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Abstract

The concept of “real-time” has different meanings in the systems and theory communities. As a
consequence, the currently available formal real-time models do not capture all the practically relevant
aspects of such computations. We propose a new definition, and we believe that it allows a unified
treatment of all practically meaningful variants of real-time computations. Then, we use the developed
formalism to model two important features of real-time algorithms, namely the presence of deadlines
and the real-time arrival of input data. We also emphasize the expressive power of our model by using
it to formalize aspects from the areas of real-time database systems and ad hoc networks. We offer
formulations of the recognition problem for real-time database systems and the routing problem in
ad hoc networks. Finally, we suggest a variant of our formalism that is suited for modeling parallel
distributed real-time algorithms. We believe that the proposed formalism is a first step towards a unified
and realistic complexity theory for real-time parallel computations.

Key words and phrases: Real-time computation, timed languages, w-languages, parallel complexity
theory, real-time databases, ad hoc networks.

1 Introduction

The area of real-time computations has a strong practical grounding in domains like operating systems,
databases, and the control of physical processes. Besides these practical applications however research in
this area is primarily focused on formal methods (specifically, on reasoning about the correctness of programs)
and on communication issues in distributed real-time systems.

By contrast, little work has been done in the direction of applied complexity theory, that is, the derivation
of lower bounds and the design and analysis of algorithms for real-time computations. In fact, the limited
extent of this work is emphasized by the fact that even a realistic general definition for real-time algorithms
is missing, although implicit definitions can be found in many places. Some papers have tried to address
this issue, providing abstract machines that model real-time algorithms. In this context, one can notice the
real-time Turing machine, proposed for the first time in [35] and further studied in [21, 30, 31]. Such a
formalism offers many insights into the theory of real-time systems, but fails to capture many other aspects
that are important in practice. Another model is the real-time producer/consumer paradigm, proposed in
[23], which takes into account some important features, but is suitable for modeling certain real-time systems
rather than for developing a general complexity theory. Finally, the concept of timed automata is introduced
in [10]. The format of languages accepted by such devices is also presented, together with their closure
properties. However, the power of the language families analyzed in [10] is limited, since there are real-time
problems that cannot be formalized as languages recognizable by memoryless finite state models.

Indeed, the domain of real-time systems is very complex, with requirements varying from application to
application. For example, while in some applications the real-time component is the presence of deadlines
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imposed upon the computation, other applications require that input data are processed as soon as they
become available, with more data to come while the computation is in progress. Variants (and combinations)
of these two main requirements are often present. This complexity of the domain is probably the main
obstacle towards a unified theory.

In this paper, we try to address this issue. We believe that the model of timed languages proposed in
[10] is a powerful tool, but the device used as acceptor (namely, a finite automaton) is rather weak. We
suggest therefore an extension of this study. More precisely, we keep most of the important ingredients in
the definition of timed languages from [10], but we apply such a definition to a larger extent, suggesting a
general model for the acceptors of such languages.

Specifically, we introduce in section 3 a variant of the model from [10], called well-behaved timed w-
languages. Then, we present the notion of acceptance for such languages, together with the structure of an
acceptor for them. We believe that our construction captures all the practical aspects of real-time compu-
tations. That is, our thesis is that well-behaved timed w-languages model exactly all real-time computations.

In order to support this thesis, we show in section 4 how those ingredients that, when present, give
to some problem the “real-time” qualifier (namely, computing with deadlines, and input data that arrive
in real-time during the computation) can be modeled using our formalism. Then, the expressiveness of the
formalism is emphasized in section 5, by modeling important practical problems. More precisely, we consider
the domain of real-time database systems, and we offer a real-time variant of the recognition problem from
the domain of classical database systems; then, we construct a formal model of the routing problem in ad
hoc networks.

While the structure of a real-time algorithm as developed in this paper does not assume any particular
machine architecture, an emphasis is given to parallel implementations. Indeed, we identify in section 6 a
variant of our model, that is particularly suited for studying parallel and distributed real-time systems. This
variant explicitly models the parallelism (and distributedness) of the system.

We believe that, starting from the formalism developed in this paper, a unified complexity theory for
real-time systems can be naturally developed.

Section 2 reviews the notations used throughout the paper. Starting from this point, the paper can be
viewed as split into two main parts: The first part (section 3) introduces the theory of timed w-languages
and real-time algorithms; section 3.2 concludes this first part. The second part (sections 4 and 5) presents
real-time concepts and applications that are modeled using our formalism. The mentioned variant that is
suitable for parallel and distributed systems is presented in section 6. We conclude the paper in section 7.

2 Preliminaries

Given some finite alphabet 3, the set of all the words of finite (but not necessary bounded) length over X is
denoted by ¥*. The cardinality of IN, the set of natural numbers, is denoted by w. It should be noted® that
w ¢ IN [19]. Then, the set X contains exactly all the words over ¥ of length w. Given two words oy and
02, 010 denotes their concatenation. The length of a word o is denoted by |o|. R denotes the set of real
numbers.

Given two (infinite or finite) words o = 0109,... and ¢’ = {0}, ..., we say that ¢’ is a subsequence of o
(denoted by o' C o) iff (a) for each o] there exists a o; such that o] = ¢;, and (b) for any positive integers
i,J,k, 1 such that o} = 0; and o}, = 0y, it holds that ¢ > k iff j > [.

A general finite automaton is a tuple A = (X, S, s0, 9, F'), where ¥ is the (finite) input alphabet, S is a
(finite) set of states, so is the initial state, ¢ is the transition relation, § € S x S x X, and F is the set of
accepting states, FF C S. When we use %, S, sg, J, and F, we imply the above meaning of these symbols
unless otherwise specified. The accepting condition for a finite automaton A is as follows: If at the end of
the input string, A is in some state from F', then the input is accepted. Otherwise, the input is rejected.

! Also note that the cardinality of IN is denoted by either w [19] or Rq [32]. We chose the first variant in order to be consistent
with the notation used in [10].



2.1 Timed automata

Since our models is based on the theory of timed automata, we review in what follows this theory. Our
summary is based on [10].

The basis for the theory of timed automata is the w-automaton. An w-automaton is a usual finite state
automaton A = (X, S, so, §, F), whose accepting condition is modified, in order to accommodate input words
of infinite length. More precisely, given an (infinite) word o = o103 . . ., the sequence:

o1 o2 o3
r=8)—» 8 —» Sy —>r ...

is called a run of A over o, provided that (s;_1,s;,0;) € ¢ for all ¢ > 0. For such a run, inf(r) is the set of
all the states s such that s = s; for infinitely many 1.

Regarding the accepting condition, a Biichi automaton has a set F' C S of accepting states. A run r over
a word o € ¢ is accepting iff inf(r) N F # 0. The acceptance of a Muller automaton on the other hand does
not use the concept of final state. For such an automaton, an acceptance family F C 2° is defined. Then, a
run r over a word o is an accepting run iff inf(r) € F. A language accepted by some automaton (Biichi of
Muller) consists of the words o such that the automaton has an accepting run over o.

Another ingredient of the theory developed in [10] is the time sequence. A time sequence 7 = 772 ... is
an infinite sequence of positive real values, such that the following constraints are satisfied: (i) monotonicity:
7; < Ty for all i > 0, and (ii) progress: for every ¢t € IR, there is some i > 1 such that 7; > ¢. Then, a timed
w-word over some alphabet ¥ is a pair (o,7), where o0 € ¥, and 7 is a time sequence. That is, a timed
w-word is an infinite sequence of symbols, where each symbol has a time value associated with it. The time
value associated with some symbol can be considered the time at which the corresponding symbol becomes
available. A timed w-language is a set of timed w-words.

A clock is a variable over R, whose value may be considered as being externally modified. Given some
clock z, two operations are allowed: reading the value stored in z, and resetting x to zero. At any time, the
value stored in = corresponds to the time elapsed from the moment that x has been most recently reset. For
a set X of clocks, a set of constraints over X, ®(X), is defined by: d is an element of ®(X) iff d has one of
the following forms: z < ¢, ¢ < z, —ds, or di A da, where ¢ is some constant, € X, and di,ds € ®(X).

Starting from these notions, the concept of timed w-regular languages is introduced. A timed Biichi
automaton (TBA) is a tuple A = (3, S, s¢, 9, C, F'), where C' is a finite set of clocks. This time, the transition
relation 6 is defined as § C S x S x ¥ x 2¢ x ®(C). An element of § has the form (s, s',a,l,d), where [ is the
set of clocks to be reset during the transition, and d is a clock constraint over C. The transition is enabled
only if d is valued to true using the current values of the clocks in C.

A run r of a TBA A = (%,8,s0,6,C, F) over some timed w-word (o,7) is an infinite sequence of the
form:

T = (80, v0) = (s1,71) =z (82,v2) LR (1)
where 0 = 0105..., T =7TT2...,v; € {f|f: C — R} for all i > 0, and the following conditions hold:

e yy(z) =0forallz € C,

e for all 4 > 0, there is a transition (s;—1, $;,04,0;,d;) € § such that (v;_1 + 7; — 7;—1) satisfies d;, for all
x € C —1l;, vi(x) =vi—1(x) + 7 — Ti—1, and, for all 2’ € [;, v;(2’) = 0.

The notions of accepting run, and language accepted by a TBA are defined similarly to the case of Muller
automata. A timed w-language accepted by some TBA is a timed regular language.

It should be noted that, even if a timed regular language looks well suited for modeling real-time compu-
tations, the TBA used in [10] for recognition of such languages is not sufficiently powerful for this purpose.
We shall postpone this discussion till the next section.

3 Timed languages
While the notion of timed languages is very powerful, the device used for recognition of such languages in

[10] (that is, a finite-state timed automaton) is not powerful enough to model all the real-time computations
that are meaningful in practice. This is supported by the following immediate result.



Theorem 3.1 There are languages formed by infinite words (w-languages) that are not w-regular.

Proof. Let us consider the following language over the alphabet ¥ = {a, b, ¢,d}: L = {a*b*c"d*|u, z,v > 0}.
It is immediate that L is not regular. Now, consider the following w-language: L, = {l1$2815%...|l; €
L for any ¢ > 0, and $ ¢ X}.

Assume now that L, is w-regular. Then, there is a Biichi automaton A = (X, 5, s¢, §, F') that recognizes
it. Let x be a word in Ly, © = 21$228238% . ... Therefore, there is a run r of A over z such that inf(r)NF # 0.

In the run r, let S; be the set of all the states that A is into immediately after parsing a symbol $, and
Sy the set of all states A is into immediately before parsing a symbol $. Note that Si,S2 C S, hence both
S; and S» are finite. But then one can construct a finite automaton A’ that recognizes L: let the initial
state of A’ be some s’ ¢ S; then, the set of states of A’ is SU {s'}, the set of final states of A’ is Sa, and the
transition function of A’ is ¢, augmented with A-transitions from s’ to each state in Sj.

But this is clearly a contradiction, since L is not regular. O

Corollary 3.2 There are timed w-languages that are not (timed) w-regular.

Proof. Simply attach to each word in the language L., some time sequence, and call the language obtained
in this way L!,. Then, the proof by contradiction follows from the proof of theorem 3.1. Indeed, consider a
TBA that is identical to A’ from the mentioned proof, and for which C = . Clearly, this TBA recognizes
L;,. However, such an automaton is an impossibility. O
Note that the language L, built in the proof of theorem 3.1 is not uninteresting from a practical point
of view. Indeed, it models a search into a database for a given key: the database is modeled by the word
a*b®c?, the key to search for is d*, and the instance that matches the query is simulated by b*. We just
found hence some practical situation which does not pertain to the class of (timed) w-regular languages.

3.1 A formal definition

Despite the limited scope of the finite state approach, the concept of timed languages is a very powerful
one. We propose therefore a definition that is similar to the one in [10], but is not restricted to finite state
acceptors.

However, our presentation is clearer if we use a slightly modified concept of time sequence:

Definition 3.1 A sequence 7 € N¥, 7 = 1179 ..., is a time sequence if it is an infinite sequence of positive
values, such that the monotonicity constraint is satisfied: 7; < 7341 for all 4 > 0. In addition, a (finite or
infinite) subsequence of a time sequence is also a time sequence.

A well-behaved time sequence is a time sequence 7 = 717 ... for which the progress condition also holds:
for every t € IN, there exists some finite ¢ > 1 such that 7; > ¢. O

In should be noted that a time sequence may be finite or infinite, while a well-behaved time sequence is
always infinite. In fact, a well-behaved time sequence in our terminology is identical to the concept of time
sequence used in [10], except that, while time is considered dense in [10], we consider it to be discrete, since
in essence the time perceived by a computer is discrete as well (besides, one can define a granularity of time
as fine as desired).

Definition 3.2 A timed w-word over an alphabet X is a pair (o,7), where 7 is a time sequence, and, if
7 € N*, then 0 € £*, k € NU {w}. Given a symbol o; from o, i > 0, then the associated element 7; of the
time sequence T represents the time at which o; becomes available as input. A well-behaved timed w-word
is a timed w-word (o, 7), where 7 is a well-behaved time sequence. A (well-behaved) timed w-language over
some alphabet ¥ is a set of (well-behaved) timed w-words over X. O

Definition 3.2 is an natural extension of the definition of timed regular languages presented in [10], except
that we added the “well-behaved” qualifier, generated by the modified terminology presented in definition 3.1.
We also take into consideration timed w-words that are not well-behaved. Even if our thesis states that such
words by themselves do not model real-time computations, they may be useful as intermediate tools in
building real-time models.



3.1.1 Accepting timed languages

In light of the above definition, we can also establish the general form of an acceptor for timed languages:

Definition 3.3 A real-time algorithm A consists in a finite control (that is, a program), an input tape (that
is, an input stream) that contains a timed w-word, and an output tape (that is, an output stream) containing
symbols from some alphabet A that are written by A. The input tape has the same semantics as a timed
w-word. That is, if (o, 7;) is an element of the input tape, then o; is available for A at precisely the time 7;.
During any time unit, A may add at most one symbol to the output tape. Furthermore, the output tape is
write-only, that is, A cannot read any symbol previously written on the output tape. We denote by o(4, w)
the content of the output tape of some real-time algorithm A working on some input w. A may have access
to an infinite amount of working storage space (working tape(s), RAM memory, etc.) outside the input and
output tapes, but only a finite amount of this space can be used for any computation performed by the
algorithm. O

It should be noted that the concept of working space has the same meaning as in classical complexity
theory. Like a classical algorithm, a real-time algorithm can make use of some storage space in order to
carry out the desired computation. When considering space-bounded real-time computations, we analogously
consider the space used by the real-time algorithm as the amount of this storage space that is used during
the computation, without counting the (content of) input and output tapes.

Let us fix some designated symbol f € A. The symbol f has the same meaning as the final state used
in [10], where only those timed w-languages accepted by finite automata are considered. However, since the
configuration of a general machine may be hard to work with, we prefer to change the state with output.
That is, a real-time algorithm accepts some word iff some designated symbol f appears infinitely many times
on the output tape. Formally,

Definition 3.4 A real-time algorithm A accepts the timed w-language L if, on any input w, |o(4, w)|s = w
iff we L. O

It is worth mentioning that the actual meaning of the symbol f on the output tape might be different
from algorithm to algorithm, but such a distinction is immaterial for the global theory of timed w-languages.
Indeed, consider an aperiodic real-time computation, e.g., a computation with some deadline. If, for some
particular input, the computation meets its deadline, then, from now on, the real-time algorithm that
accepts the language which models this problem may keep writing f on the output tape. That is, the
first appearance of f signals a successful computation, and the subsequent occurrences of this symbol do
not add any information, they being present for the sole purpose of respecting the acceptance condition
(infinitely many occurrences of f). On the other hand, consider the timed language associated with a
periodic computation, e.g., a periodic query in a real-time database system. Then, f might appear on the
output tape each time an occurrence of the query is successfully served (obviously, a failure could prevent
further occurrences of f, should the specification of the problem require that all the queries be served). In
this case, each occurrence of f signals a successfully served query. However, even if the actual meaning of
the f’s on the output tape can vary from application to application, it is easy to see that the acceptance
condition remains invariant throughout the domain of real-time computations.

It is assumed that the input of a real-time algorithm is always a (not necessarily well-formed) timed
w-word. That is, any real-time algorithm is fed with two sequences of symbols ¢ and 7, the first being a
(possibly infinite) word over some alphabet, and the latter being the associated time sequence. It should be
emphasized that a symbol o; with the associated time value 7; is not available to the algorithm at any time
t,t <.

Note that a TBA is equipped with a set of clocks, since a finite automaton does not have access to any
amount of storage space. However, a TBA has to keep track of time. Thus, clocks were provided as a
convenient way of achieving this. One should also note that the restricted access a TBA has to its set of
clocks prevents uses of this set in other ways than for time keeping. On the other hand, such a mechanism
(that is, the set of clocks) is not mentioned in definition 3.3. This omission is intentional. As opposed
to a TBA, a real-time algorithm has access to storage space, hence it can use (part of) this storage for
time-keeping purposes.



The absence of clocks implies that, by contrast to TBA, there are no time constraints on state transitions
in a real-time algorithm. Such constraints are made, however, immaterial by the semantics of the input tape.
Indeed, definition 3.3 states that an input symbol is not available to the algorithm at a time smaller than the
timestamp of that symbol. We believe that this constraint is sufficient since, conforming to definition 3.3,
time restrictions are imposed by the input itself. One should note that real world real-time applications have
the same property, namely that their behavior should conform to time restrictions imposed on their input
and/or output rather than internal temporal constraints.

Should the need to define other classes of timed acceptors (where storage space is limited and/or the
access to that storage space is restricted) arise, the set of clocks as a time keeping tool is likely to be needed
again. For example, the definition of timed push-down automata can be obtained by naturally restricting
definition 3.3, but one will have to add clocks to the model, given the limited (stack-like) nature of the
storage space access of such a device. We believe that such models can be easily derived. However, the
intended use of our model is building a complexity theory for general real-time computations, hence we will
not consider such automata.

3.1.2 Operations on timed languages

Traditional formal language theory provides tools for generating new languages from existing ones, like union,
concatenation, Kleene closure, etc. We therefore conclude the section that describes our model by defining
equivalent operations on timed w-languages.

The union, intersection, and complement for timed w-languages are straightforwardly defined. Moreover,
it is immediate that the language that results from such an operation on two (well-behaved) timed languages
is a (well-behaved) timed language as well.

On the other hand, the concatenation is a more complex issue. Indeed, the naive operation of concatena-
tion of two (finite) timed words (that simply concatenates together the pair of sequences of symbols and the
pair of time sequences) fails to produce a timed word, since the result of the time sequence concatenation
is likely not a time sequence. This naive approach is even worse in the case of well-behaved timed words,
where concatenating two infinite sequences makes little sense.

However, one can rely on the semantics of timed words in defining a meaningful concatenation operation.
Recall that a timed word means a sequence of symbols, where each symbol has associated a time value
that represents the moment in time when the corresponding symbol becomes available. Then, it seems
natural to define the concatenation of two timed words as the union of their sequences of symbols, ordered in
nondecreasing order of their arrival time. Intuitively, such an operation is similar to merging two sequences
of pairs (symbol, time value), that are sorted with respect to the time values. Formally, we have the following
definition:

Definition 3.5 Given some alphabet X, let (¢’,7') and (¢”,7") be two timed w-words over ¥.. Then, we
say that (o,7) is the concatenation of (¢/,7') and (¢",7"), and we write (o,7) = (¢/,7')(c",7"), iff

1. 7 is a time sequence, that is, 7; < 7;41 for any ¢ > 0; both (o1, 71)(04,73) ... and (o, 71" ) (0,7 ...
are subsequences of (01,71)(02,72) . ..; furthermore, for any i > 0, there exists j > 0 and d € {",” }
such that (o;,7;) = (031,7']‘-1),

2. for any d € {'," } and any positive integers i and j, i < j, such that 7§ = 7f for any k, 1, i < k <1< j,
there exists m such that, for any 0 < ¢ < j — i, (Omgs, Tmt) = (084, 78,), and

3. for any positive integers i and j such that 7; = 7}, there exist integers k and I, k < [, such that
(ok, k) = (07, 7;) and (o7, 1) = (07, 7}")-

Given two timed w-languages L; and L,, the concatenation of L; and Ls is the timed w-language

L= {UJ1UJ2|11J1 € Li,wy € LQ}. O

In addition to the mentioned order of the resulting sequence of symbols (formalized in item 1 of defi-
nition 3.5), two more constraints are imposed in definition 3.5. These constraints order the result in the
absence of any ordering based on the arrival time, in order to eliminate the nondeterminism. First, if either



of the two w-words contains some subword of symbols that arrive at the same time, then this subword is a
subword of the result as well, and this is expressed by item 2. That is, the order of many symbols that arrive
at the same time is preserved. Then, according to item 3, if some symbols ¢; and o5 from the two w-words
that are to be concatenated, respectively arrive at the same moment, then we ask that o; precedes o5 in the
resulting w-word.

The concept of Kleene closure for timed languages can be then defined based on the concatenation
operation:

Definition 3.6 Given some timed w-language L, let L° = (), L' = L, and, for any fixed ¥ > 1, L*¥ = LLF 1,
Furthermore, let L* = U0§k<ka. We call L* the Kleene closure of L. O

The following result is immediate:

Theorem 3.3 The set of (well-behaved) timed w-languages is closed under intersection, union, complement,
concatenation, and Kleene closure, under a proper definition of the latter two operations. Furthermore, a
subset of a (well-behaved) timed w-language is a (well-behaved) timed w-language.

3.2 Comments

The term real-time is used by the complexity theorists in a somewhat different manner than in the real-time
systems community. Indeed, the systems researchers use the term to refer to those computations in which
the notion of correctness is linked to the notion of time [33]. By contrast, theorists often use real-time as
synonym for on-line or linear time (the real-time Turing machine [31, 35] is probably the best example
for the latter use). The model of well-behaved timed w-languages intends to bridge this gap: While it is a
formal model, it captures all the features of real-time computations as understood by the systems community.
Therefore, this model have little in common to the theorists’ real-time concept. However, we believe not
only that well-behaved timed w-languages accurately model the notion of real-time computation used in the
systems community, but also that our model can be the basis of a meaningful complexity theory of real-time
systems.

Claim 1 Well-behaved timed w-languages model exactly all real-time computations.

We intend to investigate a complexity theoretic approach to real-time computations. In other words, our
intended research direction is to define complexity classes for timed w-languages, that capture an intuitive
notion of real-time efficiency, and study the relations between these classes and between them and existing
complexity classes. Classical complexity theory is of central concern not only for theorists, but also for
practitioners. For example, the existence of a lower complexity bound for some problem is an important
point: No matter how clever a program is, the bound cannot be overcome. Practitioners in the real-time
systems area do not have such a theory to refer to. As a consequence, any question related to resource
allocation and even solvability for a real-time problem is unique, in the sense that the answer to such a
question should be developed from scratch (either by experiments or individualized proofs). A complexity
theoretic approach to the real-time algorithms should offer a common ground to which practitioners can
refer in order to get readily available answers to the mentioned questions.

Suppose that we prefix real-time complexity classes by “rt—.” Then, some possible complexity classes
might be rt — SPACE(f) (space-bounded real-time computations) and rt — PROC(f) (parallel real-time
computations using a bounded number of processors), with their extensions rt — PSPACE, rt — LOGSPACE,
rt — LOGPROC, rt — PPROC, etc. Then, the study or relation between these classes can be investigated.
For example, an interesting question might be: Is the hierarchy ¢ — PROC(f) infinite? In other words, given
any number k of processors, is there a well-behaved timed w-language that can be accepted by a k-processor
real-time algorithm but cannot be accepted by a (k — 1)-processor one? If the answer is negative, then a
practitioner looking at implementing some system might give less consideration to a parallel implementation,
and focus first on some other options, such as obtaining a timely approximate solution instead of an exact
solution that is available too late. On the contrary, should the answer be positive, considering a parallel
implementation might become a high priority for our practitioner.



Finally, a note on the differences and similarities between timed w-languages (that is, real-time algorithms)
and classical formal languages (that is, classical algorithms) is in order. On one hand, it is immediate that
formal languages are particular cases of timed w-languages. Indeed, save for the time sequence, any word is a
timed w-word. If one relies on the semantics of the time sequence, one can add the time sequence 00...0 to a
classical word and obtain the corresponding timed w-word. However, none of the timed w-words obtained in
this manner is well-behaved. We have thus a crisp delimitation between real-time and classical algorithms,
while keeping the formalisms as unified as possible.

4 Formal models for real-time concepts

Our thesis is that the theory of timed languages covers all the practically meaningful aspects of real-time
computations, while doing so in a formal, unified manner. In order to further support this thesis, we take
some meaningful examples, and we construct timed w-languages that model them.

First, we model two general concepts that are central to real-time systems, namely computing with
deadlines, and real-time input arrival. The appearance of either of these concepts in the specification of
some problem gives the real-time characteristic to that problem [33]. Thus, being able to construct a
suitable model for these concepts is crucial to the usefulness of the theory of timed w-languages.

Once these concepts are successfully modeled, one can use those models in order to analyze practical real-
time applications. Indeed, we shall take in section 5 two applications (namely, real-time database systems
and routing in ad hoc networks), and use the results from this section in order to build formal models for
them.

In general, given some problem, we denote the input and the output alphabets by X and (2, respectively.
We also denote by n and m the sizes of the input ¢ and of the output 0. When a timed w-word is denoted by
(0,7), we consider that ¢ = 0102 ..., and 7 = 7475 .... We consider that ¥, 2, and IN are disjoint. However,
this does not reduce the generality of our constructions, since one can easily add some special delimiters in
the proper places. Nonetheless, the presence of such delimiters will diminish the clarity of the constructions,
hence we will omit them.

4.1 Computing with deadlines

One of the most often encountered real-time features is the presence of deadlines. The deadlines are typically
classified into firm deadlines, when a computation that exceeds the deadline is useless, and soft deadlines,
where the usefulness of the computation decreases as time elapses [24].

For example, a firm deadline may be expressed as “this transaction must terminate within 20 seconds
from its initiation.” By contrast, a soft deadline may be “the usefulness of this transaction is max before 20
seconds elapsed; after this deadline, the usefulness is given by the function u(t) = maz x 1/(t — 20).”

Let IT be a problem whose instances can be classified into three classes: (i) no deadline is imposed on the
computation; (ii) a firm deadline is imposed at time ¢4; (iii) a soft deadline is imposed at time t4, and the
usefulness function is w after this deadline, u : [t4,00) = IN N [maz,0]. We build for each instance a timed
w-word (o,7) over XU QU (N N [maz,0]) U{w,d}, w,d € U Q as follows:

(i) o1...om=0,0my1---Omgn =t oi=wiori>m+n,7,=0for 1 <i<m+n,and 7, =i—m—n
for i > m + n.

(ii) oy € NN [maz,0), 02...0m411 =0, Omi2 - -Omipnt1 =, s =0for 1 <i<m+n+1;if ; < tg and
i1>m+mn+1,then 7;, =i —m —n —1 and 0; = w. Let ig be the index such that 7; = t4. Then, for
all i > i, 7 =io + [(¢ — 40)/2], and:

(2)

o — d if i —1g is even
71 0 otherwise

(iii) This case is the same as case (ii), except that (2) becomes:



3)

| d if 4 — ig is even
i { |u(;)| otherwise

Let the language formed by all the w-words that conforms to the above description be L. Basically, a
timed w-word in L has the following properties: At time 0, a possible output and a possible input for II are
available. Then, up to the deadline d, the symbols that arrive are w. After that, each time unit brings to
the input a pair of symbols, the first component being d (signaling that the deadline passed), and the second
one being the measure of usefulness the computation still has (which is 0 for ever when the deadline is firm).
When a deadline is imposed over the computation (cases (ii) and (iii)), a minimum acceptable usefulness
estimate is also present at the beginning of the computation. Let then L(II) be the language of successful
instances of II, L(IT) C L, in the sense that, an w-word z from L is in L(II) iff some algorithm that solves II,
when processing the input from z, outputs the output from z either within the imposed deadline (if any),
or at a time when the usefulness of the process is not below the acceptable limit from .

We are ready to present now an acceptor for L(IT). For simplicity, we consider that this acceptor is
composed of two “processes,” P, and P,. P, is an algorithm that solves II, which works on the input
of II contained in the current input w-word, and stores the solution in some designated memory space
upon termination. If there is more than one solution for the current instance, then P, nondeterministically
chooses that solution that matches the proposed solution contained in the w-word, if such a solution exists.
Meantime, P,, monitors the input. If, at the moment P, terminates, the current symbol is w, then P,
compares the solution computed by P, with the proposed solution, and imposes to the whole acceptor some
“final” state sy if they are identical, or some other designated state s, (for “reject”) otherwise.

On the other hand, if at the moment P, terminates, the current symbol is d, then the deadline passed.
Then, P, compares the current usefulness measure with the minimum acceptable one. If the usefulness is
not acceptable, then P,, imposes the state s, on the whole acceptor. Otherwise, P, compares the result
computed by P, with the proposed solution, and imposes either the state s¢ or s, accordingly.

Once in one of the states s or s,, the acceptor keeps cycling in the same state. In state sf, the acceptor
writes f on the output tape. The output tape is not modified in any other state.

It is immediate that the language accepted by the above acceptor is exactly L(II). It is also immediate
that L(IT) is well-behaved. Thus we completed the modeling of computations with deadlines in terms of w-
languages. Note that we assumed here that all the input data are available at the beginning of computation.
However, the case when data arrive while the computation is in progress is easily modeled by modifying the
timestamps that corresponds with each input data. But this case is covered in more details by our discussion
in section 4.2.

4.2 Real-time input arrival

One of the computational paradigms that feature real-time input arrival is the data accumulating paradigm,
that has been extensively studied in [14, 15, 26, 27]. The shape of input in this paradigm is very flexible, and
any practically important form of real-time input arrival can be modeled by a particular class of problems
within this paradigm. Therefore, we use in what follows the data-accumulating paradigm to illustrate the
concept of real-time input arrival. Further models of this concept are also presented in section 5.

A data accumulating algorithm (or d-algorithm for short) works on an input considered as a virtually
endless stream. The computation terminates when all the currently arrived data have been processed before
another datum arrives. In addition, the arrival rate of the input data is given by some function f(n,t) (called
the data arrival law), where n denotes the amount of data that is available beforehand, and ¢ denotes the
time. The family of arrival laws most commonly used as examples is:

f(n,t) =n+ kn"t? (4)

where k, 7, and § are positive constants. Any successful computation of a d-algorithm terminates in finite
time.

Given a problem II pertaining to this paradigm, we can build the corresponding timed w-language L(IT)
similarly to section 4.1. More precisely, given some (infinite) input word ¢ for II (together with a data
arrival law f(n,t) and an initial amount of data n), and a possible output o of an algorithm solving II



with input ¢, a timed w-word (o,7) that may pertain to L(II) is constructed as follows: o1 ...0, = o,
Omgl -+ Omipn = U ---ln, T; = 0 for 1 <4 < m+ n. Note that, since both the arrival law and the initial
amount of data are known, one can establish the time of arrival for each input symbol ¢;, j > n. Let us denote
this arrival time by ¢;. Also, let 50 = m + n + 1. Then, the continuation of the timed w-word is as follows:
for all i > 0, 0;,4+2; = ¢ (where c is a special symbol), and 0, +2i+1 = Lig+i; MOTEOVEr, Tig+2i+1 = tig+i, and
Tio+2i = Tig+2i+1 — 1.

Now, an acceptor for L(II) has a structure which is identical® to the one used in section 4.1: Tt consists
in the two processes P, and P,,. P, works exactly as the P, from section 4.1, except that it emits some
special signal to P, each time it finishes the processing of one input data. Note that, since any d-algorithm
is an on-line algorithm [15], it follows that, once such a signal is emitted the p-th time, P, has a (partial)
solution immediately available for the input word ¢; ... ¢p.

Then, suppose that P, received p signals from P,, and it also received the input symbol o, 2(p—1-i0),
but it didn’t receive yet the input symbol o4 2(,—i,). This is the only case when P, attempts to interfere
with the computation of P,. In this case, P, compares the current solution computed by P, with the
solution proposed in the input w-word; if they are identical, the input is accepted, and the input is rejected
otherwise (in the sense that either state s; or s, is imposed upon the acceptor, accordingly).

Again, in state sz, the acceptor writes f on the output tape, and the output tape is not modified in any
other state. As well, once in one of the states s; or s,, the acceptor keeps cycling in the same state. It
is immediate that L(II) is well-behaved and contains exactly all the successful instances of II, therefore we
succeeded in modeling d-algorithms using timed w-languages.

Other related paradigms, like c-algorithms [16, 26, 27] (which are similar with d-algorithms, except that
data that arrive during the computation consist in corrections to the initial input rather than new input)
can be easily modeled using the same technique.

5 Applications

We modeled in sections 4.1 and 4.2 the two main ingredients that, when present, impose the real-time
qualifier on the problem. This supports our thesis that the theory of timed languages covers all the practically
relevant aspects of real-time computations. However, another part of this thesis is that our model is capable
of capturing practical aspects of the real-time domain. In order to emphasize this aspect, we provide in what
follows timed w-languages that model problems from two highly practical areas, namely real-time databases
(where we identify a real-time variant of the recognition problem) and ad hoc networks (where we offer a
formal model for the routing problem).

5.1 Real-time database systems and timed languages

We start by reviewing in section 5.1.1 the main concepts of the real-time database systems theory. This
review is mainly intended as a summary of the notations and concepts that are used later. Then, we enter
the real-time domain, summarizing in section 5.1.2 the theory of real-time database systems. Finally, we use
our formalism in section 5.1.3, where we model the recognition problem for real-time database systems.

5.1.1 Relational database systems

Much of this section is presented conforming to [2]. Throughout the paper we consistently use the notations
from [2]. It is assumed that a countably infinite set att of attributes is fixed. Moreover, the countably infinite
set dom (disjoint from att) is also fixed, and it represents the underlying domain. A constant is an element
of dom. When different attributes should have different domains, a mapping Dom on att is considered,
where Dom(A) is a set called the domain of A, Dom(A) C dom. There is a countably infinite set of relation
names. A relation is given by its name and its ordered set of attributes (sometimes called its sort). Given
a relation R, the sort of R is denoted by sort(R), and the arity of R is defined as arity(R) = |sort(R)|. A
relation schema is a relation name R. A database schema is a nonempty finite set R of relation names. Let R

2In particular, if there is more than one solution for the current instance, then P, nondeterministically chooses that solution
that matches the proposed solution contained in the w-word, if such a solution exists.
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Title Description Artist

Terre Sauvage Canadian Landscape Thompson
Paintings

Terre Sauvage Canadian Landscape Harris
Paintings

Exhibitions Terre Sauvage Capafiian Landscape MacDonald

Paintings

Painter of the Soil Works on Paper Schaefer

Sorrowful Images  Early Nederlandish Aelbrecht
Devotional Diptychs

Sorrowful Images  Early Nederlandish Dieric
Devotional Diptychs

| City Title Date
Schedules Mexico City Terre Sauvage October 1999
St. Catharines Painter of the Soil November 1999
Hamilton Sorrowful Images  November 1999

Figure 1: An example of a relational database instance.

| Artist City
Schaefer St. Catharines
Aeclbrecht Hamilton
Dieric Hamilton

S

Figure 2: The result of a query.

be a relation or arity n. Then, a tuple over R is an expression R(a1,az,...,a,), where a; € dom, 1 <4 < n.
A relation instance over R is a finite set of tuples over R. Given a database schema R, a (database) instance
I over R is a finite set that is the union of relation instances over R, for R € R. The sets of instances over
a database schema R and a relation schema R are denoted by inst(R) and inst(R), respectively.

In order to support the intuition behind the concepts presented above, let us consider as an example the
relational database® from figure 1.

The database schema (call it NGC) for the database shown in figure 1 is defined by NGC =
{Ezhibitions, Schedules}. Tt contains therefore two relation schemae, namely FEzhibitions and Sched-
ules. 'The attributes Title, Description, Artist, City, and Date are included in the set att. One
can consider the set of finite length strings of characters as the underlying domain dom. How-
ever, a mapping Dom on att may be considered as well. In this example, Dom(Title) D
{Terre Sauvage, Painter of the Soil, Sorrowful Images}, and so on. Furthermore, sort(Ezxhibitions) =
{Title, Description, Artist}, and therefore arity(Ezhibitions) = 3. Finally, the relation instance over
Exhibitions from figure 1 contains 6 tuples, while the instance over Schedules contains only 3 tuples.

The interrogation of a database is accomplished by using queries. A query is a partial mapping from
inst(R) to inst(S), for a fixed database schema R and a fixed relation schema S.

For example, a meaningful query (expressed in plain English) for the database from figure 1 might be
“which artist is exhibited in which city in November.” This query is a map from inst(NGC) to inst(S) for
some relation schema S, where sort(S) = {Artist, City}. Incidentally, the result of performing this query
on the database instance from figure 1 is shown in figure 2.

Complexity of queries We are mainly concerned with data complexity of queries, namely the complexity
of evaluating a fixed query for variable database inputs [2], since the usual situation is that the size of the
database input dominates by far the size of the query (and therefore this measure is most relevant).

The complexity of queries is defined based on the recognition problem associated with the query. For a

3The events described in this example are loosely based on [1].
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query ¢, the recognition problem is: Given an instance I and a tuple u, determine if u belongs to the answer
¢(I). That is, the recognition problem of a query ¢ is the language:

{enc(I)$enc(u)|u € ¢(I)} (5)

where enc denotes a suitable encoding over queries and tuples, and $ is a special symbol.

The (data) complezity of q is the (conventional) complexity of its recognition problem. Then, for each
conventional (time, space, processors) complexity class C, one can define a corresponding complezity class
of queries QC.

Another way to define the complexity of queries is based on the complexity of actually constructing the
result of the query. The two definitions are in most cases interchangeable [2].

5.1.2 Real-time database systems

The theory of real-time database systems (RTDBSs) may be viewed as the meeting point for the areas of
active and temporal databases. In the following, we make a minimal presentation of this theory, directing
the interested reader to [2, 28].

Active databases Active databases support the automatic triggering of updates in response to (internal
or external) events. Forward chaining of rules is generally used to accomplish the response, as in the case
of expert systems. The component of active database is central in the theory of real-time databases, since
these databases usually have to respond in a timely fashion to changes in the environment, that are usually
signalled to the database system by events.

There are three components in an active database [2]: an event monitoring subsystem, a set of rules
(often called a rule base), and a semantics for rule application (or an ezecution model).

The typical form of a rule is “on event if condition then action,” where the event may be either an
external phenomenon, or an internal event (such as the insertion of a tuple). Events may have attributes that
are passed to the system. The conditions may involve parameters that are passed along with the event, or
parameters that are specific to the content of the database. The action is an arbitrary routine, that usually
involves an updating transaction. An action may in turn generate other events and hence trigger other rules.

For example, we may want to consider deleting those exhibitions contained in the instance of relation
Schedules from the database shown in figure 1 which are no longer exhibited in the specified city. A rule
for such a processing might be:

on MonthChange if true then del(Date < CurrentDate)

where del(C) deletes those tuples for which condition C holds.

A fundamental issue in active databases addresses the choice of an execution model, that specifies how
and when rules are applied. An important dimension of variation between execution models is given by the
moment the rules are fired. The first model is immediate firing, where a rule is fired as soon as its event and
condition become true. Under deferred firing, rule invocation is delayed until the final state (in the absence
of any rule) is reached. Finally, when a separate process is spawned for the rule action and is executed
concurrently with other processes, we have an concurrent firing. In the most general model, each rule have
an associated firing mode (immediate, deferred, concurrent).

Besides the firing mode, there is a wide variety of execution models. A dimension of flexibility that is
of interest in the area of real-time databases concerns the access to the “past” of a database. That is, in
addition to the access of the current state, a rule may have access to one or more previous states. In a
real-time environment, there is usually a need to have full access to (a part of) the history of the system, as
we shall see in section 5.1.2.

Temporal databases Classical databases model static aspects of the data. However, in many applications
(and especially in the real-time case), the history of data is just as important as the data itself. Let our
point of interest be a database over some schema R, and let us consider now the content of the database
through time. Basically, one can associate to each time ¢ the instance I, of the database at time ¢. That is,
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the database appears as a sequence of states or snapshots indexed by some time domain. In order to query
temporal databases, relational languages must be extended to take into account the time dimension. To say
that a tuple u is in relation R at time ¢, one could simply add a second argument to R and write R(u,t).

However, an important issue concerns the time domain [2, 28]. First of all, the structure of time should
be addressed. There are two structural models of time, linear and branching. In the latter model, time is
linear and totally ordered from past till “now,” when it divides into several time lines. The main model for
real-time databases is, however, linear. The density of the time domain is also of interest. This domain may
be either continuous (isomorphic to reals), dense (isomorphic to rationals), or discrete (isomorphic to natural
numbers). The model of choice is usually the discrete time domain, where each natural number corresponds
to a nondecomposable unit of time, sometimes referred to as a chronon. Finally, one can differentiate between
relative and absolute time.

The dimensionality of time addresses the question “what is the meaning of I;.” In this respect, one can
differentiate between valid time (the time associated to each object in some database instance is the time at
which the fact associated to this object became true in reality) and transaction time (the time at which the
fact was recorded in the database as stored data).

Although the concept of a temporal database as a sequence of instances is very convenient theoretically,
this is an extremely inefficient way to represent such databases. In practice, this information is summarized
in a single database, by using timestamps to indicate the time of validity. Such timestamps may be placed
at attribute or tuple level (in general, because of this alternative, we use the term “object” when referring
to either an attribute or a tuple), and are typically unions of intervals over the temporal domain [2, 28, 34].

Real-Time databases Real-time databases combine the notions of active and temporal databases. There
are therefore two important aspects: First, a real-time database interacts with the physical world, for example
by reading values of physical objects and storing them. The real world is periodically sampled, and each
such sampling process generates an event that must be handled by the database. In addition, when a value
changes, some related changes happen to other data. This update process is typically accomplished by rule
application as well. Needless to say, since data in a real-time database is time sensitive, such a database
is a temporal one. Second, the transactions must be timely, that is, they must complete within their time
constraints (deadlines).

We briefly present in the following the data model used in [34], which derives from the historical relational
data model [18].

The objects from the database are grouped in three categories: Image objects are those objects that
contain information that is obtained directly from the external environment. Associated with an image
object is the most recent sampling time. Archival sets of image objects are typically maintained, so that
different snapshots at different points in time are available. A derived object is computed from a set of image
objects and possibly other objects. The timestamp associated with a derived object is the oldest valid time
of the data objects used to derive it. Finally, an invariant object is a value that is constant with time.
Such an object may be considered either a temporal or non temporal data. In the first case, the timestamp
associated with such an object is always the current time. Note that this is a natural classification and, in
order to keep a complete history of the database, it is enough to keep archival copies of the image objects,
since the other objects are either invariant with time, or their values can be derived from the values of the
other objects.

The time associated with some object = is denoted by t,. It is assumed for now that the time of an
object is a single point in time.

The age a(z) of an object z is the difference between the current time and the timestamp of z. The
dispersion d(z,y) of two data objects z and y is the absolute value of the difference between the timestamps
of z and y. Given some set of objects Y, it is absolutely consistent if a(x;) < T, for all z; € Y, and where
Ty, is some specified (fixed) threshold. Similarly, Y is relatively consistent if d(z;,z;) < T, for all z;,z; € Y,
where T is another specified threshold.

Then, a real-time database instance is defined as B = (I, I, ..., I,, D, V'), where I,, is the most recent set
of image objects, and I, I, ..., I,_1 are archival variants of this set. D is the set of derived objects, and V'
is the set of invariant ones. The database is said to have absolute consistency if I,, is absolutely consistent
and the ages of data objects used to derive the derived objects are less than the specified threshold. The
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conditions for relative consistency are similar.

Since in a real-time database it is important to reflect the state of the real world, it is assumed that
the difference between the valid time and the transaction time is small. Time is usually considered discrete.
The valid time associated with each temporal object in the database instance is called the lifespan of the
object. The lifespan of a data object is defined as a finite union of intervals. These intervals are closed under
union, intersection and complementation, and form therefore a boolean algebra. A single instance of time is
represented by a degenerated interval that contains exactly one time value. A lifespan can also be associated
with a set of objects, in a natural manner.

Based on these notions, a variant of relational algebra can be defined as a query language for real-time
databases [18, 34].

Additional issues in the real-time database systems include the pattern of queries (periodic, sporadic,
aperiodic), the nature of deadlines (hard, firm, soft) [28], and the way the updating rules are fired. While
the first two issues received both theoretical and practical attention in the literature, to our knowledge, there
is no special theoretical treatment on the last issue, except for the one that spawn from the active database
theory. However, one might study various variants of rule application. For example, one may impose an
immediate firing on the rules that update the image objects of the database, but a deferred firing for the
derived objects. Note that the immediate firing in the case of image objects is implied in [34] and therefore
in the above paragraphs, since it is assumed that the valid and transaction times are close to each other.

Finally, note that some aperiodic query ¢ can be considered as a partial function from B to inst(S),
where S is some relation. However, a periodic query returns an answer each time it is issued, therefore such
a query is a function from B to (inst(S))%.

5.1.3 Real-time database systems as timed languages

As shown in section 5.1.1, one of the ways of assessing the complexity of queries and query languages is
based on the reduction of such problems to the problem of language recognition.

However, the real-time component in a real-time database system adds a new dimension to the model,
namely the time. Is seems natural therefore to try to model such database systems using timed languages.
We describe such a modeling in what follows. We consider that there is a suitable encoding function enc that
encodes objects and sets of objects, without giving much attention to how such a function is constructed,
since such functions were widely used (see for example [2, 25]). Let $ be a symbol that is not in the codomain
of enc.

Let us ignore the queries for the moment. Recall that a real-time database instance is a tuple B =
(I, I,...,I,,D,V), as mentioned in section 5.1.2. Moreover, assume for now that the database contains
exactly one immediate object, called o, and that the value of o is read from the external world each ¢
time units. Let D and V be some sets of derived and invariant objects, respectively, with m = |enc(V))|
and p = |enc(D)|, and og(t) be the value of o that is read at time ¢ from the external world. Consider
then the timed w-word dby = (0,7), where o and 7 has the following form: let* ¢ = |enc(ox)|; then, for
every i > 0, Oati(q+1)+1 - - - Tat(i+1)(q+1) = enc(ox(t:))8, where a = m + p + 2; moreover, 7; = it; for
a+ilg+l)+1<j<a+(i+1)(g+1).

Furthermore, let dby = (o,7), such that o1...0;m = enc(V), o(m+1) = o(m+p+2) = §, and
Om+2 - - - Omtpt1 = enc(D); in addition, 7, = 0,1 <i<m+p+2.

In other words, the sets of both invariant and derived objects are specified at time 0, as modeled by the
word dbg. Then, each t; time units a new value for oy, is provided. This is modeled by dbg. It is clear that
the database instance is completely specified by the word dbydby, since this word models both the invariant
and derived objects (by dbg), as well as all the updates for the sole image object (by dbg).

Now, let us consider the general case of a real-time database. That is, we do not restrict ourselves to one
invariant object anymore. Therefore, let the database instance contain r such objects, called og, 1 < k < 7.
However, if we consider a word dby, corresponding to each object o, 1 < k < r, then it is immediate that
the database is described by the word:

4We assume for the clarity of presentation that the length of the encoding of o, is constant over time. The extension to a
variable length is straightforward.
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dbg = dbodb, .. .db, (6)

We have now a model for real-time databases, which it trivially a well-behaved timed w-language. Now,
all that we have to do is to consider the queries. Again, we assume without further details that there is a
function enc, for encoding queries and their answers, whose codomain is disjunct from the codomain of enc.
Real-time queries can be classified in two classes: periodic and aperiodic [28].

Let us focus on aperiodic queries first. Each such query ¢ may have a firm of soft deadline. However, it
seems natural to also consider queries without any deadline, since they might be present even in a real-time
environment. Therefore, the encoding of a query should include

1. the time ¢ at which the query is issued,
2. the (encoding of) the query itself enc,(q),
3. a tuple s that might be included in the answer to the query,

4. the deadline t4 of the query, if any.

Note that a similar problem is the presence of deadlines, that was presented in section 4.1, except that the
first item is not modeled (the computation always starts at time 0). Therefore, our construction is similar
to the construction of the language that models computations with deadlines.

We have thus a query for which (i) there is no deadline, (i) a firm deadline is present, or (iii) a soft
deadline is present. The deadline (if any) is imposed at some relative time t4 (that is, the moment in time
at which the deadline occur is ¢ + t4), and the usefulness function is denoted by w. For each query ¢ and
each candidate tuple s we can build similarly to section 4.1 an w-word agq,;4 = (0,7) as follows, where
m = |enc,(s)$|, n = |enc,(q)$], and $, w,, d, are not contained in the codomain of enc,:

(1) o1...0m = ency(s)$, omt1--.Omin = encyg(q)$, oo =wy fori >m+n, 7, =t for 1 <i <m+n, and
Ti=t+i—m—nfori>m+n.

(ii) o1 € NN [maz,0), o2...0mt1 = ency(s)$, om+2 ... Oment1 = ency(q)$, m=tforl <i<m+n+1;
if, <tgandi>m+n+1,then, =t+4%—m—n—1and o; =w,. Let ig be the index such that
7; =t +tq. Then, for all ¢ > ig, 7; =t + 4o + [(i — i9)/2], and:

[ dy ifi—igiseven
i { 0 otherwise (7)
(iii) This case is the same as case (ii), except that (7) becomes:
| dq if i —ig is even
7i = { |u(r3)| otherwise (8)

Let g be a periodic query now. More precisely, g is issued for the first time at time ¢, and then it is
reissued each t, time units. Each time ¢ is issued, we have to consider a tuple whose inclusion into the
result of ¢ is to be tested. Let s; be such a tuple for the i-th invocation of ¢, and let s = (s1, $2, 83, - - .)-
It is easy to see that such a query is modeled by the word pqy s i.t,] = 4[q,s1,6194q,55,t+t,]99[q,55,t+2¢,] - - -~
However, there is no guarantee that the resulting word pgjq s,1,¢,] is well-behaved, since the concatenation of
an infinite number of well-behaved timed w-words is not necessarily well-behaved. In our case, however, the
result of the concatenation is a well-behaved timed w-word, and this follows immediately from the following
observation.

Lemma 5.1 For a word pqq s+, = (0,7), and for any finite positive integer k, there exists a finite integer
k' such that T4 > k.
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Proof. Without loss of generality, we assume that k = t+it, for some ¢ > 0. However, the symbols for which
7; < k can be counted as follows: there are i + 1 occurrences of some word of the form enc,(g)$ency(s,)$,
0 < v <4, and at most k occurrences of symbols from {wg,d;|z = ¢ + It,,0 < I < i}. Therefore, j <
(i 4+ 1)|ency(q)Sency(s)$| + 2ki, for some tuple s such that |s| = maxo<y<; 5. Clearly, the upper bound for
Jj is finite and therefore so is the number of symbols for which 7; < k. O

We modeled therefore the main ingredients of a real-time database system. All we have to do then is to
put the pieces together.

Definition 5.1 Let B be some real-time database instance. Then, given some aperiodic query ¢ from B
to inst(S) (where S is some relation schema), issued at time ¢, the recognition problem for ¢ on B is the
(well-behaved) timed w-language:

Lag ={dbagg,sqls € ¢(B)} 9)

Analogously, given a periodic query ¢ from B to (inst(S))“, issued at time ¢ and with period ¢, the
recognition problem for g on B is the (well-behaved) timed w-language:

Lpg = {dbppgjg,s,1.1,]l5 € ¢(B)} (10)
O

Note that the recognition problem for real-time queries is similar to the same problem for conventional
queries, shown in (5), except that the (conventional) words used in (5) are replaced by timed w-words.

5.2 Ad hoc networks

We direct our attention now to another real-time problem, namely the routing problem in ad hoc networks.
We show how to model this problem using the theory of timed w-languages. In the process, we also identify
an interesting variant of real-time algorithms, which we believe to be useful in modeling parallel distributed
real-time systems.

An ad hoc network is a collection of wireless mobile nodes, that dynamically forms a temporary network
without using any existing network infrastructure or centralized administration [12, 22]. Due to the limited
transmission range of such nodes, multiple hops may be needed for one node to exchange data with another.

The main difference between an ad hoc network and a conventional one is the routing protocol. In such
a network, each host is mobile. Therefore, the set of those nodes that can be directly reached by some host
changes with time. Furthermore, because of this volatility of the set of directly reachable nodes, each mobile
node should act not only as a host, but as a router as well, forwarding packets to other mobile hosts in the
network.

Although the concept of ad hoc networks is relatively new, many routing algorithms were developed (see,
for example, [11, 12] and the references therein). However, little in known about the performances of these
algorithms. A comparative performance evaluation was proposed for the first time in [12], where several
routing algorithms are compared based on discrete event simulation. To our knowledge, no analytical model
have been proposed up to date.

On the other hand, an ad hoc network is obviously a real-time system. Indeed, since the positions (and
implicitly the connectivity) of all the hosts are functions of time, such a network is close to the correcting
algorithms paradigm [16]. Therefore, conforming to our claim that timed languages can model all the
meaningful aspects of real-time computations, one can model ad hoc networks using this formalism. This is
what we are attempting in the following.

5.2.1 Assumptions and notations

When speaking about ad hoc networks, we assume that, if a message is emitted by some node at some time ¢
and received by another node that is in the transmission range of the sender at time ¢/, then ' = ¢+ 1. That
is, transmitting a message takes one time unit. Note that we actually established in this way a granularity
of the time domain. This granularity seems appropriate, since transmitting a message is an elementary
operation in a network.
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We introduce a notation for the transmission range. We denote this characteristic by the predicate
range(ni,n2,t). That is, anode ns is in the transmission range of other node n; at time ¢ iff range(n1,na,t) =
true. We do not give any specific way of computing this predicate, since such a computation depends on the
characteristics of the particular application. Indeed, this predicate depends on the characteristics of both n
and ng, as well as on the geographical characteristic of the area between the two nodes.

5.2.2 Nodes as timed w-words

The main component of a model for ad hoc networks is the mobile host (or the node). It is consistent
to assume that each node in a network is uniquely identified (for example, by its unique IP address). For
convenience, we label such a node by an integer between 1 and n, where n is the number of nodes in the
given network.

We assume that there is an encoding function e of the properties of any node ¢ (like the label i of the node,
the position of 4, and other properties that will be explained below) over some alphabet ¥, with @, $ ¢ X.
Denote by IT the set of all possible properties. Then, we say that x is the encoding of some property 7 of
node i iff z = enc(i, ), where enc: N x I — X,

(i, m) = $e(i)$ if =1,
encit, T = $e(i)@Qe(m)$  otherwise

In other words, we have a standard encoding, except that each property of some node i (except i itself)
is prefixed by an encoding of i. This will be useful when we put together the models of all the nodes that
form an ad hoc network.

Each node i is characterized by its position, that changes with time. We denote by p;(t) the (encoding of
the) position of node ¢ at time ¢. In addition, each node has a set of characteristics that are invariant with
time (for example, the transmission range). The structure of this set is, however, immaterial for the present
discussion. Therefore, we consider that these characteristics are encoded by some string ¢; for each node i.
Finally, it is sometime assumed that each node has a constant velocity [12]. However, the constant velocity
assumption is made for simulation purposes, and is not necessarily a feature of the real world. Indeed,
the velocity of some node usually varies with time, and/or is unknown to the other nodes. Such a case is
considered in [11], where the only thing known by any node is its current position. We consider here the
most general case, where the only thing known about some node at some moment in time is its position at
that moment.

Given a series of (conventional) words wy,ws, ..., we denote by wywsy the concatenation of w; and ws.
Moreover, we denote by [];_, w; the (infinite) word obtained by successively concatenating the words w;,
i>1

We are ready now to consider a timed w-word that models some mobile host. A node i is modeled by
the word h; = (o,7), where 0 = (¢;)([T;—o pi(t)), and 7 = 772 ..., with 7; = 0 for 1 < j < |¢;p;(0)|, and, for
any k> 1,75 = k, 1+ |ai| + [ (D] < 3 < lail + T i)

In other words, the first part of h; contains the invariant set of characteristics, together with the initial
position of the object that is modeled. The time values associated with this subword are all 0. Then, the
successive positions of the node are specified, labeled with their corresponding time values. It is immediate
that all the necessary information about node i is contained in the word h;.

5.2.3 A model for messages

Now that we have a model for the set of nodes, all we have to do is to connect them together. We have that
is to model message exchanges between nodes.

Consider a message u issued at some time ¢. Such a message should contain the source node s and the
destination node d. In addition, such a message may contain its type (for example, message or acknowledg-
ment), the data that is to be transmitted, etc. All this content (referred to as the body of the message) is,
however, immaterial, and we denote it by b, as a whole. Considering that the encoding function e intro-
duced above encodes messages over ¥ as well, let the encoding of a message be $e(t)Qe(s)Qe(d)Qe(b,,)$,
and k = |$e(t)Qe(s)Qe(d)Qe(b,)$]. Then, the timed (finite) word that models u is m, = (o,7), where
o1 ...05 = $e(t)Qe(s)Qe(d)Qe(b,)$ and 7; =t for 1 < j < k.
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Note that m,, is not a well-behaved timed w-word. On the other hand, it is easy to see that, for any node
i, hym, is such a word. However, for a message to exist, there must be at least one node in the network,
namely the node that sends it. That is, a model of a message would always be concatenated to the model
of at least one node, and therefore the above construction is sufficient for our purposes.

Finally, one has to consider the model for the receiving event. For this purpose, assume that some
message u (generated at time ¢, by a source s) is received by its intended destination d at some time t,,.
We model such an event by the timed word r,, = (o, 7), where oy ...op = $e(t)Qe(s)Qe(d)$ and 7; = ¢, for
1<j <K, with k' = |$e(t)Qe(s)Qe(d)$|. Again, such a word is not well-behaved, but the above argument
still holds (namely, some “acknowledgment” cannot exists in a network with no hosts).

5.2.4 The routing problem

It is immediate that an ad hoc network with n nodes and without any message is modeled by the timed
w-word a,, = hiha...h,. Then, a network of n nodes and some messages ui,u2,...,ux, £ > 1, will
be modeled by the word wpr = hihz ... hymy, My, ... My, , and the model that includes the event of
receiving u;, 1 < i < kis wrp ik = hiha ... by Pyy My, Tyy - - - My, Ty, - Moreover, given some countably
infinite series of messages ujus ..., the model of the network in which these messages are transmitted is
Wrpw = hihy ... hpMy, Ty, My, Ty, - - .. Note that wy, , is a well-behaved timed w-word under the reasonable
assumption that any node can generate only a bounded number of messages per time unit.

In the following we may refer to the encoding m,, of a message u simply by “the message m,.” Whether
the term message refers to a message or an encoding of a message will be clear from the context. For a fixed
n, denote by N, the set of all the words of the form w, x, k € NU {w}.

We are ready now to state the routing problem in ad hoc networks as a timed w-language. Consider
a network with n nodes, and a message u generated at time ¢, with body b, that is to be routed from
its source s to the destination d. Then, a route of u is a word in the timed w-language R, ., C Ny,
where, for some finite positive integer f, there exists a set of messages ui,us,...,us, and possibly a set
of messages rti,rts,...,rty, with g a positive, finite integer, such that any word w € R, , has the form
w=hiha ... RnMyy Tuy -+ Moy, Ty Mgty Tty - - - Mg, Trg, - Furthermore, for each message u;, 1 <14 < f, denote
by ti, t}, si, d;, and b; the generation time, receiving time, source, destination, and body of w;, respectively.
Then,

1. b1=b2=...:bf=b7 51=8,df=d,t1=t,
2. for any i, 1 <i < f—1, d; = siy1, t}; = tiy1, and range(s;, d;, t;) = true,
3. t'f is finite.

In other words, the routing process generates f intermediate messages (u1, ..., us). These are one-hop
messages that contain the same information as the original message. Moreover, the time at which one such
message arrives at the intended destination of u is finite (otherwise, the message is never received, and the
routing process is hence unsuccessful). In addition, there might exist a finite number of additional messages
(rti, ..., rty), that are exchanges between nodes in the routing process (for example, when the routing
tables at each node are built/updated). In the following, we refer to some language R, , as an (instance of
a) routing problem, while some particular word w € R, ,, will be called an instance of R, ,, or just routing
instance when R,, ,, is understood from the context. Note that the actual routing (performed by some routing
algorithm) of message u in some n-node network is modeled by a word in the corresponding routing problem.

Clearly, the language R, , models all the relevant characteristics of a routing problem. Note that two
routing algorithms may be compared by comparing their corresponding words from R, ,. Moreover, more
than one measure of performance may be considered. The measures of performance that are considered in
[12] are the routing overhead (the total number of messages transmitted), path optimality (the difference
between the number of hops a message took to reach its destination versus the length of the shortest possible
path), and the message delivery ratio (the number of messages generated versus the number of packets
received).

The first two measures have immediate correspondent in our model. Indeed, considering some word
w € R, , corresponding to a routing algorithm, the routing overhead is given by f + g, the total number
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of messages that are generated. The number of hops a message traveled is given by t} — t1. The message
delivery ratio on the other hand needs some changes in our model, since we defined the routing problem as
consisting in the successful deliveries of messages. Consider for this purpose the language R;L,u C N,,, where
any word w € R'n,u has the same properties as above, except the finiteness of t}. This models a routing
problem where the possibility of a message to be lost (that is, never received by its intended destination)
exists. This property is modeled by the cases where t, = w.

However, note that in practice an infinite delivery time usually means that the delivery time exceeds
some finite threshold 7. This situation is modeled by our initial construction, where a lost message is a

message for which t’f —t1 >T.

5.2.5 On routing algorithms

Up to now, we modeled the routing problem. Such an approach offers a basis for comparing routing algo-
rithms, once the results of these algorithms are modeled as words from R, ,. On the other hand, nothing
is said about the routing algorithm itself. The immediate variant for such a model takes the form of real-
time algorithm that accepts the language R, ,. However, further restrictions to such an acceptor must be
imposed: The real world router consists in n independent algorithms, that have limited means of communi-
cation. That is, two such nodes can communicate only by messages exchanged between them. A model for
a routing algorithm must take this feature into account.

However, there is a second approach to this model: A node in such a network is unaware of the properties
of another node, unless it receives a message from (or about) that node. Based on this intuition, we
can propose a model for an n-node ad hoc network. For specificity, we model a routing instance w =
hiha - Ry Ty - o Mo Ty Moty Tty -+ - Mot T -

Such a model has n component timed w-words H;, 1 < i < n, one for each node. Each H; consists in a
“local” component £; and a “remote” component R;, where:

£i = himujl mujz s My, mrtkl mTth e mrtky (].].)

where 0 <z < f,0<y<g,1<ji<fforanyl,1<I<z,and 1<k <gforanyl, 1<I<y. Moreover,
the source of each message u;j, or rty, is 4. That is, the local component consists only in those messages that
are sent by the corresponding node, together with the space coordinates of that node.

Given L;, for each j # i, 1 < j < n, denote by M, ; the set {rujl|1 <UL z,dy;, = Jjru {T’thl|1 <1<
Y,drt;, = J }. That is, the set M; ; contains the receiving events for all the messages that are sent from node
i to node j. Then:

Rizvl...vk (12)

where vy ... v} are exactly all the elements in the set UL, M; ;.

Finally, H; = L;R;. In other words, the component H; contains only those messages that are sent by
the corresponding node, and those messages that are received by the node. Besides this information, no
knowledge about the external world exists.

6 Explicit parallel and distributed models

We presented in section 5.2.5 a distributed model for the routing algorithm. However, one can note that the
above modeling of a routing problem can be extended to any distributed real-time algorithm.

The parallelism is introduced in the theory of timed languages by the structure of acceptors for such
languages. Indeed, an implementation for such an acceptor can be considered for any underlying model of
computation. We implied such a feature when mentioning multiprocessor implementations and the corre-
sponding real-time complexity classes. However, a first disadvantage of such an approach is that the real-time
complexity classes that involve the notion of parallelism are likely to be different from model to model (in
particular, the class rt — PROC(f) might be different when the underlying model of computation is changed
from, say, the PRAM to an interconnection network). Then, no information about the explicit distributed
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character of the computation is present in the language itself. Since our goal is to present a consistent theory
of real-time computations, it is desirable to have such an information right within the language.

One can note that a similar construction was studied in the context of conventional languages, namely the
parallel communicating grammar systems (PCGS), introduced in [29] and further studied in, e.g., [13, 17, 20].
A PCGS consists in a number of grammars, with their own work space, that communicate to each other by
means of special symbols. Except for this communication, the grammars work independently.

The case of parallel grammar systems closely resemble a real world ad hoc network®. Based on this
intuition, we can propose a model for parallel real-time computations: Consider a parallel algorithm with n
processing elements. In general (that is, without any assumption about the parallel machine on which this
algorithm is implemented), one can assume that the implementation is composed of a set of n processes, that
execute independently, and communicate with each other by messages. Consider now some process k isolated
from the external world. It has to perform some real-time task, therefore, its execution can be modeled by
some timed w-word. Call this word c;. However, in addition to this computation, the process may send
messages to other processes. Let all these messages be modeled by some timed w-word l;. Furthermore,
the messages that are received by process k& can be modeled by a timed w-word 7. Then, the behavior of
process k is modeled by the timed w-word cglgry, 1 < k < n.

If some real-time algorithm consists in p such processes, then it’s behavior is modeled by the tuple
(ClllTl, feey Cplpr).

In particular, the real-time algorithm presented in section 5.2.5 is just a particular case of this con-
struction. Furthermore, the PRAM can be considered a particular case as well: Since the communication
between different processors is accomplished by read/write operations from/to the shared memory, there is
no communication. That is, both I and r; are null words in a system of timed w-acceptors implemented on
the PRAM.

We believe that, once the theory for timed w-languages is in place, the study of the distributed model
presented above is worthwhile.

7 Conclusions, or towards a complexity theory for real-time com-
putations

We believe that the notion of timed languages and real-time algorithms as introduced in section 3 are
important tools in developing a complexity theory for real-time systems, which is simply not present at this
time. We presented in this paper a general definition of this class of languages, and we suggested that this
definition is powerful enough to model all the practically important aspects of real-time computations. We
also supported our thesis with meaningful examples.

Besides validating the thesis, the examples offered some interesting insights into the theory of real-time
systems. Specifically, we constructed a recognition problem for queries in a real-time database system. While
query complexity issues in traditional database systems were studied [2], the real-time domain received to
our knowledge no attention. The analysis of complexity of queries in this domain could be based on the
newly developed recognition problem, which is yet another argument in favor of the mentioned complexity
theory.

We also presented a model for the routing problem in ad hoc networks. Not only did we formalize this
problem, opening the road for a complexity analysis of it, but we also identified a variant of our model, suitable
for modeling distributed real-time computations. Since there is a growing practical interest in distributed
computations, such a model could be of interest. In particular, it offers an alternative to the real-time
producer/consumer paradigm [23], that is not restricted to periodic message generation. Incidentally, note
that the current developments in the area of wireless communications are tremendous, and this stresses the
importance of theoretical analysis of routing algorithms in ad hoc networks, since such an analysis is not
affected by the fast changing technological characteristics.

We believe that this paper offers the basis (as well as the the motivation) for the development of a
complexity theory for real-time systems. In general, such a theory takes into account the measurable resources

5Tt should be noted, however, that, while grammar systems are generative devices, the discussion here focuses on accepting
devices instead. Therefore, PCGSs shall be taken exclusively as an intuitional support.
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used by an algorithm, the most important of these being time and space. In the real-time environment,
however, time complexity makes little sense, since in most applications the time properties are established
beforehand. But, as supercomputing is now a reality, a complexity hierarchy for real-time computations
with respect to the number of available processors is a very interesting direction, with promising prospects.
(Recall here that it has been already established that a parallel approach can make the difference between
success and failure [4, 9, 14, 15, 16, 27], or can enhance significantly the quality of solutions [5, 6, 7, 8] in
real-time environments.)

We note in closing that a similar research was pursued in [30, 31], where the hierarchy was established
with respect to the number of tapes of real-time Turing machines. However, on one hand, a multitape Turing
machine is probably not equivalent to a multiprocessor device, and, on the other hand, since the real-time
domain is a highly practical issue, we think that the use of models closer to real machines (e.g., the PRAM
[3]) is desirable. The theory of well-behaved timed w-languages offers a foundation for this pursuit.
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