be given even in the most constrained real-time environment.

However, a more in-depth look reveals that, in practice, the number of processors that

are available is likely to be lower. In addition, communication and synchronization is-

sues are also likely to be significant, and, most important, the complexity of the rule-based

system that is part of a real-time database systems is an unexplored component. Thus, ad-

ditional interesting issues related to scalability, communication, and the active component

of real-time databases have to be taken into account. We note that simulation-based results

regarding the performance of real-time approximate query processing mechanisms show

that such mechanisms do offer an improved predictability [92]. However, these results are

restricted in scope for two reasons: On one hand, only one approximate query processing

system is analyzed; thus, no general result on the upper and lower bounds for the im-

provement is available. On the other hand, no analytical expression of the improvement

in predictability can be obtained by simulations. Thus, we note here, again, the problem

that we signal the the beginning of this chapter: When faced with the problem of design-

ing a real-time database system, a practitioner is currently faced with a unique problem;

no general predictions of the system performance exists.

We thus identify the complexity analysis of real-time database systems (as a common

ground to which practitioners can refer) to be a promising research direction continuing

(and specializing) the work from this thesis. To our knowledge no attempt at such a com-

plexity theoretic characterization exists to date.

In the same direction (that is, of building a common ground for practitioners), we note

CHAPTER 12. CONCLUSIONS. 162

that a comparative performance evaluation of routing algorithms was proposed for the

first time in [25], where several routing algorithms are compared based on discrete event

simulation. To our knowledge, no analytical model has been proposed to date. Our model

of the routing problem in ad hoc networks (Section 5.4 on page 70) has the potential of

becoming such an analytical tool. We believe that using this model in order to derive

bounds for the performance of routing algorithms in ad hoc networks is another interesting

research direction.

12.1.2 Approximation Algorithms

A consequence of Claim 2 on page 110 is that there are many problems that cannot be

solved in real time. Thus, the following research direction becomes useful: Which are

those problems that, although possibly not solvable in the real-time environment imposed

by some real-time application, admit “good” approximate solutions provably achiev-

able in any real-time environment? Do they form a well-defined complexity class? If

so, which are the problems pertaining to such a class? This thesis offers a solid ba-

sis for the pursuit of this direction, since we identify here a class of candidates for ap-

proximating algorithms. In addition, this class of candidates is either NLOGSPACE or

F-DRMBM(poly(n), poly(n), O(1)), whichever is more natural for the given problem,

since they are in fact identical as shown by Theorem 7.6 on page 104.

As a starter for such a direction, along with identifying some problems not admit-

ting real-time computable approximate solutions, we showed that real-time approxima-

tion schemes do exist. Interestingly enough, we found with relative ease such an approx-

imation algorithm for quite a hard (in fact, NP-complete) problem, namely bin packing.

This is a nice argument in favor of the relations that we discovered between NLOGSPACE,

CHAPTER 12. CONCLUSIONS. 163

RMBM, and real-time computations, and a good motivation for the use of timed ω-

languages in the study of (approximate or not) real-time computations. However, Chap-

ter 10 on page 143 offers only an incipient discussion on real-time approximation algo-

rithms. We believe that the field is open to a multitude of future research subjects.

12.1.3 From Complexity Theory to Specification and Validation

Besides the immediate utility of complexity theory (which offers general results, including

upper and lower bounds for resource requirements), it is often the case that such a theory

can be used to generate tools for system specification and validation. For example, most

work in compiler design is based on formal languages, and at least two stages of a compiler

(lexical analysis and parsing) are based on formal grammars and their associated automa-

ta [3].

Specification and validation of real-time systems is not in the scope of this thesis, which

is entirely dedicated to complexity theoretic results. Nonetheless, the formalism of timed

ω-languages presented here supports the development of specification and validation

tools. We believe that developing such tools is another promising future research direc-

tion. Specifically, this process involves combining the formalism of timed ω-languages

with a precise semantics for their acceptors (based, for example, on temporal logic, as sug-

gested in another context in [40]).

In the same direction, real-time distributed models are particularly interesting. Indeed,

distributed systems are increasingly present in nowadays computing practice, including

the area of real-time computations. The extension from one timed ω-word (that models

a real-time computation in general) to a set of n such words communicating with each

other (as an explicit model for distributed real-time computations) has been sketched in

Section 5.4.4 on page 76. We believe that further developing this construction is yet another

promising research direction.

CHAPTER 12. CONCLUSIONS. 164

12.2 Incidental results

We conclude this thesis by summarizing results that, although not an integral part or

this work’s main research interest (to model and characterize real-time computations), are

nonetheless noteworthy.

Characterization of DRMBM and DRN computations We determined the computa-

tional power of DRMBM (directed reconfigurable multiple bus machines) running in con-

stant time. We showed that DRMBM and DRN (directed reconfigurable networks) with

constant running time have the same computational power. In addition, we showed that,

for both RN and RMBM computations, no conflict resolution rule is more powerful than

Collision (the RMBM result is given in Theorem 7.6 and Corollary 7.8 on page 105; as well,

see the proof of Lemma 7.5 on page 103 which is the crux of the whole result; the RN result

is established by Theorem 11.2 on page 150).

We note that the discussion on the comparative computational power of various resolu-

tion rules is of very reduced importance with respect to tightly coupled parallel machines

such as the PRAM. Indeed, the combinatorial logic of Combining CRCW PRAM can be

implemented using no more resources than the ones needed for the implementation of,

say, the CREW PRAM [5]. Still, it is argued [88], and we agree with this argument, that

the Priority rule is of questionable feasibility in the case of RMBM. In fact, the Combining

rule on such systems is not even mentioned as a possibility, it being considered even less

feasible. The reason for this statement is that RMBM is a loosely coupled system: The two

(or more) processors that write on some bus are physically connected only through the bus

itself. Thus, the sole responsibility of combining the the values written by the processors

falls on the bus. Buses, however appear to take in the existing implementations of RMBM-

like devices [44] a form equivalent to a set of plain electrical wires. Therefore, it is unlikely

that performing the relatively complex computations required by the Combining rule (or,

for that matter, Priority or Common rules) at the bus level is possible. In the case of RN,

CHAPTER 12. CONCLUSIONS. 165

some argument can be made for the feasibility of the Combining conflict resolution rules.

Even so, the feasibility of such rules remains questionable to a high degree.

Questionable or not, the practical feasibility of rules like Priority or Combining on spa-

tially distributed resources such as a buses is no longer of interest, at least in the area of

constant time computations. Indeed, such rules are simply not necessary, since the Colli-

sion rule is all that is needed.

Finally, we identified a gap in the complexity hierarchy of RMBM computations as well:

As far as constant time computations are concerned, there is no need for a large bus width;

instead, buses composed of single wires are sufficient. This result is stated in Theorem 7.6

and Corollary 7.8 on page 105. As expected, the same result holds for constant time RN

computations. This is formally shown in Theorem 11.3 on page 151.

The meaning of “parallel” is not exclusively “faster” Another incidental but nonethe-

less important result is a precise characterization of (real-time) maximization problems

over independence systems, showing that a problem pertaining to this class is solvable in

real time if and only if it is a matroid and the size of an optimal solution is computable in

real-time. Incidentally, we note that our characterization of real time optimization prob-

lems is more precise than the characterization of the larger class of problems with fast par-

allel algorithms [45]: Both determine a subclass of independence systems (matroids with

the size of optimal solution computable in real time, and matroids, respectively). However,

independence systems that are not matroids but still admit fast parallel algorithms exist.

By contrast, matroids with the size of optimal solution computable in real time are exactly

all the independence systems solvable in real-time, as shown in Theorem 9.5 on page 137.

We believe that such a tight characterization is important from a practical point of view, as

non-membership in class M defined in Theorem 9.5 implies the impossibility of solving

the given problem in real time. Thus, one should look in this case to either restricting the

problem or finding reasonably good approximative solutions instead of exact ones.

CHAPTER 12. CONCLUSIONS. 166

Based on this characterization, we also generalized previous findings conforming to

which parallel implementations can do more than speed up the computation [9]. Indeed,

we use Theorem 9.5 to show that parallel means better for a large class of problems and for

any set of real-time constraints. Indeed, Corollary 9.7 on page 141 shows that there exists

not only a problem, but a whole family of problems for which a parallel implementation

can unboundedly improve the offered solution.

Bibliography

[1] S. O. AANDERAA, On k-tape versus (k− 1)-tape real time computation, in Complexity of
Computation, R. Karp, ed., SIAM-AMS Proceedings, volume 7, 1974, pp. 75–96.

[2] S. ABITEBOUL, R. HULL, AND V. VIANU, Foundations of Databases, Addison-Wesley,
Reading, MA, 1995.

[3] A. V. AHO, R. SETHI, AND J. D. ULLMAN, Compilers, Principles, Techniques, and Tools,
Addison-Wesley, Reading, MA, 1985.

[4] S. G. AKL, Discrete steepest descent in real time, to appear in Parallel and Distributed
Computing Practices.

[5] , Parallel Computation: Models and Methods, Prentice-Hall, Upper Saddle River, NJ,
1997.

[6] , Nonlinearity, maximization, and parallel real-time computation, in Proceedings of
the Twelfth Conference on Parallel and Distributed Computing and Systems, Las ve-
gas, NV, Nov. 2000, pp. 31 – 36.

[7] , Superlinear performance in real-time parallel computation, in Proceedings of the
Thirteenth Conference on Parallel and Distributed Computing and Systems, Ana-
heim, CA, Aug. 2001, pp. 505 – 514.

[8] , Secure file transfer: A computational analog to the furniture moving paradigm, in Pro-
ceedings of the Conference on Parallel and Distributed Computing Systems, Cam-
bridge, MA, November 1999, pp. 227–233.

[9] S. G. AKL AND S. D. BRUDA, Parallel real-time optimization: Beyond speedup, Paral-
lel Processing Letters, 9 (1999), pp. 499–509. For a preliminary version see http://-
www.cs.queensu.ca/home/akl/techreports/beyond.ps.

[10] , Parallel real-time cryptography: Beyond speedup II, in Proceedings of the Interna-
tional Conference on Parallel and Distributed Processing Techniques and Applica-
tions, Las Vegas, NV, June 2000, pp. 1283–1290. For a preliminary version see http://-
www.cs.queensu.ca/home/akl/techreports/realcrypto.ps.

167

BIBLIOGRAPHY 168

[11] , Parallel real-time numerical computation: Beyond speedup III, International Journal
of Computers and their Applications, 7 (2000), pp. 31–38. For a preliminary version
see http://www.cs.queensu.ca/home/akl/techreports/realnum.ps.

[12] S. G. AKL. AND L. FAVA LINDON, Paradigms admitting superunitary behaviour in parallel
computation, Parallel Algorithms and Applications, 11 (1997), pp. 129–153.

[13] S. G. AKL AND G. R. GUENTHER, Broadcasting with selective reduction, in Proceedings
of the IFIP Congress, 1989, pp. 515–520.

[14] R. ALUR AND D. L. DILL, A theory of timed automata, Theoretical Computer Science,
126 (1994), pp. 183–235.

[15] R. J. ANDERSON, E. W. MAYR, AND M. K. WARMUTH, Parallel approximation algo-
rithms for bin packing, Information and Computation, 82 (1989), pp. 262–277.

[16] L. BÆKGAARD AND J. C. GODSKESEN, Real-time event control in active databases, Jour-
nal of Systems and Software, 42 (1998), pp. 263–271.

[17] S. K. BARUAH AND A. BESTAVROS, Real-time mutable broadcast disks, in Real-Time
Database and Information Systems, A. Bestavros and V. Fay-Wolfe, eds., Boston, MA,
1997, Kluwer Academic Publishers, pp. 3–21.

[18] S. BASAGNI, I. CHLAMTAC, V. R. SYROTIUK, AND B. A. WOODWARD, A distance
routing effect algorithm for mobility (DREAM), in The Fourth Annual ACM/IEEE Inter-
national Conference on Mobile Computing and Networking, Dallas, TX, 1998, pp. 76
– 84.

[19] Y. BEN-ASHER, K.-J. LANGE, D. PELEG, AND A. SCHUSTER, The complexity of recon-
figuring network models, Information and Computation, 121 (1995), pp. 41–58.

[20] Y. BEN-ASHER, D. PELEG, AND A. SCHUSTER, The power of reconfiguration, Journal of
Parallel and Distributed Computing, 13 (1991), pp. 139–153.

[21] A. BESTAVROS AND V. FAY-WOLFE, eds., Real-Time Database and Information Systems,
Kluwer Academic Publishers, Boston, MA, 1997.

[22] R. V. BOOK AND S. A. GREIBACH, Quasy–realtime languages, Mathematical Systems
Theory, 4 (1970), pp. 97–111.

[23] A. BORODIN AND R. EL-YANIV, On-line Computation and Competitive Analysis, Cam-
bridge University Press, 1998.

[24] R. P. BRENT, The parallel evaluation of general arithmetic expressions, Journal of the ACM,
21 (1974), pp. 201–206.

BIBLIOGRAPHY 169

[25] J. BROCH, D. A. MALTZ, D. B. JOHNSON, Y.-C. HU, AND J. JETCHEVA, A performance
comparison of multi-hop wireless ad hoc network routing protocols, in The Fourth Annual
ACM/IEEE International Conference on Mobile Computing and Networking, Dallas,
TX, 1998, pp. 85–97.

[26] S. D. BRUDA AND S. G. AKL, Real-time computation: A formal definition and its applica-
tions, to appear in International Journal of Computers and Applications. For a pre-
liminary version see http://turing.ubishops.ca/home/bruda/papers/timed-langs.

[27] , On the data-accumulating paradigm, in Proceedings of the Fourth International
Conference on Computer Science and Informatics, Research Triangle Park, NC, Oct.
1998, pp. 150–153. For an extended version see http://turing.ubishops.ca/home/-
bruda/papers/data_accum.

[28] , The characterization of data-accumulating algorithms, Theory of Computing Sys-
tems, 33 (2000), pp. 85–96. For a preliminary version see http://turing.ubishops.ca/-
home/bruda/papers/data_accum2.

[29] , Towards a meaningful formal definition of real-time computations, in Proceedings
of the ISCA 15th International Conference on Computers and Their Applications,
New Orleans, LA, Mar. 2000, pp. 274–279. For an extended version see http://-
turing.ubishops.ca/home/bruda/papers/timed-langs.

[30] , A case study in real-time parallel computation: Correcting algorithms, Journal of
Parallel and Distributed Computing, 61 (2001), pp. 688–708. For a preliminary version
see http://turing.ubishops.ca/home/bruda/papers/c-algorithms.

[31] , On the necessity of formal models for real-time parallel computations, Parallel Pro-
cessing Letters, 11 (2001), pp. 353 – 361. For a preliminary version see http://-
turing.ubishops.ca/home/bruda/papers/rttm.

[32] , Parallel real-time complexity: A strong infinite hierarchy, in Proceedings of VIII In-
ternational Colloquium on Structural Information and Communication Complexity,
Vall de Núria, Spain, June 2001, Carleton Scientific, pp. 45–59. For an extended ver-
sion see http://turing.ubishops.ca/home/bruda/papers/pursuit.

[33] , Pursuit and evasion on a ring: An infinite hierarchy for parallel real-time systems,
Theory of Computing Systems, 34 (2001), pp. 565–576. For an extended version see
http://turing.ubishops.ca/home/bruda/papers/pursuit.

[34] , On the relation between parallel real-time computations and logarithmic space, in Pro-
ceedings of the IASTED International Conference on Parallel and Distributed Com-
puting and Systems, Cambridge, MA, Nov. 2002, pp. 102–107. For an extended ver-
sion see http://turing.ubishops.ca/home/bruda/papers/nlogspace.

[35] J. CLIFFORD AND A. CROCKER, The Historical Relational Data model (HRDM) Revisited,
Benjamin/Cummings, CA, 1993, pp. 6–26.

BIBLIOGRAPHY 170

[36] J. H. CONWAY, On Numbers and Games, Academic Press, 1976.

[37] S. A. COOK, A taxonomy of problems with fast parallel algorithms, Information and Con-
trol, 64 (1985), pp. 2–22.

[38] T. H. CORMEN, C. E. LEISERSON, AND C. STEIN, Introduction to Algorithms, MIT
press, Cambridge, MA, 2 ed., 2001.

[39] E. CSUHAJ-VARJÚ, J. DASSOW, J. KELEMEN, AND G. PĂUN, Grammar Systems. A
Grammatical Approach to Distribution and Cooperation, Gordon and Breach, London,
1994.

[40] E. A. EMERSON, Real-time and the Mu-calculus (preliminary report), in Real-Time: The-
ory in Practice, J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg, eds.,
1991, pp. 176–194. Springer Lecture Notes in Computer Science 600.

[41] P. C. FISCHER, Turing machines with a schedule to keep, Information and control, 11
(1967), pp. 138–146.

[42] P. C. FISCHER AND C. M. R. KINTALA, Real-time computations with restricted nondeter-
minism, Mathematical Systems Theory, 12 (1979), pp. 219–231.

[43] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman and Company, 1979.

[44] J. P. GRAY AND T. A. KEAN, Configurable hardware: A new paradigm for computation, in
Proceedings of the Tenth Carltech Conference on VLSI, C. L. Seitz, ed., Cambridge,
MA, Mar. 1989, MIT Press, pp. 279–295.

[45] R. GREENLAW, H. J. HOOVER, AND W. L. RUZO, Limits to Parallel Computation: P-
Completeness Theory, Oxford University Press, New York, NY, 1995.

[46] Z. J. HAAS, Panel report on ad hoc networks—Milcom’97, Mobile Computing and Com-
munications Review, 1 (1998), pp. 15–18.

[47] T. J. HARRIS, A survey of PRAM simulation techniques, ACM Computing Surveys, 26
(1994), pp. 187–206.

[48] J. HARTMANIS, P. M. LEWIS II, AND R. E. STEARNS, Classification of computations by
time and memory requirements, in Proceedings of the IFIP Congress 65, Washington,
DC, 1965, pp. 31–35.

[49] J. E. HOPCROFT AND J. D. ULLMAN, Formal languages and their relation to automata,
Addison-Wesley, Reading, MA, 1969.

[50] S. IRANI AND A. R. KARLIN, Online computation, in Approximation Algorithms for
NP-Hard Problems, D. Hochbaum, ed., International Thomson Publishing, 1997,
pp. 521–564.

BIBLIOGRAPHY 171

[51] K. JEFFAY, The real-time producer/consumer paradigm: A paradigm for the construction of
efficient, predictable real-time systems, in Proceedings of the 1993 ACM/SIGAPP Sym-
posium on Applied Computing: States of the Art and Practice, 1993, pp. 796–804.

[52] N. D. JONES, Computability and Complexity from a Programming Perspective, MIT Press,
Cambridge, MA, 1997.

[53] R. KANNAN AND B. KORTE, Approximative combinatorial algorithms, in Mathematical
Programming, R. W. Cottle, M. L. Kelmanson, and B. Korte, eds., Elsevier Science
Publishers, Amsterdam, The Nederlands, 1981, pp. 195–248.

[54] D. KNUTH, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,
Addison-Wesley, Reading, MA, 1969.

[55] G. KOBE, The 42-volt revolution, Automotive Industries, (Cover story, August 1998).

[56] C. KRAHE, Airbus fly-by-wire aircraft at a glance: A pilot’s first view, in FAST, vol. 20,
Airbus Industrie, December 1996, pp. 2–9. http://www.airbus.com/pdfs/customer-
/fast20/p2to9.pdf.

[57] C. M. KRISHNA AND K. G. SHIN, Real-Time Systems, McGraw-Hill, New York, 1997.

[58] H. W. LAWSON, Parallel Processing in Industrial Real-Time Applications, Prentice Hall,
Englewood Cliffs, NJ, 1992.

[59] M. R. LEHR, Y.-K. KIM, AND S. H. SON, Managing contention and timing constraints in
a real–time database system, in Proceedings of the 16th IEEE Real–Time Systems Sym-
posium, Pisa, Italy, Dec 1995, pp. 332–341.

[60] N. LEVESON AND J. STOLZY, Analyzing safety and fault tolerance using timed Petri nets,
in Proceedings of the International Joint Conference on Theory and Practice of Soft-
ware Development, 1985, pp. 339–355. Springer Lecture Notes in Computer Science
186.

[61] H. R. LEWIS AND C. H. PAPADIMITRIOU, Elements of the Theory of Computation,
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[62] F. LUCCIO AND L. PAGLI, The p-shovelers problem (computing with time-varying data), in
Proceedings of the 4th IEEE Symposium on Parallel and Distributed Processing, 1992,
pp. 188–193.

[63] , Computing with time–varying data: Sequential complexity and parallel speed–up, The-
ory of Computing Systems, 31 (1998), pp. 5–26.

[64] F. LUCCIO, L. PAGLI, AND G. PUCCI, Three non conventional paradigms of parallel
computation, in Parallel Architectures and Their Efficient Use, F. M. auf der Heide,
B. Monien, and A. L. Rosenberg, eds., Springer Lecture Notes in Computer Science
678, 1992, pp. 166–175.

BIBLIOGRAPHY 172

[65] A. MEYER AND P. C. FISCHER, On computational speed-up, in Conference Record of
1968 Ninth Annual Symposium on Switching and Automata Theory, Schenectady,
New York, 15–18 Oct. 1968, IEEE, pp. 351–355.

[66] M. NAGY, Parallelism in real-time computation, Master’s thesis, Department of Com-
puting and Information Science, Queen’s University, Oct. 2001.

[67] N. NAGY, The maximum flow problem: A real-time approach, Master’s thesis, Department
of Computing and Information Science, Queen’s University, Jan. 2001.

[68] ÖZGÜR ULSOY, Transaction processing in distributed active real-time database systems,
Journal of Systems and Software, 42 (1998), pp. 247–262.

[69] G. ÖZSOYOǦLU AND R. T. SONDGRASS, Temporal real-time databases: A survey, IEEE
Transactions on Knowledge and Data Engineering, 7 (1995), pp. 513–532.

[70] I. PARBERRY, Parallel Complexity Theory, John Wiley & Sons, New York, NY, 1987.

[71] W. PAUL, On–line simulation of k + 1 tapes by k tapes requires nonlinear time, Information
and Control, 53 (1982), pp. 1–8.

[72] M. O. RABIN, Real time computations, Israel Journal of Mathematics, 1 (1963), pp. 203–
211.

[73] G. RAMALINGAM AND T. REPS, On the computational complexity of dynamic graph prob-
lems, Theoretical Computer Science, 158 (1996), pp. 233–277.

[74] S. RAO KOSARAJU, Real-time pattern matching and quasi-real-time construction of suffix
trees (preliminary version), in Proceedings of STOC 94, Montreal, Quebec, Canada, May
1994, pp. 310–316.

[75] D. RAPPAPORT, Private communication.

[76] J. H. REIF, On dynamic algorithms for algebraic problems, Journal of Algorithms, 22
(1997), pp. 347–371.

[77] A. L. ROSENBERG, Real-time definable languages, Journal of the ACM, 14 (1967),
pp. 645–662.

[78] , On the independence of real-time definability and certain structural properties of
context-free languages, Journal of the ACM, 15 (1968), pp. 672–679.

[79] M. J. SERNA, Approximating linear programming is log-space complete for P, Information
Processing Letters, 37 (1991), pp. 233–236.

[80] M. J. SERNA AND P. G. SPIRAKIS, The approximability of problems complete for P, in
Optimal Algorithms, International Symposium Proceedings, H. Djidjev, ed., Varna,
Bulgaria, May–June 1989, pp. 193–204. Springer Lecture Notes in Computer Science
401.

BIBLIOGRAPHY 173

[81] B. SHRIVER, Foreword to [58].

[82] J. R. SMITH, The Design and Analysis of Parallel Algorithms, Oxford University Press,
1993.

[83] S. SWIERCZKOWSKI, Sets and Numbers, Routledge & Kegan Paul, London, UK, 1972.

[84] A. SZEPIETOWSKI, Turing Machines with Sublogarithmic Space, Springer Lecture Notes
in Computer Science 843, 1994.

[85] A. S. TANENBAUM, Computer Networks, Prentice Hall, Upper Saddle River, NJ, 3 ed.,
1996.

[86] M. THORIN, Real-Time Transaction Processing, Macmillan, Hampshire, UK, 1992.

[87] J. L. TRAHAN, R. VAIDYANATHAN, AND C. P. SUBBARAMAN, Constant time graph
algorithms on the reconfigurable multiple bus machine, Journal of Parallel and Distributed
Computing, 46 (1997), pp. 1–14.

[88] J. L. TRAHAN, R. VAIDYANATHAN, AND R. K. THIRUCHELVAN, On the power of seg-
menting and fusing buses, Journal of Parallel and Distributed Computing, 34 (1996),
pp. 82–94.

[89] J. D. ULLMAN, A. V. AHO, AND J. E. HOPCROFT, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

[90] USENET, Comp.realtime: Frequently asked questions, Version 3.4 (May 1998). http://-
www.faqs.org/faqs/realtime-computing/faq/.

[91] S. V. VRBSKY, A data model for approximate query processing of real-time databases, Data
and Knowledge Engineering, 21 (1997), pp. 79–102.

[92] S. V. VRBSKY AND S. TOMIĆ, Satisfying timing constraints of real-time databases, Journal
of Systems and Software, 41 (1998), pp. 63–73.

[93] A. S. WAGNER, H. V. SREEKANTASWAMY, AND S. T. CHANSON, Performance models
for the processor farm paradigm, IEEE Transactions on Parallel and Distributed Systems,
8 (1997), pp. 475–489.

[94] B.-F. WANG AND G.-H. CHEN, Constant time algorithms for the transitive closure and
some related graph problems on processor arrays with reconfigurable bus systems, IEEE
Transactions on Parallel and Distributed Systems, 1 (1990), pp. 500–507.

[95] , Two-dimensional processor array with a reconfigurable bus system is at least as power-
ful as CRCW model, Information Processing Letters, 36 (1990), pp. 31–36.

[96] WWW, Processor farm, in The Free On-Line Dictionary of Computing, http://-
wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?farm.

BIBLIOGRAPHY 174

[97] H. YAMADA, Real-time computation and recursive functions not real-time computable, IRE
Transactions on Electronic Computers, EC-11 (1962), pp. 753–760.

Vita

Name: Stefan D. Bruda

Place and Year of Birth: Bucharest, Romania, 1971

Education:

• Polytechnic University of Bucharest, 1990–1996
B.Sc. (honors, engineering) 1995; M.Sc. (computer science) 1996

• Queen’s University at Kingston, 1997–2002
Ph.D. 2002

Experience:

• Romanian Academy of Sciences (Bucharest, Romania), Center for Advanced Re-
search in Machine Learning, Natural Language Processing and Conceptual Mod-
eling
Research Associate, 1995–1997

• Polytechnic University of Bucharest, Department of Computer Science
Teaching Fellow, 1996–1997

• Queen’s University, Department of Computing and Information Science
Teaching Fellow, 2000–2002

• Queen’s University, Department of Computing and Information Science
Teaching and Research Assistant, 1997–2001

Awards:

• Governmental fellowship (Romania, 1991–1996)

• R. S. McLaughlin Fellowship (Queen’s University, 1997–1998)

• Queen’s Graduate Award (Queen’s University, 1998–1999)

175

VITA. 176

• CITO Award for Academic Excellence (May 1999)

• Ontario Graduate Scholarship (Province of Ontario, 1999–2002)

Publications:

• S. D. BRUDA AND M. CIOCOIU, Generalized LR parser for unification based grammars, in
D. Tufis, ed., Language and Technology, Romanian Academy of Sciences, Bucharest,
1996, pp. 42–49 (in Romanian).

• S. D. BRUDA, On the computational complexity of context-free parallel communicating
grammar systems, in G. Păun and A. Salomaa, eds., New Trends in Formal Languages,
Springer Lecture Notes in Computer Science 1218, 1997, pp. 256–266.

• M. CIOCOIU AND S. D. BRUDA, GULiveR: Generalized unification based LR parser for
natural languages in D. Tufis and P. Andersen, eds., Recent Advances in Romanian
Language Technology, Romanian Academy of Sciences, 1997, pp. 38–51.

• D. TUFIS AND S. D. BRUDA, Structure markup in CES and preliminary statistics on Ro-
manian translation of Plato’s “Republic”, TELRI Newsletter, 5 (April 1997), pp. 23–27.

• S. D. BRUDA AND S. G. AKL, On the data-accumulating paradigm, in Proceedings of
the Fourth International Conference on Computer Science and Informatics, Research
Triangle Park, NC, October 1998, pp. 150–153.

• S. G. AKL AND S. D. BRUDA, Parallel real-time optimization: Beyond speedup, Parallel
Processing Letters, 9 (1999), pp. 499–509.

• S. D. BRUDA AND S. G. AKL, Towards a meaningful formal definition of real-time compu-
tations, in Proceedings of the ISCA 15th International Conference on Computers and
their Applications, New Orleans, LA, 2000, pp. 274–279.

• S. G. AKL AND S. D. BRUDA, Parallel real-time cryptography: Beyond speedup II, in
Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, NV, 2000, pp. 1283–1290.

• S. G. AKL AND S. D. BRUDA, Parallel real-time numerical computation: Beyond speedup
III, International Journal of Computers and their Applications, 7 (2000), pp. 31–38.

• S. D. BRUDA AND S. G. AKL, The characterization of data-accumulating algorithms, The-
ory of Computing Systems, 33 (2000), pp. 85–96. (Preliminary version in Proceed-
ings of the International Parallel Processing Symposium, San Juan, Puerto Rico, 1999,
pp. 2–6.)

• S. D. BRUDA AND S. G. AKL. A case study in real-time parallel computation: Correcting
algorithms, Journal of Parallel and Distributed Computing, 61 (2001), pp. 688–708.

VITA. 177

• S. G. AKL AND S. D. BRUDA, Improving a solution’s quality through parallel processing,
Journal of Supercomputing 19 (2001), pp. 219–231.

• S. D. BRUDA AND S. G. AKL, Parallel Real-Time Complexity: A Strong Infinite Hierar-
chy, in Proceedings of VIII International Colloquium on Structural Information and
Communication Complexity, Vall de Núria, Spain, June 2001, Carleton Scientific, pp.
45-59.

• S.D. BRUDA AND S.G. AKL, Pursuit and evasion on a ring: An infinite hierarchy for par-
allel real-time systems (extended abstract), in Proceedings of the Thirteenth ACM Sym-
posium on Parallel Algorithms and Architectures, July 2001, Crete Island, Greece,
pp. 312–313.

• S. D. BRUDA AND S. G. AKL, On the necessity of formal models for real-time parallel
computations, Parallel Processing Letters, 11 (2001), pp. 353–361.

• S.D. BRUDA AND S.G. AKL, Pursuit and evasion on a ring: An infinite hierarchy for
parallel real-time systems, Theory of Computing Systems, 34 (2001), pp 565–576.

• S. D. BRUDA AND S. G. AKL, The characterization of parallel real-time optimization prob-
lems, to appear in Proceedings of the 16th Annual International Symposium on High
Performance Computing Systems and Applications, June 2002, Moncton, NB.

• S. D. BRUDA AND S. G. AKL, Real-time computation: A formal definition and its applica-
tions, to appear in International Journal of Computers and Applications.

Preliminary version in Proceedings of the Workshop on Advances in Parallel and
Distributed Computational Models; in conjunction with the 15th Parallel and Dis-
tributed Processing Symposium, April 2001, San Francisco, CA. IEEE Computer So-
ciety Press, pp. [CD-ROM].

• S. D. BRUDA AND S. G. AKL, On the Relation Between Parallel Real-Time Computations
and Sublogarithmic Space, Tech. Rep. 2001-446, Department of Computing and Infor-
mation Science, Queen’s University, Kingston, ON.

