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Abstract

We present an incipient implementation of a programming language that allows programming of real-
time applications distributed over a network. We have several goals in mind: First, the language should
place the normal programmer (who tends to shy away from exceedingly formal constructs) in a com-
fortable environment. Secondly, programs written in this language should run on commodity systems,
without relying on real-time support from the kernel. Thirdly, the language separates the code from tim-
ing restrictions, thus allowing for code re-use. Last but not least, the language should be built on a sound
semantics and offer support for conformance testing and model checking.

1 Introduction

Real-time systems are systems where both the functional and the temporal behaviours are essential. The
correctness of the system depends not only on the result of computations, but also on the time at which the
results are produced. Building such systems has become increasingly difficult due to their use in larger and
more complex applications. This increased complexity and the sophisticated demands of such systems in
terms of safety and performance have generated increased interest in methodologies and tools that make
the analysis and modelling of computing systems possible in terms of executable models.

Many real-time programming languages are in existence. Typical such languages allow the specification
of time constraints along with the code being executed; the code then is restricted to run within the associ-
ated timing constraints. Examples include MPL [10] and RTC++ [8]. Timing restriction re-usability (which
is absent from the mentioned languages) is introduced in an object oriented environment by HRTC++ [12],
and can be further enhanced by introducing new constructs such as temporal abstract classes [11].

Languages like the ones mentioned above aim at easing the development and maintenance process of
systems by encapsulating timing information into the objects; although certainly possible within the un-
derlying (non-real-time) language, the development of distributed systems is not consciously considered.
However, distributed systems (more generally, concurrent systems) are becoming popular at a tremendous
rate. Languages such as DROL [17] address the distributed nature of systems explicitly. DROL is (once
more) an extension of C++. It describes on a meta-level the semantics of message passing, including timing
constraints; the semantics is based on asynchronous message passing. Timing constraints are, however em-
bedded in the objects that communicate with each other. DROL is implemented on a specialized, real-time
kernel.

∗This research was supported by the Natural Sciences and Engineering Research Council of Canada and by the Fond québécois de
recherche sur la nature et les technologies.
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Another approach is taken in the modelling language ROOM (Real-Time Object Oriented Modeling)
[15], which is based on establishing early operational models of the system and then refining them to
implementation. Modeling of systems with ROOM is performed by designing actors communicating via
point-to-point links by sending and receiving messages. The behavior of an actor is represented by an ex-
tended state machine. Incoming messages trigger transitions associated with the actor’s state machine.
ROOM does not constrain the actors in any way; instead, annotations to the message sequence charts can
be used to indicate timing constraints, and constraints such as deadlines and periodicity are specified on
end-to-end computations.

The particular way ROOM imposes timing constraints is worth noting as being opposed to the other
programming languages. We believe that imposing end-to-end constraints is the logical way to go, for
indeed timing constraints represent global, application level properties. When using a real-time language
such as HRTC++ one must perform an extra step to infer the local constraints expressible by the language
from the global constraints included in the specification. It is however conceivable that local constraints are
some times needed (or at least handy) to obtain the desired behaviour.

A semantics of communication similar to ROOM’s is also possible in a more general setting [9]: An
RT-Synchronizers− system is defined as a collection of “active objects” that executes concurrently, commu-
nicating via messages; timing constraints are imposed on the messages. In this model, the functionality of
objects can be implemented using a general purpose language (as opposed to ROOM’s restricted model),
and then the objects are glued together by interaction constraints. The constraints are established on top of
ordinary objects. The RT-Synchronizers− semantics contains no reference to end-to-end (or global) timing
constraints, though they are implicitly supported.

We also note that ROOM—as opposed to the other languages presented before—is a modelling rather
than a general purpose language, so the language is based on formal models such as finite automata. Many
other similar languages exist [13], along with languages based on process algebrae such as CSP [14] or their
underlying semantics of labelled transition systems [7]. This kind of languages are preferred because of
their suitability for formal model checking and conformance testing. On the other hand, they seem—at least
in our experience—scary for the average computer science graduate (and thus for future programmers) who
is rather used to programming in an imperative language.

We address in what follows the issue of real-time programming. We consider in the process the fol-
lowing characteristics (encountered in the languages presented above, though not necessarily together):
a real-time system constructed using our programming language consists of a number of modules which
are programmed in a general purpose programming language. The general purpose language itself is
immaterial to the specification of timing constraints, which are instead imposed on the inter-module com-
munication using constructs that are independent of the communicating modules. We aim for a separation
between functional behaviour and timing constraints, which is natural for real-time specifications. In the
process, we thus promote a component-oriented programming [5] style. Indeed, since modules themselves
have nothing to do with real time, they can be changed and re-used at will, in a normal fashion.

Our language supports global (or end-to-end) timing constraints (which is once more the way real-time
applications are specified). Recognizing that local constraints are potentially useful (even if not part of the
specification), we also allow for the specification of point-to-point constraints (to messages that are passed
from one module to another).

Initiating the transmission of inter-module messages is as much as possible transparent. A module
issues a “method call” to another module in the same way as it issues a system call to a local method.

Building distributed systems is a central concern in designing the language. Many modules can be
grouped into a process (or “node”), and many processes communicate to each other using internet sockets.
Furthermore, the language is network-agnostic; no matter whether two modules run locally or on multiple
machines in a distributed fashion, they communicate in the same manner.

Finally, a program written using our programming language runs on commodity operating systems. It
does not rely on real-time support from the underlying operating system, about the only requirement is a
POSIX-compliant operating system.

We are also interested in model checking and model-based testing. Our system provides a good foun-
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〈fun : a〉
E ` b −→λ E′ ` b′

〈〈α, [E ` b]a|µ〉〉 −→κ 〈〈α, [E′ ` b′]a|µ〉〉
〈snd : a, 〈a′ ⇐ λ, cv〉〉
〈〈α, [E ` send(a′, cv); b]a|µ〉〉 −→κ 〈〈α, [E ` b]a|µ; 〈a′ ⇐ λ, cv〉〉〉

〈sync snd : a, 〈a′ ⇐ a, cv〉〉
〈〈α, [E ` sync send(a′, cv); b]a|µ〉〉 −→κ 〈〈α, [E ` wait(a′); b]a|µ; 〈a′ ⇐ a, cv〉〉〉

〈wait : a, a′〉
〈〈α, [E ` wait(a′); b]a|µ; ack(a)〉〉 −→κ 〈〈α, [E ` b]a|µ〉〉

〈rcv : a, 〈a ⇐ a′, cv〉〉
E(wa) 6= λ

〈〈α, [E ` ready(x); b]a|µ; 〈a ⇐ a′, cv〉〉〉 −→κ 〈〈α, [E[x 7→ cv, wa 7→ a′] ` b]a|µ; ack(E(wa)〉〉
E(wa) = λ

〈〈α, [E ` ready(x); b]a|µ; 〈a ⇐ a′, cv〉〉〉 −→κ 〈〈α, [E[x 7→ cv, wa 7→ a′] ` b]a|µ〉〉
〈delay : d〉
〈〈α|µ〉〉 ε(d)−→κ 〈〈α|µ〉〉

Figure 1: Actor configuration transitions.

dation for such a pursuit which is subject to future research.
We offer a semantics for such a system in Section 2. We then consider implementation issues and also

the resulting RTSYNC programming language in Section 3. We note that this is a prototype rather than a
full-blown language; we ellaborate on this and other concluding issues in both Section 3 and the concluding
section.

2 Semantics

Our implementation follows a semantics based on the semantics of RT-Synchronizers− [9] which is in turn
based on the actor model [1]: distributed entities are modelled as self-contained objects called actors. An
actor encapsulate a state, provides a set of public methods, and may call methods from other objects by
means of message passing. Actors thus represent the layer of an RTSYNC program that executes the code
specified by the user which (generally) interacts with the outside world. The actors execute concurrently,
and are identified by unique names (sometimes “mail addresses”). The original message passing scheme
is non-blocking and buffered, meaning that an actor resumes normal operation immediately after sending
a message without waiting for a reply from the receiver, and that messages sent but not yet processed by
the receiver are buffered until the receiver accepts them. Recognizing the however rare need for synchro-
nization between actors, we also offer a blocking message passing scheme (introduced in the syntax by the
sync snd construct).

To send a message an actor calls a method of some other actor; a message d.m(p) contains the name d
of the destination actor, the name m of the method to be invoked at the destination, and possibly a set p
of parameters to be passed to the method being called. For the blocking case the message needs to contain
the name of the sender (though this needs not be specified explicitly by the programmer). We end up
with an implementation syntax similar to the one noted above, but we use the notation 〈a ⇐ a′, cv〉 in
our semantical description, where a represents the destination of the message, a′ the sender (or λ for non-
blocking messages), and cv is the body of the message which includes the name of the method to be invoked
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〈Sat≺ : 〈a ⇐ a′, cv〉〉
cs =

{ ∅ if 〈a ⇐ a′, cv〉 ² p2
p2 ≺ d′ otherwise c f =

{
p2 ≺ V(y) if 〈a ⇐ a′, cv〉 ² p1
∅ otherwise

〈|χ ⊎
p2 ≺ d′|ξ≺|〉 〈a⇐a′ ,cv〉−→γ 〈|χ ⊎

c f
⊎

cs|ξ≺|〉
〈SatÂ : 〈a ⇐ a′, cv〉〉

cs =
{ ∅ if 〈a ⇐ a′, cv〉 ² p2 ∧ d′ ≤ 0

p2 ≺ d′ otherwise c f =
{

p2 Â V(y) if 〈a ⇐ a′, cv〉 ² p1
∅ otherwise

〈|χ ⊎
p2 Â d′|ξÂ|〉 〈a⇐a′ ,cv〉−→γ 〈|χ ⊎

c f
⊎

cs|ξ≺|〉
〈Sat∅ : 〈a ⇐ a′, cv〉〉

c f =
{

p2 ∼ V(y) if 〈a ⇐ a′, cv〉 ² p1, ∼∈ {≺,Â}
∅ otherwise

〈|∅|ξ∼|〉 〈a⇐a′ ,cv〉−→γ 〈|∅⊎
c f |ξ∼|〉

〈Ack : ack(a)〉 ∼∈ {≺,Â} 〈Delay∼ : e〉 ∼∈ {≺,Â}
〈|χ|ξ∼|〉 ack(a)−→γ 〈|χ|ξ∼|〉 ∀p2 ≺ di ∈ (χ Ä e), di ≥ 0 : 〈|χ|ξ∼|〉 ε(e)−→γ 〈|χ Ä e|ξ∼|〉

Figure 2: Single constraint semantics; 〈a ⇐ a′, cv〉 ² x1(x2) when b
de f
= a = V(x1) ∧ b(V[x2 7→ cv])

at the destination and also the parameters (the existence of a method name and parameters is immaterial
for the message passing mechanism).

With this structure for messages, the semantics of actors is given by the transition system−→κ shown in
Figure 1. The state of a set of actors is modeled as a pair 〈〈α|µ〉〉, withα and µ representing the actor state and
the set of pending messages, respectively. The state of an actor a is written [E ` b]a with E the environment
and b the remainder of the actor behaviour. The actor reduces its behaviour until it reaches ready(x); this
signifies that actor a is waiting for a message (whose content is then bound to x). The transition system−→λ

defines the semantics of the programming language used to program actor behaviour. The environment
variables wa are fresh variables initialized with the special value λ; they hold the sender of the last blocking
message (in order to send an acknowledgment when the called method completed), or λ whenever the last
message was non-blocking.

We note that one cannot make timing assertions about the execution of an actor program directly. In
order to make this observation explicit the delay actions ε(d) is introduced, with d a positive number rep-
resenting the passage of d time units. The actor evolves by performing a sequence of instantaneous actions
and by letting the time pass.

Messages are intercepted by synchronizers. They are reactive agents that exist to monitor and enforce
time constraints upon the inter-actor message communication. Every actor-actor relation (a relation be-
tween actors a and b exists whenever a references a method of b, or vice-versa) may have an associated
(“coordinating”) synchronizer. This synchronizer then intercepts all communication between the two ac-
tors and enforces user-defined timing constraints expressed as real-time constraints on pairs of message
invocations.

The semantics of one constraint in a synchronizer is given by the transition system −→γ shown in
Figure 2. The state variables of a synchronizer are represented by an environment V that maps variables
to their values. A constraint can have two forms: p1 =⇒ p2 ∼ y, ∼∈ {≺,Â}, where p1, p2 are message
patterns, and y is a positive, real valued variable or constant; the first form specifies that a message matching
the pattern p2 must follow a message matching p1 no later than y time units. Conversely, the second form
specifies that y time units must pass after a message matching p1 occurs before a message matching p2 is
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〈Action : l〉
∀i ∈ [1 . . . n], γi

l−→γ γ′i
〈|γ1, . . . , γn|V|〉 l−→σ 〈|γ′1, . . . , γ′n|V′|〉

,

l ∈ {〈a ⇐ a′, cv〉,ε(e), ack(a)}

Figure 3: Synchronizer semantics.

allowed. Whenever an invocation matches p1 the constraint fires and thus creates a new demand instance
matching p2. Such a demand is represented by a triple p2 ∼ d, with d (a real number) denoting the deadline
or release time of p2. The state of a constraint is represented as a constraint configuration 〈|χ|ξ∼|〉; ξ∼ is a
static description of a constraint p1 =⇒ p2 ∼ y and χ is a multi-set of demands instantiated from this
static description.

The passage of time is controlled by the Delay rule. The elapsed time e is subtracted from di in each
demand pi ∼ di; this is written χ Ä e. The delay rule ensures that deadline constraints are always satisfied.

A synchronizer is then represented by a synchronizer configuration 〈γ|V〉 where γ is a set of constraint
configurations ranged over by γi and V represent the state variables of a synchronizer by means of a map-
ping from identifiers to their values. The semantics of a synchronizer is shown in Figure 3. Triggers can be
attached to events, and their effect (not shown in the figure but rather trivial to consider) is to transform V
according to the assignments specified therein.

For convenience we differentiate between point-to-point synchronizers (just synchronizers for short)
and global synchronizers. The global synchronizers impose general (and not only point-to-point) con-
straints.

Constraining an actor program is defined as a special form of parallel composition ‖. An interaction con-
straint system configuration is written as ((σ1, . . . ,σn)), where σ ranges over synchronizer configurations.
The composition of an actor configuration and an interaction constraint system is defined by the transition
system −→κσ shown in Figure 4.

3 The RTSYNC system

An RTSYNC (distributed) program consists in a set of RTSYNC nodes. A node is a standalone executable
that can work in isolation or communicate with other nodes through internet domain sockets. Each node
contains a number of actors (which perform non-constrained actions) and synchronizers (which enforce tim-
ing constraints over inter-actor communication). Both the inter-node communication and the intra-node
message passing is coordinated by postmasters. Each RTSYNC node runs exactly one such a postmaster.

RTSYNC nodes are C++ programs that contain blocks of RTSYNC specific code. The RTSYNC compiler
takes source programs in this format, parses the RTSYNC specific-code, and so generates C++ code which
it outputs along with the surrounding C++ code. This resultant code file can then be compiled with a C++
compiler to produce an executable. During compilation a run time library must be linked in. The library
contains all of the runtime code needed by the program (parent classes, postmaster code, logging, etc.).

Our programming language produces code that does not require real-time resources from the operat-
ing system. Indeed, about the only requirements are a POSIX-compliant operating system, an ANSI C++
compiler, and the potable BOOST libraries [2].

In a system such as ours dynamic priority for the participating threads (assigned according to the prior-
ities of the pending messages) is imperative. Scheduling threads for execution according to their priorities
is accomplished by a system that blocks all but the highest priority threads; the unblocked threads run then
concurrently being scheduled on the processor(s) according to the (non real time) kernel scheduler. Mes-
sage queues are implemented on a per-thread basis. Message priorities (which in turn determine thread
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Untimed actions

〈〈α|µ〉〉 l−→κ 〈〈α′|µ′〉〉 l ∈ { 〈fun : a〉, 〈snd : a, m〉, 〈sync snd : a, m〉,
〈wait : a, a′〉, 〈ready : a〉 }

〈〈α|µ〉〉‖((σ1, . . . ,σn)) l−→κσ 〈〈α′|µ′〉〉‖((σ1, . . . ,σn))
Receive

〈〈α|µ〉〉 l−→κ 〈〈α′|µ′〉〉 ∧
i∈[1...n] σi

〈a⇐a′ ,cv〉−→γ σ ′i l = {〈recv : a, 〈a ⇐ a′, cv〉〉}
〈〈α|µ〉〉‖((σ1, . . . ,σn)) l−→κσ 〈〈α′|µ′〉〉‖((σ ′1, . . . ,σ ′n))

Synchronization
∧

i∈[1...n] σi
ack(a)−→γ σ ′i

〈〈α|µ〉〉‖((σ1, . . . ,σn))
ack(a)−→κσ 〈〈α′|µ′〉〉‖((σ ′1, . . . ,σ ′n))

Delay
∧

i∈[1...n] σi
ε(d)−→γ σ ′i

〈〈α|µ〉〉‖((σ1, . . . ,σn))
ε(d)−→κσ 〈〈α′|µ′〉〉‖((σ ′1, . . . ,σ ′n))

Figure 4: Combined semantics of a RT-Synchronizers− system.

priorities) are assigned dynamically, based on their time constraints.
In essence our implementation is based on the generalized rate-monotonic scheduling theory [16], under

which all the tasks meet their deadlines as long as the system load lies below a certain bound. Given the
assumed lack of real-time support from the kernel (and the limited actual support currently available on
real-time systems) this mechanism is implemented using signals, which implies a certain time coarseness;
however, the coarseness is similar to the one induced by the network communication stack so we do not
consider it as a serious limitation.

The distributed nature of the system is very flexible, being implemented in a “peer to peer” fashion. No
centralized control exists, and individual “nodes” are free to enter and leave the network at any time.

Timing violations are of course always detected at run time. Once such a violation is detected a handling
routine is run. The programmer has the option of defining such a handler for each synchronizer; upon
completion the handler may optionally terminate of the current node or the whole system.

Static timing analysis (and in general conformance testing) is more useful than run-time detection and is
our main, active research interest. At this time static analysis produces a timed call graph for method calls
and then computes its reflexive and transitive closure in order to take global constraints into consideration.
The process is restricted to constant time restrictions, and does not take into consideration the run time of
unrestricted code inside actors. It is also a somehow ad-hoc process, having the role of a stub for future
development rather than being a good implementation.

3.1 Actors

Actors are the active agents of the system: they execute code and generate messages for communication
(“method calls”); the other RTSYNC entities merely serve as support and co-ordination. Messages are thus
formed and eventually decoded and acted upon solely at the actor level (whenever a “method call” is
performed within an actor, referencing a method of a foreign actor, a message is generated). Note that since
messages only occur in inter-actor communication, and since only messages are subject to time constraints,
activities occurring within an actor cannot be time constrained.
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actor name {
C- variable declarations
init { C- code }
method-name (parameters) { C- code }
method-name (parameters) { C- code }
. . .

}

Figure 5: The structure of an actor block; keywords are shown in bold face.

An actor is defined in RTSYNC as a block whose structure is shown in Figure 5. An actor is identified by
its name specified after the actor keyword. It contains a set of declarations for the local variables, followed
by a series of blocks of code. The first such a block (the initialization code, introduced by the keyword
init) is executed when the system starts up. The next blocks of code are methods triggered by incoming
messages. Such blocks are introduced by the name of the method, followed by a list of formal parameters,
followed by an arbitrary block of code that implements the respective method.

Actors are written in a general purpose language such as C. In the current, proof of concept implemen-
tation we use a subset of C dubbed C-. The language (described by a rather readable YACC source) is
immaterial to the functionality of the system, and it can be easily enhanced (or even changed altogether).

One special statement of the language is the one that implements the call of a method (of another actor).
This syntax of such a statement is a.m(p), with a the name of the actor whose method m is to be executed
with p as list of arguments. Once the statement is executed a message is sent to actor a. Such a message is
intercepted and processed by a synchronizer, so the actual message passing mechanism is described in the
next section.

The default non-blocking semantics can be changed by prefixing the method call with the keyword
sync. In such a case the caller blocks until the callee completes the execution of the method specified by the
message.

3.2 Synchronizers

The syntax of a synchronizer is shown in Figure 6. A synchronizer consists in four parts: a set of instantia-
tion parameters, instantiation code, and declaration of local variables; a set of constraints; a set of triggers;
and an exception handler. Messages of interest are identified by patterns, which have in the current imple-
mentation the form a.m where a specifies the destination actor and m is the name of the method to be called
as a consequence of the message.

As for the actors, the initialization code is introduced by the keyword init. Unlike the actors, the init
keyword is followed by a construct of the form ( actor1<->actor2) ). This construct specifies that the current
synchronizer intercepts messages exchanged between actors actor1 and actor2.

Only one synchronizer may be the designated coordinator of any given actor pair, and the relation is
commutative. The presence of an explicitly defined synchronizer at any such relation is optional; rela-
tionships may be unconstrained, in which case the system automatically provides a null synchronizer; no
assertions regarding timing can be made in such a case.

Recall that a constraint can have two forms: p1 =⇒ p2 ≺ y and p1 =⇒ p2 Â y, where p1, p2 are
message patterns, and y is a positive, real valued variable or constant. These two forms are introduced
in the current implementation by the keywords min and max, respectively. A message intercepted by
the synchronizer is continuously “polled.” The synchronizer examines the message’s time constraints to
determine whether the message is a valid candidate for execution (i.e., the minimum time before execution
has passed) and whether the message has violated any constraints (i.e. whether its “must run before” time
has passed), and taking the proper action. In the first case, the synchronizer holds a message until it is a
valid candidate for execution, at which point the synchronizer relays it to its proper destination. In the case
of a message violating timing constraints, the synchronizer throws an exception and drops the message
(which is thus never delivered).
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synchronizer name {
C- variable declarations
init ( actor1<->actor2) ) { C- code }
constraint {

min actor.method -> actor’.method’ = expr ;
max actor.method -> actor’.method’ = expr ;
. . .

}
trigger {

enable ( actor.method ) when expr ;
disable ( actor.method ) when expr ;
action ( actor.method ) { C- code }
. . .

}
exception { C- code with return statement }

}

Figure 6: The structure of a synchronizer block.

Once the timing constraints managed by the synchronizer are violated, the code from the exception
section is called. This is the only section in which the return keyword is allowed, with the argument
TERMINATE (with the effect that the whole RTSYNC system is terminated), KILLNODE (with the effect that
the current node is terminated), or CONTINUE (which specifies that the exception has been taken care of and
execution can continue).

Synchronizers may also perform non-coordinating tasks by responding to arbitrary events (“events”
being specific methods calls) by means of triggers. These can be action triggers, which are arbitrary code
blocks executed upon notification of certain events, or enable/disable triggers, which globally enable or
disable individual methods of actors subsequent to particular events.

Global synchronizers In addition to the point-to-point timing constraints specified by the RT-
Synchronizers− [9] semantics (and implemented by synchronizers), ROOM’s transaction constraints (also
referred to as “global constraints” [9]) are implemented by global synchronizers. The syntax of global syn-
chronizers is similar to the syntax of (point-to-point) synchronizers (shown in Figure 6), except that they
are introduced by the keyword global rather than synchronizer.

Transaction constraints must be synchronized by the global synchronizer. Any constraint expression
over relations that are not point-to-point in terms of method calls, although syntactically valid, are not
allowed in normal synchronizers; synchronizers are validated against the timed call graph.

3.3 The postmaster

The postmaster serves as the universal relay and dispatch engine for an RTSYNC system. All calls originat-
ing from actors or synchronizers route through the postmaster so that the operation of actors and synchro-
nizers is fully network transparent. The postmaster holds data structures that contain information about
all RTSYNC entities within the local node, and essential information about all remote nodes.

Each node contains its own postmaster which allows a distributed RTSYNC program to operate as a
peer-to-peer system. As such, there is no server, rather clients fulfill both roles as needed throughout the
lifespan of the system. The general process is as follows:

For a single node system (or the first node of a distributed system), the node simply activates, sets up a
server port, and then goes about running (to the extent that it can if it is waiting for other nodes).

For a node joining an already running system the process is a little different. While it will still set up a
server port, it will (in the constructor) also connect to the host that it has been provided with. This initial
interaction between client and “server” serves to populate the new client with information about all of the
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other nodes (postmasters) in the network. From there, the new client will initiate communication with each
of the other nodes of the network to exchange information with them about their respective setups. This is
referred to as the population stage. Both client and server complete this stage when they have each received
a snapshot of the other’s structure (members, methods, relationships...)

Once (initial) population is complete, the postmaster will continue execution of the run method which is
to say that it will either go into an infinite poll loop or begin system execution by passing an initial message.
The network messaging protocol uses a simple, plain-text, format for transmission.

4 RTSYNCinternals

Note that this section is in the process of being expanded, so its current incarnation shall not be considered
final by any means.

4.1 Actors

Every actor in the system inherits from the actor class and for the purpose of the modular scheduler
also inherits from schedulable. The parent actor class defines the necessary functions such that every
actor can setup a polling thread after construction. The purpose of an actor’s polling thread is to request
messages from synchronizers (whenever it has message registrations in m_msg_requests) and to execute
the methods contained in those messages. Note that execution is done in the polling thread and therefore
only one message is acted upon at a time.

4.2 Messages in an RTSYNC system

Messages go through a (necessarily) complex handshake process as they travel through an RTSYNC system.
A message is thus subject to the following process (controlled by postmasters) from inception to destruction:

1. Message creation is done by source actor; creation timestamp is set.

2. The message is then passed to coordinating synchronizer by invoking sm_receive_msg of the post-
master; the dispatch timestamp is set by synchronizer when it receives the message.

3. The synchronizer holds the message in its incoming queue until time constraints allow for its sending
to the destination actor.

4. The message is then moved to outgoing queue and the destination actor is notified that synchronizer
has a message holding for it (via am_register_msg).

5. When the actor’s polling thread is ready for this message (all messages are received in order of their
timestamp), it calls sm_request_msg of the postmaster; the return value of this call is the message; the
received timestamp is set upon message arrival at the actor.

6. The actor executes the method specified by the message using the parameters contained within; exe-
cution timestamp is set when execution is complete.

7. The actor calls sm_ack_msg of the postmaster; the result of this call is a passing of the message to
ack_msg of the synchronizer; this function’s purpose is limited to status messages and to the imple-
mentation of synchronous messages.

8. Actor notifies all of its registered listeners that it completed execution of the method specified by the
message.
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4.3 The network application protocol

The network messaging protocol uses a simple, plain-text, format for transmission. The general format of
a transmission packet consists of the following tokens: size of packet (excluding the size itself and its trailing
space), protocol directive (enumerated found in postmaster.h), and optional parameters (directive dependent).

A sample message is provided below. This message is of type RT_REQUEST and would be sent to a node
that contains a synchronizer named mysync. After parsing, that synchronizer would be informed that actor
someactor would like a message from it.

18 3 mysync someactor

In general the system uses the following protocol directives:

• RT_MESSAGE: normal RTSYNC message to be acted upon (i.e. send to receiver); parameters: the mes-
sage.

• RT_NOTIF: notification of method completion (send to listener); parameters: syncref, actorref, rttime t,
method.

• RT_REQUEST: notifies a synchronizer that an actor would like its next message; parameters: syncref,
actorref.

• RT_REQRESPONSE: reponse to an RT_REQUEST (contains a message); parameters: the message.

• RT_REGMSG: notifies an actor that a message is waiting; parameters: actorref, syncref, rttime t.

• RT_ENABLE: enable an actor’s method; parameters: actorref, method.

• RT_DISABLE: disables an actor’s method; parameters: actorref, method.

• RT_REG_LISTENER: register synchronizer as listener to actor; parameters: actorref, syncref.

• RT_RECVMSG: synchronizer received message; parameters: syncref, message.

• RT_ACKMSG: acknowledge reception of message from synchronizer; parameters: syncref, message.

• RT_POST_DISABLE: send notification to another postmaster that method was disabled; parameters:
actorref, method.

• RT_POST_ENABLE: send notification to another postmaster that method was enabled; parameters: ac-
torref, method.

• RT_GET_NETIDS: request the list of net id-s from another postmaster; parameters: none.

• RT_POPULATE: request a postmaster’s list of local actors and synchronizers; parameters: none.

• RT_POPULATION: response to a populate request (or send by new postmaster); parameters: full popu-
lation data from a node (see below).

• RT_TERMINATE: signal a postmaster sends to other postmasters to tell them that it is going to terminate;
parameters: none.

• RT_KILLALL: once received by a postmaster, it should immediately kill itself; the whole system is going
down.

• RT_TIMEUPDATE: notification that a method has been run with new lastrun timestamp; parameters:
actorref, method, rttime t.

• RT_SYNCNOTE: notification to actor locked in synchronous call that remote party finished execution;
parameters: message.
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The following is the structure of a RT_POPULATION packet (all tokens in each section are separated by
spaces, and all sections of the RT_POPULATION packet are separated from previous sections by a dollar sign
as shown):

list of actors (local to the remote node) $
list of synchronizers (local to the remote node) $
list of (2 actors, followed by a synchronizer (synchronizing pairs)) (global) $
list of (actor, method, boolean enabled flag) (global list of all methods in the system) $

5 Conclusions

Recall that our goals is developing the RTSYNC system were the study of a distributed, real-time program-
ming language that should place the normal programmer in a familiar environment, that should produce
code capable of running on commodity systems, that should offer separation between time restrictions and
code (thus facilitating code re-use), and that should offer support for conformance testing.

We described here an incipient implementation of such a system. The implementation should be re-
garded as a proof of concept rather than a functional application. We have addressed the first three goals
by providing a familiar C-like language to the programmer (still to be enhanced to a production language)
and by offering an implementation based on dynamic priorities that should satisfy all the feasible real-time
tasks. Our implementation uses internet domain sockets and is thus suitable for both nodes distributed
over a network and nodes running concurrently on one machine (the latter kind of nodes communicating
over the loopback subnet).

The system is also based on a sound semantical model. This offers a good starting point for the last (and
most important) goal. The present concept offers support for testing real-time systems, or to be more precise
for interfacing a running system with one or more testing systems. Indeed, beside the usual input/output
interface provided by the operating systems, a testing system is able to connect to the system under test
using the message passing interface already provided. A tester would be thus able to test various time
properties (not necessarily limited to existent time constraints since the tester could introduce more time
restrictions of its own). We believe this to be a powerful tool and so a significant contribution.

This being said, we are interested in model-based testing. At this time we offer some tools that could
be used to accomplish this, but we fall short of actually performing any kind of model checking. We base
our implementation on a well defined semantics, so one would be able to express the model semantically
and then derive both the test cases and the application itself starting from the semantical model. Once
this is accomplished, the actual conformance testing of the end product is easily done as mentioned above.
However this falls well short of the stated goal that our system is a tool suitable for programmers not
necessarily comfortable in a formal environment. We are currently interested in studying the possibility
of deriving a model and test cases starting from the RTSYNC code itself. The mentioned timed call graph
currently computed by the system should be viewed as a stub that is to be replaced in the future by the
results of our current research.

At this time—i.e., without a proper model checking in place—our language should be regarded as pro-
ducing soft real-time systems; we intend to strengthen the language so that it is able to produce hard
real-time systems at least for particular structures of such a system. Even so, the unpredictability of net-
work communication is expected to pose additional problems. The issue of network communication needs
further consideration.

We note finally the relation between our current work outlined here and timed ω-languages, the previ-
ously developed complexity-theoretic model of parallel real-time computations [3, 4]. Timed ω-languages
are in particular suited for describing (or being described by) the interface between nodes in an RTSYNC
system. Establishing the semantical model presented here as an abstract machine for timed ω-languages
and deriving further complexity results for real time is also one of our long term interests.

In all, this paper presents a preliminary report of what we believe to be a powerful tool in communizing
real-time, distributed programming. This is one small step towards this goal; future developments are in
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the works theoretically, and once developed their implementation should pose little problems given the
support already built into the system. The second goal of the paper is to gauge the interest of the applied
community in such a tool; this interest will be a factor in the speediness of future developments of the
RTSYNC system.

The RTSYNC system is available on the Web at http://turing.ubishops.ca/home/bruda/rtsync and can
be distributed freely under the terms of the GNU General Public License [6]. An extended version of this
document (including programming details that were left out of this document due to space restrictions) is
also provided. Given the preliminary character of this paper (and also the space limitations) and the system
being under active development we do not provide programming examples or testing of the system, though
these should be available in the near future.
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