
A Distributed Architecture for Remote Service

Discovery in Pervasive Computing

by

Farzad Salehi

A thesis submitted to the

Department of Computer Science

in conformity with the requirements for

the degree of Master of Science

Bishop’s University

Canada

December 2011

Copyright c© Farzad Salehi, 2011

Abstract

The area of investigation of this dissertation is service discovery in pervasive com-

puting. Service discovery is very important in realizing the concept of pervasive

computing. In addition, service discovery protocols must be able to work in the het-

erogeneous environment offered by pervasive computing. Remote service discovery in

particular has not been properly achieved so far.

In an attempt to remedy this we propose a new architecture for enabling typical

(local) service discovery mechanisms (without the ability of remote service discov-

ery) to discover services remotely. Our architecture uses Universal Plug and Play

(UPnP) as a prototype for normal (local) service discovery protocols, and Gnutella

as a prototype for peer to peer distributed search protocols. We introduce a module

called service mirror builder to the UPnP mechanism, and a remote communication

protocol over a Gnutella network. As a consequence, UPnP networks become able to

discover services in remote networks (that is, remote service discovery).

i

Acknowledgments

I would like to thank my supervisor Dr. Stefan D. Bruda for his valuable support in

this work. I appreciate his calmness and patience with me. He inspired me and gave

me confidence. Without his help and feedback this dissertation could not have been

completed.

I would also like to thank Dr. Abbas Malekpour from the University of Rostock

and Ph.D. student Yasir Malik from Université de Sherbrooke. Their advice and

feedback helped me in writing this dissertation.

I would like to thank English-speaking missionaries and friends, in particular Sister

Jean Jensen, who helped me improve my English writing skills and edited some of

the text. Also, thanks to Dr. Stefan D. Bruda for his help with English.

Last but not least, I express my deepest love and appreciation to my family for

their love and support. I especially thank my father, my mother and my sister Foroogh

for having faith in me and for their continuous encouragement.

ii

Contents

1 Introduction 1

1.1 Pervasive Computing . 1

1.2 Service Discovery . 3

1.3 Challenges for Service Discovery Protocols to Support Pervasive Com-

puting . 8

1.4 Contribution . 11

1.5 Motivation . 12

1.6 Outline . 14

2 The UPnP and Gnutella Protocols 16

2.1 Universal Plug and Play . 16

2.2 An Introduction to P2P File Sharing 20

2.3 Gnutella . 21

3 Related Work 24

3.1 Remote Access to UPnP Devices Using the Atom Publishing Protocol 24

3.2 Remote Service Discovery and Control for Ubiquitous Environments 25

3.3 Content Sharing and Transparent UPnP Interaction Between UPnP

Gateways . 28

3.4 UPnP bridges . 29

iii

3.5 Service Oriented Architecture . 29

4 A New, Distributed Architecture for Remote Service Discovery 32

4.1 An Introduction to the Architecture 33

4.2 The Local Network . 35

4.3 The Gnutella Protocol and Remote Service Discovery 43

4.4 Gnutella and UPnP Messages in the New Architecture 48

5 Conclusions 52

5.1 A Critical Comparison with Related Work 53

Bibliography 59

iv

List of Figures

2.1 UPnP service discovery and control 18

3.1 Atom-based architecture . 25

3.2 Presence service design . 26

3.3 Presence service architecture . 27

3.4 Service oriented architecture . 30

4.1 A distributed architecture for remote service discovery 34

4.2 Local network structure . 36

4.3 SMB and a device connected in the UPnP network 38

4.4 SMB requests descriptions of Services 1 and 2 39

4.5 SMB, D1, D2 have discovered each others’ services 40

4.6 Searching for a service which is not available locally 41

4.7 The overlay Gnutella network . 42

4.8 Local network 1 joins the Gnutella network 44

4.9 Local network 1 finds Local network 4 and connects to it via Ping

messages . 45

4.10 Finding a remote service . 46

4.11 Query-hit response . 48

v

Chapter 1

Introduction

This chapter introduces the context (pervasive computing) as well as the main subject

(service discovery) of our research. We also outline our objectives and the way we

addressed them, together with a motivation for our work.

1.1 Pervasive Computing

In 1988 Mark Weiser gave birth to the vision of anytime, anywhere computing or

“ubiquitous computing.” He defined it as follows: Ubiquitous computing is the method

of enhancing computer use by making many computers available throughout the physi-

cal environment, but making them effectively invisible to the user [47]. The concept of

ubiquitous computing is also known as “pervasive computing” (which we use through-

out this dissertation) or “ambient intelligence.”

Computing anytime, anywhere, and in any device means a massive presence of

computing devices in the physical world. At the same time, people should be able

to access information and computation in a user centric way i.e., user interaction

with such a system must be natural and comfortable. Pervasive computing is thus

a migration from desktop computing to computing integrated into everyday objects.

Its ultimate goal is a seamless computing process all around users in a way that users

1

CHAPTER 1. INTRODUCTION 2

do not even recognize as computing.

Pervasive computing is a vast concept that encompasses numerous other concepts

such as smart objects, smart environment, smart home (or connected home), system

infrastructure, user interface, embedded systems, artificial intelligence, speech recog-

nition, distributed computing, mobile computing, sensor networks, and so on. One

important feature of pervasive computing is context awareness, which is used to de-

sign new user interfaces. User interfaces thus designed allow humans to communicate

with computing devices in the same or very similar way they (humans) communicate

with each other. One particular technology that has helped the idea of pervasive

computing substantially is the wireless network technology. Wireless networks have

effectively realized almost anywhere computing.

Overall the best definition for pervasive computing would arguably be: machines

that fit the human environment instead of forcing humans to enter theirs [49].

One possible application of pervasive computing is a smart environment. An

instance of such an environment is the smart apartment located in the DOMUS Lab-

oratory at Université de Sherbrooke [15]. This is an apartment saturated with sensors,

actuators and cameras, all being administrated by a powerful computer server. The

ultimate goal of the DOMUS researchers is to refine this apartment so that it becomes

suitable for disabled people. Sensors and cameras can monitor health and physical

presence of a disabled or aged person. Sound recognizers can understand that per-

son’s questions and then help him in situations such finding things, opening doors,

close the window shades, and so on.

CHAPTER 1. INTRODUCTION 3

1.2 Service Discovery

Pervasive computing offers an environment saturated with sensors, actuators, cam-

eras, and all other sorts of computing devices. One of their goals is assisting humans

in their everyday lives. For sure not every person in this world is a computer expert,

so these devices should work together and satisfy users’ needs with minimal user

intervention.

Service discovery protocols are computer network protocols that allow devices to

detect each other and their services. Service discovery protocols are evolving day by

day and their number is perpetually increasing due to the increasing need for automa-

tion. The need for automation also causes the number of computing devices to keep

growing. Many technologies such as wireless networks, embedded devices, artificial

intelligence, etc. are speeding up the presence of computing in almost every object

around humans. For sure detection, configuration, and interoperability between these

devices could not be managed manually so that there is a perpetual need for the au-

tomation in this respect. Service discovery protocols have been designed to carry

this burden. They help different applications, services, electronic and computing de-

vices to recognize each other and work with each other with minimal or no human

intervention.

Service Discovery protocols are designed to minimize administrative overhead.

They also simplify programming and coding, because designers do not need to foresee

all possible interactions between devices and services at design time.

Many service discovery protocols have been designed. Most of them are service

discovery and control protocols (service control being the next phase after discovering

a service; it facilitates the invocation of the discovered service by a control point or

controller). We summarize the dominant protocols, briefly describing their special

CHAPTER 1. INTRODUCTION 4

features.

Microsoft Universal Plug and Play (UPnP) [44] uses the Simple Service Discovery

Protocol (SSDP) [45] to discover devices and services. The ground base for UPnP

was Plug and Play (PnP) [44]. The goal of UPnP is the automatic discovery and

configuration of any new devices connected to a computer network. UPnP supports

zero configuration networking or Zeroconf. That is, UPnP creates an IP network

without any need of manual configuration and configuration servers.

The UPnP forum promotes UPnP technology in compatibility with common de-

vice architecture contributed by Microsoft [44]. UPnP uses the Internet protocol

suite: TCP/IP, HTTP, SOAP and XML [36, 44].

The Bluetooth Service Discovery Protocol [7] governs the interaction between a

service discovery protocol server and a client. A list of service files that describe the

properties of services linked with the server is maintained by the server. Each service

record contains information about a single service. A client may recover data from a

service record maintained by the service discovery protocol server by issuing a service

discovery protocol request [7].

If the client, or a request linked with the client, decides to use a service, it must

open a different connection to the service provider so that it can make use of the

service. Only one service discovery protocol server per Bluetooth device is allowed.

However, if a Bluetooth device serves only as a client, then it does not require any

service discovery protocol server. One Bluetooth appliance can work both as client

and server. In the event that there are several applications providing services on a

device, a service discovery protocol server may be offered by the device to manage

requests for information about the provided services [7]. Similarly, several client

applications can use a single service discovery protocol client to inquire servers on

CHAPTER 1. INTRODUCTION 5

behalf of the client applications.

The set of service discovery protocol servers that are accessible to a client may

vary substantially based on the RF proximity of the servers to the client. If a server

becomes available, a probable client is required to be alerted in a way outside the

service discovery protocol so that the client can implement service discovery and

question the server regarding its services. Likewise, if a server leaves proximity or

otherwise becomes inaccessible, then the service discovery protocol provides no no-

tification mechanism. Nevertheless, the client may use service discovery to poll the

server. If the server no longer reacts to requests, then the client may conclude that

the server is not available [7].

Apple’s solution for zero-configuration networking over IP is Bonjour [3] (formerly

known as Rendezvous), which uses DNS service discovery to discover services. It is

derived from the operations of the ZEROCONF Working Group, a division of the

Internet Engineering Task Force (IETF). There are three areas covered by the ZE-

ROCONF Working Group’s provisions and proposed solutions for zero-configuration

networking over IP [3]:

1. Addressing, or the allocation of IP addresses to hosts;

2. Naming or the use of specific terms to refer to hosts instead of IP addresses;

3. Service discovery or the automatic location of services on the network.

While making progress in the area of ease of use, Bonjour permits service providers,

hardware manufacturers, and application programmers to maintain a single network

protocol (IP). No longer do network users have to assign IP addresses or host names,

or even enter in names to retrieve services on the network. Instead users can merely

ask which network services are available and then choose from the given list.

CHAPTER 1. INTRODUCTION 6

This type of browsing is more effective for applications than it is for users. Without

the requirement of user intervention, applications can automatically identify needed

services or other applications with which they can collaborate, thus allowing auto-

matic connection, communication, and data exchange [3].

Sun’s Jini technology or Apache River [43] uses the advantages of Java technology

for service discovery and control. Java and Jini together provide flexibility. The

Jini service discovery is based on Service Oriented Architecture (SOA). SOA is an

architectural framework and approach that takes common business applications and

break them down into individual business functions called services (that is, well-

defined business functions that are built as software components); these services are

then used as building blocks for the final software [6, 10] . In a Jini architecture there

are three main parts: client, server and lookup service. [9, 30, 48].

Network-enabled devices that come with an easy to use procedure for finding

available services are provided by University of California at Berkeley’s Ninja Service

Discovery Service (SDS) [24]. The service is directory-style and presents a contact

point for complex queries against cached service descriptions presented by services.

The behaviour of the service is automatically adapted to deal with the failure of

both SDS servers and services, and conceals the complexities of fault recovery from

client applications. The security-minded service discovery service can ensure that all

contact between components is protected, and it helps in verifying the reliability of

specific services [24].

Certain advantages are provided to this service discovery protocol through the use

of XML to encode service descriptions and client queries. Service providers can capi-

talize on the extensibility of XML by creating service-specific tags to more adequately

CHAPTER 1. INTRODUCTION 7

depict the services they provide. Similarly, XML takes advantage of semantic-rich ser-

vice descriptions to enable clients to issue more powerful queries [24].

IBM Research’s DEAPspace [32] is especially suitable for changing Ad Hoc envi-

ronments [32].

The Salutation Architecture [38] was provided to solve the problems of service

discovery and application among a wide set of devices and in an environment of

extensive connectivity and mobility [38]. The architecture offers a standard procedure

for applications, services, and devices to portray and to promote their abilities to other

applications, services, and devices and to discover their capabilities. The architecture

also allows the exploration of other applications, services, or devices for a specific

ability, and to ask for and to launch interoperable sessions with them to access their

capabilities [38]. The diverse nature of target appliances and equipment in a setting

of extensive connectivity makes the architecture independent of processors, operating

systems, and communication protocols. Implementation is feasible even in lower-

priced devices [38].

The Service Location Protocol (SLP) [22] by the Internet Engineering Task Force

supports a structure in which client submissions are exhibited as “User Agents” and

services are promoted by “Service Agents.” A “Directory Agent” offers accessibility

to the protocol. The User Agent distributes a “Service Request” (SrvRqst) on behalf

of the client application, detailing the traits of the needed service. The User Agent

will obtain a Service Reply (SrvRply) detailing the position of all the services in the

network which satisfy the request [32].

The Service Location Protocol structure allows a User Agent to directly send

requests to the Service Agents. The request in this instance is multicast. Service

Agents that receive a request for a service which they advertise can unicast a reply

CHAPTER 1. INTRODUCTION 8

containing the location of the service. One or more Directory Agents may be used in

bigger networks. A Directory Agent operates as a cache [32].

1.3 Challenges for Service Discovery Protocols to

Support Pervasive Computing

Available service discovery protocols are designed for home or enterprise environments

[50]. The pervasive computing environment is however far more heterogeneous and

sophisticated than any home or enterprise one. In particular, in such an environment

applications from different vendors and platforms have to work together in a seamless

way. The following are the three arguably most important challenges faced by a

service discovery protocol in a pervasive computing environment. Challenges faced by

service discovery protocols in a pervasive computing environment are more numerous;

however, security and interoperability are extremely important and remote service

discovery is the main focus of this dissertation beside being important as well.

Security The most challenging problem in pervasive computing is security and pri-

vacy. Integration of computing devices with people and their environment poses many

questions concerning the privacy of the people and their personal information [50].

The integration of computing devices with people means that substantial informa-

tion from those people must be stored in digital forms. In other words, digital devices

could have a more or less complete image of people. For sure, service discovery proto-

cols can access this information through different available services and devices. For

example, it is possible to track a person with an RFID tag on their clothes or with the

devices carried in her handbag. As a further example, a person’s health information

can be disseminated through discovering a wearable medical device [50].

CHAPTER 1. INTRODUCTION 9

Many established security solutions fail in new environments simply because of

the environments themselves [2]. Indeed, most security solutions are defined for par-

ticular environments (enterprise, home, public networks, etc.). Each one depends on

particular facilities in that environment (for example the existence of firewalls in an

enterprise). However in pervasive computing heterogeneity and the absence of bound-

aries are two inherent characteristics. Therefore strong security and privacy solutions

are fundamental requirements that must be met by service discovery protocols in

order to be usable in pervasive computing environments [50].

Interoperability One of the biggest challenges for service discovery protocols in

a pervasive computing environment is their work domain. Service discovery proto-

cols are primarily designed to work in a local area network or a single hop wireless

communication network [50]. However the very definition of pervasive computing

encompasses all kinds of networks that are connected and working everywhere. In a

pervasive computing environment each device and service may be connected to one or

more networks; service discovery protocol for discovering and controlling them have

to be able to work with different networks and protocols. The available service discov-

ery protocols have been designed to some degree to accommodate heterogeneity, but

because each one is designed to connect some type of service or device, it is unlikely

that they can work in an environment with all sort of platforms and devices. Dif-

ferent vendors support different service discovery protocols; this factor too decreases

interoperability [50].

Another problem is semantic interoperability. Different vendors and discovery

protocols are using different terminologies. For example in a service description of a

video projector two commands may be labelled “ON” and “OFF,” but in the con-

troller of the smart phone these two words may appear as “TURN ON” and “TURN

CHAPTER 1. INTRODUCTION 10

OFF.” As another example some words may appear in different devices with the same

spelling but different meanings [50].

Ontology engineering thus has a very important role in the increase of semantic

interoperability. Designing a new service discovery protocol according to most pop-

ular and vendor supported protocols can also be a very realistic solution to increase

interoperability.

Remote service discovery Most of the service discovery protocols have been de-

signed for local networks and they are not able to discover remote services. Remote

services are services not present on the local area network (LAN) but in another

network or LAN.

Many services in a pervasive computing environment are physical-oriented ser-

vices, meaning that their services are useful for the users in the same physical envi-

ronment and not for distant users. As an example, a video projector or coffee machine

controller can service only the users on premise. Still, many other services are not

physically-oriented and they can be accessed and have to be accessed by users phys-

ically far away from them. Overall a pervasive computing environment must access

some services that are far away from its physical environment, such as accessing the

digital data in someone’s home, remotely monitoring sensors, actuators and cameras

present in a place for security or health care purposes, and so on. These needs and

examples of remote service discovery will be further discussed in Chapter 1.5.

Computing anywhere is also the very definition of the concept of pervasive com-

puting. While it is not possible to provide all services anywhere, remote access to

any services makes sense and could be realized. For this purpose service discovery

protocols must be able to discover services remotely in order to be able to work in a

pervasive computing environment.

CHAPTER 1. INTRODUCTION 11

1.4 Contribution

Most service discovery protocols (such as UPnP) are designed to work only in a local

area network (LAN) [5]. In other words, they can discover only services which are

available on their LAN. As we mentioned in Section 1.3, there is a need to discover

services located in different LANs (called remote services).

A combination of existing technologies and services can enable some level of remote

access, such as remote file access or remote control of the console of a computer.

However, seamless service discovery and control of remote UPnP services is currently

not possible [4, 5, 17, 23].

The objective of this work is to enable different local service discovery networks

(such as UPnP networks) to discover services in other similar networks (that is,

discover remote services which are not available locally). We lay the basis of such

remote service discovery by proposing a suitable architecture. We use UPnP as a

prototype for service discovery protocols. In our architecture each local UPnP network

is enhanced by a function called service mirror builder. A service mirror builder

presents local services as remote services to other UPnP networks, and also builds

mirrors of remote services in its local network. The process of finding a remote service

is done with the help of the distributed peer to peer search protocol Gnutella.

A service mirror builder is seen as an UPnP enabled device in the local UPnP

network. It is worth emphasizing that UPnP is just an example; the service mirror

builder can be generally defined as a service discovery enabled device with respect to

any service discovery protocol.

CHAPTER 1. INTRODUCTION 12

1.5 Motivation

Between other things pervasive computing means spatial heterogeneity: some places

offer all the services a user needs and others only have a few services to offer. A

combination of remote and local services is sometimes needed to satisfy the user’s

needs (such as establishing a remote connection for a video game player to join a

multiplayer video game, as we will see below). The following scenarios motivate our

quest for remote service discovery.

Realizing the smart home With the support of new technologies as well as wider

development of existing ones, pervasive computing is being realized day by day. One

small example of pervasive computing environment is a connected home or smart

home. A smart home is a house in which most of the appliances, devices and ser-

vices are connected with each other and form a local network. In other words, a

connected home environment is a dwelling incorporating a communications network

that connects the key devices such as sensors and actuators, electrical appliances and

services, which allows them to be remotely controlled, monitored or accessed [17].

Since services in a smart home must be able to be controlled, monitored, or accessed

remotely, so to realize a smart home we need to have a mechanism to access its

services remotely.

Accessing home located devices Most of us desire seamless storage, access and

consumption of digital content from and to any compatible digital device in a home

or smart home. Advanced mobile terminal products, with increased multimedia and

broadband connectivity potential also increase the need for accessing various home

located devices [5]. Ideally, users should be able to access their residential services

CHAPTER 1. INTRODUCTION 13

from anywhere using any type of terminal [23].

Use cases for remote service discovery include lighting, residential climate control,

home theatre, audio entertainment systems, domestic security, domestic health care

systems, and so on.

Customer support and continuing close presence Support of home appliances

remotely by vendors is another important need. Vendors need to connect to their

devices for various purposes such as to update their software or perform routine

checks.

Security and health care companies in particular need to be in contact with their

customers and their products continuously. The information from sensors, actuators

and cameras can be monitored by security and health care companies to take action

in case of any threat. These sensors, actuators, etc. can also be controlled by the

service providers to be more efficient and able to satisfy all the security or health

care needs. Finally the vendors can advertise their new features and devices to their

customers and offer customers upgrades to their devices.

Multiplayer video games Multiplayer Video Games (MVG) are video games in

which more than one person can play at the same time. In these kind of games

people can play with each other in a form of partnership, competition, rivalry, or a

combination thereof.

There are different kinds of MVGs. Among them Massively Multiplayer Online

games (MMO or MMOG) and Massively Multiplayer Games (MMG) are very popular.

MMOGs are graphical 2- or 3-D video games played online, allowing players to interact

not only with the gaming software but with other players’ avatars (self created digital

character of the players) as well [42]. Massively Multiplayer Games are traditionally

CHAPTER 1. INTRODUCTION 14

supported by a client-server architecture where every player as a client communicates

with a central server. However, such a centralized architecture lacks flexibility and

can put communication and computation stress on the servers [8]. To overcome these

problems inherent to centralized solutions, peer to peer overlay networks are emerging

as a promising architecture for MMGs [8].

Running MVGs with the help of remote service discovery is perhaps the best use

cases to motivate our research contribution. For example, Bob has a MVG console

connected to his home UPNP network. He has a new MVG on his console and he

wants to play it with someone else. Finding another player like John who has the same

game and is willing to play with someone else at the same time but at his home (a

remote network), is one of the scenarios which can be easily realized by our proposed

architecture. Furthermore this scenario can be realized in a fully distributed manner,

without any need for a centralized coordinator to discover players.

1.6 Outline

The remainder of this work is organized as follows.

The next chapter contains of 2 parts. The first part is an introduction to the

Universal Plug and Play service discovery protocol (UPnP) and the second part is an

introduction to the Gnutella distributed search protocol. These two protocols have

been chosen as representatives of their protocol categories to assist us in explaining

our approach to remote service discovery.

Chapter 3 presents research related to our own (also addressing the enhancement

of UPnP with remote service discovery capabilities). In addition we introduce briefly

the Service Oriented Architecture (SOA), the Jini service discovery protocol, and

UPnP bridges, as these could be considered previous research in our domain as well.

CHAPTER 1. INTRODUCTION 15

Chapter 4 is all about our new architecture, featuring the UPnP service discovery

protocol enhanced with a function (called service mirror builder) which can connect

to other networks and discover remote services using a Gnutella client software.

We conclude in Chapter 5.

Chapter 2

The UPnP and Gnutella Protocols

In this chapter we summarize the two protocols on which we base our new architecture

for remote service discovery. These protocols are Universal Plug and Play (UPnP),

a service discovery protocol for local services, and the Gnutella distributed (peer to

peer) search protocol.

2.1 Universal Plug and Play

The automatic detection by the operating system of new devices connected to a com-

puter is called Plug and Play (PnP). The operating system can discover new devices

and configure them without any physical device configuration or human intervention.

Plug and Play was the basis for Universal Plug and Play or UPnP [44]. The

idea of Universal Plug and Play is the automatic discovery and configuration of any

new devices that connect to a computer network. UPnP supports zero configuration

networking or Zeroconf, meaning that UPnP creates an IP network without any need

of manual configuration or configuration servers.

UPnP uses the Internet protocol suite: TCP/IP, HTTP, SOAP and XML. Special

features of the protocol include the following [36, 44].

• Media and device independence: Any network media or device which supports

16

CHAPTER 2. THE UPNP AND GNUTELLA PROTOCOLS 17

IP can be a basis for the establishment of UPnP.

• User Interface (UI) control: Devices can have a UI written by XML which is

readable by a browser

• Operating System and programming language independence: This feature to-

gether with media and device independence make UPnP just like the Internet.

UPnP has three major components:

• Device: a device contains one or more services.

• Service: a service performs actions and shows its state via state variables. A

service in UPnP consists of a state table, a control server and an event server.

• Control Point: a control point is a system that discovers and then controls

services and devices.

The functioning of UPnP then involves six steps, as follows. These steps are also

summarized in Figure 2.1.

Addressing Each device must have a Dynamic Host Configuration Protocol (DHCP)

client. When the device connects to the network for the first time it must search for

a DHCP server. If there is a DHCP server, then the device receives an IP address

in this way. Otherwise the device must assign an IP address to itself. This address

assignment is called Auto-IP. In the UPnP Device Architecture version 1.1 [45], Auto-

IP references IETF RFC 3927 [37]. After assignment the device must check whether

this address is not being used by anybody else. This is accomplished by the device

broadcasting some probe message; if the device receives any other message with the

sender IP address matching the address being tested, a conflict has happened. On the

CHAPTER 2. THE UPNP AND GNUTELLA PROTOCOLS 18

 !!"#$$%&'
()*+,-.+-.%/.+001233.41(5.+.!67/.3218219.(*:21;,32.<:((32.+-0.%/.+001233.)=.,*32>4

!%$7?@#"A
!#@%7#B.5C>*,<+3*3.*:2.+8+,>+),>,*=.(4.,*3.3218,<23

7?&D"?E./?%&DB.5C>*,<+3*3.*:2.3218,<23.,*.-2203.+-0.3218,<23.,*.:+3.C-021.<(-*1(>

!#$7"%/D%?&
7(-*1(>.F(,-*.,3.G2**,-G.*(.H-(;.*:2.3218,<2.)2**21.)=.12*1,28,-G.023<1,F*,(-.I"E3.41(5.

0,3<(821=.5233+G23

7?&D"?E
<(-*1(>.F(,-*.32-03.+.<(-*1(>.5233+G2.4(1.+-.+<*,(-.*(.*:2.3218,<2.J028,<2KL..$218,<2.

12*C1-3.*:2.123C>*.(4.*:2.+<*,(-.(1.+.4+C>*.<(02

#@#&D%&'
282-*.5233+G23.+12.)2,-G.32-*.)=.3218,<2.*(.<(-*1(>.F(,-*.*(.,-4(15.<(-*1(>.F(,-*.+)(C*.

<:+-G23.*(.3*+*2.8+1,+)>23

/"#$#&D D%?&
/1232-*3.*:2.3218,<2.I"E.,-.+.)1(;321.4(1.C321.*(.322.*:2.3*+*C3.(1.<(-*1(>.*:2.3218,<2

Figure 2.1: UPnP service discovery and control

CHAPTER 2. THE UPNP AND GNUTELLA PROTOCOLS 19

other hand, if a device receives a probe message with the same IP address as its own,

it must send a response to the network, which will detect the conflict as explained

before. A conflict implies that the address is already in use and then the device should

change the address and check again. Even after the Auto-IP phase is complete, the

device must periodically check for the presence of a DHCP server [36, 44]. Probing

a new IP address, conflict detection, and address announcement are the three phases

of Auto-IP as described in the IETF RFC 3927 [37].

Discovery Discovery is the process of discovering the capabilities of the devices on

the network. It can take place in two ways.

When a new device gets an IP address and so is connected to the network, the

device must multicast discovery messages, advertising its embedded devices and ser-

vices. This process is called discovery advertisement. Any interested control point

in the network can listen to these advertisements and then connect and control the

originating devices or only some of their services.

The second way discovery can take place happens when a new control point is

established in the network. Such a new control point multicasts a Simple Service

Discovery Protocol (SSDP) discovery message [45], searching for available devices

and services. All devices in the network must listen to these kinds of messages and

respond to them whenever any of their services or embedded devices matches criteria

in the SSDP messages. This process is called discovery search [36, 44].

Description Once discovery is complete and the control point knows about the

existence of one device or service, it must also find out how to invoke that device

or service. The respective control point retrieves the device description from the

URL provided by the device in the discovery message. The UPnP description for a

CHAPTER 2. THE UPNP AND GNUTELLA PROTOCOLS 20

device is expressed in XML and includes vendor-specific information, manufacturer

information, a list of any embedded devices or services, as well as URLs for control,

eventing, and presentation [36, 44].

Control Now that the control point has a clear overview of the service and knows

how to control it, it can send an action request. The control point sends a control

message to the device according to the respective service control description. Control

messages are expressed in XML. In response, the service will return action specific

values or fault codes [36, 44].

Eventing Services keep control points informed by sending them event messages.

Event messages contain the last update of changed state variables in the service. This

process is called eventing [36, 44].

Presentation Some devices have URLs for presentation. Such an URL can be

fetched and then presented in a browser by the control point. According to the

device capabilities and URL presentation definition, a user can then see the status of

the service and even control it [36, 44].

2.2 An Introduction to P2P File Sharing

A distributed network architecture may be called a peer to peer (P2P) network when-

ever the participants share a part of their own hardware resources (processing power,

storage capacity, network link capacity, printers, etc.) with each other. These shared

resources are necessary to provide the service and content offered by the network (e.g.

file sharing or shared workspace for collaboration). Furthermore they are accessible

CHAPTER 2. THE UPNP AND GNUTELLA PROTOCOLS 21

by other peers directly, without passing through intermediate entities. The partici-

pants in such a network are thus resource (service and content) providers and at the

same time resource (service and content) requesters (the “servent” concept) [40].

Peer to peer file sharing is a particular example of peer-to-peer network. In this

case the peers are sharing some digital data or files. The peers are also called hosts,

nodes or servents (having the functionality of both a server and a client). Each peer

in a peer to peer file sharing network is implemented by a file sharing software client.

This client uses some distributed search protocol to find other peers as well as the

files that are being shared by them.

Different protocols for distributed search are being used by peer to peer file sharing

programs. The two most prominent distributed search protocols are BitTorrent [12]

and Gnutella [11].

2.3 Gnutella

Gnutella is a protocol for distributed search [11]. The participating servents (or nodes)

can act as clients (meaning that they can issue queries and view search results), and

also as servers (meaning that they accept queries from other servents, check their

data sets to find any matches, and respond with applicable results).

Because of the distributed nature of Gnutella and its independency from any

central servers, a Gnutella network is highly fault-tolerant. Indeed, a network can

work continuously despite the fact that different servents go off-line and back on-line

[11].

We describe in what follows the Gnutella protocol [11, 25, 35] and we also explain

its functionality. The first time a servent wants to join a Gnutella network, its client

software must bootstrap and thus find at least one other servent (node or peer) in the

CHAPTER 2. THE UPNP AND GNUTELLA PROTOCOLS 22

network. A bootstrap is thus the process of joining the network by discovering other

servents [21]. It can happen automatically or manually:

1. Out of band: The user can inquire about another Gnutella servent using some

out of band method such as Internet Relay Chat (IRC) or Web pages. Then

the user communicates the received hosts to the Gnutella client software which

tries to connect to them until one of them works.

2. Gnutella Web caches: Caches that include a pre-existing list of addresses

of possibly working hosts may be shipped with the Gnutella client software or

made available over the Web.

Once the servent finds at least one active peer in the Gnutella network, it can

find more peers with watching Ping and Pong messages. A ping is used to actively

discover hosts on the network. A servent that receives a ping message is expected to

respond to it with a pong message. A pong is the response to a ping and includes

information about the sending servent.

Two nodes in Gnutella network are neighbour if they are directly connected. A

node that is connected to a Gnutella network informs periodically its neighbours

through ping messages. These messages are not only replied to by pong messages

but they are also propagated to the other interconnected servents. Therefore when

a servent receives a ping message, it sends it to the nodes to which it is connected

(typically servents are connected directly to 3 other nodes). Each servent can create

an updated list of active servents in the Gnutella network by listening to the ping

messages and the corresponding pong messages.

When a client wants to search for a file (or as we will see in Chapter 4 for a

service), it sends a query to all its directly connected neighbour servents (except the

CHAPTER 2. THE UPNP AND GNUTELLA PROTOCOLS 23

one which delivered this query message). Then these neighbour servents forward the

query to their neighbours and so on. This process repeats throughout the network.

A query message is the primary mechanism for searching the distributed network.

If a servent receives a query and finds a match in its directory, it will respond to it

with a query-hit message. A query-hit is the response to a query and contains enough

information for the retrieval of the data matching the corresponding query.

To avoid flooding the network the query messages contain a TTL (Time To Live)

field. It is possible that one query reaches a servent more than one time. To avoid

serving a query more than once, each query is identified by a unique identification

called muid. Before processing a query a servent checks the query’s muid against a

table of previous muids. If they have encountered the query muid before, then they

simply drop the query message.

The query-hit can go back along the reverse path of the query to reach the servent

which requested it, or it can be sent directly to the requester.

Chapter 3

Related Work

We review in this chapter previous attempts at remote service discovery. We believe

that our architecture (Chapter 4) remedies the shortcomings of these solutions. We

will offer a critical comparison in our conclusions (Chapter 5).

3.1 Remote Access to UPnP Devices Using the

Atom Publishing Protocol

One architecture for remote service discovery in UPnP [4, 5] uses the Atom Publishing

Protocol [20] and the Atom Syndication Format [33].

The network topology of this architecture consists of at least two network seg-

ments: one is called home network and the other external or remote network. These

two networks are connected to each other through the Internet. The architecture

assumes that there is an IP tunnelling mechanism such as a Virtual Private Network

(VPN) between the two network segments.

The architecture introduces a new element called UPnP Device Aggregator which

is acting as a proxy for the existing standard UPnP devices. Enhanced UPnP Devices

or Control Points are then UPnP devices or control points which are compatible with

this remote service discovery architecture.

24

CHAPTER 3. RELATED WORK 25

 !"!#$%&'(%#
)**+%*,-.+

/-,"0,+0#
 !"!#
0%&'(%1

 !""#$

2"3,"(%0# !"!#
$%&'(%

2"3,"(%0# !"!#
4."-+.5#!.'"-

)-.6#!7/
8

)-.6#9%%0#:28

;.6%#<%-=.+>?%6.-%#<%-=.+>

Figure 3.1: Atom-based architecture

The UPnP Device Aggregator aggregates information about the services and de-

vices in the local network and presents them to the enhanced UPnP control points

in the remote network. In fact this aggregated information is assembled as an Atom

feed which can then be retrieved by an Enhanced UPnP control point through the

Atom feed GET command.

Additionally, a UPnP Device Aggregator can receive information from remote En-

hanced UPnP Devices and present them to the local control points. This information

can be received by the UPnP Device Aggregator through the HTTP POST method.

Figure 3.1 shows this architecture.

3.2 Remote Service Discovery and Control for Ubiq-

uitous Environments

An architecture for remote service discovery and control based on presence service [13]

was also proposed [23]. The presence service is developed by the Internet Engineering

CHAPTER 3. RELATED WORK 26

 !"#"$%&%'

 !"#"$(")*#"!)
+,"$%

 !"#"$(")-"!."!

 !"#"$(")*#"!)
+,"$%

 !"#"$(")
/0%(1"!

Figure 3.2: Presence service design (as used for remote service discovery and control
in ubiquitous environments)

Task Force [13]. The architecture of this service includes four major elements: pres-

ence user agent, presence service, presence watcher and presence entity (presentity)

[23].

The presentity can be anything that can have a presence state (be present or

absent). Examples include a human, a group of humans, an office, etc.. Presence

information is a status indicator that specifies availability and willingness to commu-

nicate. Presence information or presence states are sent to a presence service, which

is a network service that records and distributes presence information. The presence

information is mainly used in instant messaging and voice over IP [14, 23, 46]. For

example, users of an instant messaging service (such as Yahoo! Messenger or Google

Talk) are presentities, and their presence information is their status (online, offline,

CHAPTER 3. RELATED WORK 27

 !"#$%&'()!*+
,'-!('%&'()!*+

 !"#$%&!!#%"

.'*/0"'%1*!/02'*

'#$()%#*
+),%&(#$-*
./"#0/-

'#$()%#*
+),%&(#$-*
./"#0/-

'#$()%#*
+),%&(#$-*
./"#0/-

'#$()%#
'#$()%#*

1&!"$&22#$

3)$"4/2)5#6*
'#$()%#

'#$()%#
'#$()%#*

1&!"$&22#$

3)$"4/2)5#6*
'#$()%#

'#$()%#*
3)$"4/2)5#$

'#$()%#*
3)$"4/2)5#$

7$#,#!%#*
'#$(#$

7$#,#!%#*
/%%#,,*

8&2)%-*,#$(#$

'#$()%#,

Figure 3.3: Presence service architecture

busy, etc.). The presence user agents are any devices or entities that can communi-

cate presence information to a presence server or service (thus “subscribing” to that

service) and can process notify requests from the presence server. A presence watcher

is a presentity that requests presence information of a presentity from a presence

service. Figure 3.2 shows the presence service design.

In the remote service discovery architecture based on presence service [23] there

are two new functions called service discovery gateway and service virtualizer. Each

service is seen as a presentity. The service discovery gateways register local services

CHAPTER 3. RELATED WORK 28

as presentities in a presence server. They can also retrieve other presentities from the

presence server and present them to the service virtualizer. The service virtualizer

uses this presence information to virtualize a local service in the local network. That

is, a service virtualizer presents a remote service as a local one. Figure 3.3 shows this

architecture.

3.3 Content Sharing and Transparent UPnP In-

teraction Between UPnP Gateways

Dynamic Overlay Topology Optimizing Content Search (DOTOCS) [27] enables flexi-

ble content searches among UPnP gateways. DOTOCS aims to establish an optimized

peer to peer overlay network among UPnP gateways. The emphasis is on an opti-

mized unstructured peer to peer protocol which puts nodes with similar contents next

to each other.

DOTOCS uses a communication protocol between UPnP local networks described

elsewhere (transparent interaction solution [34]): The communication between two

connected UPnP local networks across the Internet is accomplished using the Web

service technology. A local gateway encapsulates Simple Service Discovery Protocol

(SSDP) messages into Simple Object Access Protocol (SOAP) messages and transmit

them to another gateway over the global network. A Web service at the destination

UPnP gateway extracts the SSDP message and replaces the original IP address (which

is not valid in this local network) with the IP address of the gateway itself. The

gateway then multicasts this discovery search message in the local UPnP network.

If any device responds to that message (meaning that the device has the service

demanded by the SSDP message), then the gateway encapsulates that message into

another SOAP message and sends it back to the first network. This way one local

CHAPTER 3. RELATED WORK 29

UPnP network can discover remote services from a different UPnP network.

3.4 UPnP bridges

UPnP bridges are applications that enable the presentation of non-UPnP devices

(that is, devices that do not support UPnP) to a UPnP network. Example of bridge

applications include the IEEE1394-UPnP bridge [28], the Jini-UPnP bridge [39], or

the HNCP-UPnP bridge [26]. These applications try to create a virtual presence for

devices and services which are not able to support UPnP.

While UPnP bridges are not directly related to our work, it is worth mentioning

that this kind of applications could be a part of the local UPnP networks used in

our investigation. These applications are mostly used to connect to the local network

those physically available devices that are not able to connect directly via UPnP (such

as IEEE1394 devices [28]). These bridges can also be used to add all services from

another network (with a different service discovery protocol) to the local network

(examples include the Jini-UPnP bridge [39]). Therefore UPnP bridges are relevant

in that they can be used locally just like any other UPnP device but also because they

offer an (albeit severely limited) solution to our problem (remote service discovery).

Given the obviously limited nature of this remote service discovery solution we will

not consider UPnP bridges in our discussion any further.

3.5 Service Oriented Architecture

In this section we discuss the Jini service discovery protocol and its architecture which

is a particular instance of Service Oriented Architecture (SOA) [30]. Although this

topic is not directly related to our work, our investigation as well as some of the

related investigations outlined above are intimately related to SOA. We will also use

CHAPTER 3. RELATED WORK 30

 !"#$%!&'"(#$)!"

*!+$,-".

 !"#$%!&/(0,12!"

3$
0)

*!+$,-!"&40)&"!0!5&

-6!&7!4,!&8!"$()$%477.

9$0)&:&;0#(<!

Figure 3.4: Service oriented architecture (the find-bind-execute paradigm)

the context of SOA in our concluding remarks.

Sun defined Service Oriented Architecture(SOA) in the late 1990s to describe Jini,

which is an environment for dynamic discovery and use of services over a network [30].

Jini is in effect a distributed service-oriented architecture [9].

An important aspect of SOA is the separation of the service interface (the what)

from its implementation (the how) [30]. The service oriented architecture has three

major components: registry, service consumer, and service provider. Service providers

first register their services in a service registry; this process is called register. Service

consumers can then find the needed services from the registry through a process called

find. A registry then sends information to the service consumer so that the consumer

is able to invoke the respective service. The service consumer then binds to the service

provider and starts invoking the requested service. This process is called bind and

invoke. An important mechanism in service oriented architecture is checking for the

availability of services. For this purpose the registry allocates a lease to each service.

CHAPTER 3. RELATED WORK 31

Service providers have to renew their leases to continuously affirm the availability of

their services. Whenever the registry does not receive a renewal of the service lease,

it will remove the service from the list of available services [30]. Figure 3.4 shows

these steps in the service oriented architecture.

Chapter 4

A New, Distributed Architecture

for Remote Service Discovery

One of the challenges that service discovery protocols are facing is remote service

discovery. This is a very important need especially in the context of computing

anytime, anywhere.

Recall that remote services are services not present in the current physical location

of the controller (control point) but should be available to the controller upon request.

In other words, service discovery protocols should be able to step out of their local

domain in order to find services and in turn serve the users’ needs. Additionally, a

control point may reside in a pervasive computing environment with heterogeneous

protocols and networks; even if some otherwise available services in the local domain

could not be accessed because of heterogeneity in protocols, networks, ontologies, and

so on, the controller may still be able to access services within its capabilities but

far from its physical location. In other words, sometimes service discovery protocols

could not see all the available services in their domain, but if they could just bridge to

neighbour networks (with the same protocols and ontologies) they could accomplish

their tasks.

Remote service discovery is especially important in pervasive computing, which

32

CHAPTER 4. A NEW REMOTE SERVICE DISCOVERY ARCHITECTURE 33

consists of devices that surround people to help and assist them in their everyday

lives. We already discussed in Section 1.5 some use cases which show the need for

remote service discovery in a pervasive computing environment.

We are proposing in this chapter a new architecture that accomplishes remote

service discovery in a fully distributed manner, that is, without the need of any

centralized, coordinating entity. Our architecture allows the discovery of services in

local and remote domains, and offers a solution for automatic discovery and control

of remote services.

4.1 An Introduction to the Architecture

Our architecture features UPnP or other similar (local) service discovery protocol.

One important example of pervasive computing is the smart home or connected home.

In a smart home environment there are many appliances and many service discov-

ery protocols being used in consumer space [23] including UPnP, Bluetooth service

discovery and Apple Bonjour. Because of the popularity of UPnP we use it as a pro-

totype in our architecture, but we in fact try not to depend on any particular service

discovery protocol.

Our architecture is outlined in Figure 4.1. There are 5 local networks in the figure,

labelled from 1 to 5. Each of these local networks offers local services, devices, and

control points. These devices, services, and control points are connected with each

other locally through UPnP. In each local network there is one special function (which

can also be seen as a UPnP enabled device) called service mirror builder. This special

function will help with remote service discovery. We will discuss the UPnP network

and the service mirror builder in the next section.

CHAPTER 4. A NEW REMOTE SERVICE DISCOVERY ARCHITECTURE 34

 !"#$%!&'$""("&)*$+,!"

 !"#$%!&' !"#$%!&(

)$""*"&*+&,-!&

.!"#$%!.

-
.
/
.
&!
/
0
1
+!
,
&,
!
#
$%
!
&2

!
"#
$%
!
&/

!
"#
$%
!
&0

-
.
/
.
&!
/
0
1
+!
,
&,
!
#
$%
!
&3

!
"#
$%
!

4(/5"(+&

.($/5

4(/5"(+&

.($/5&3

 !"#$%!&'$""("&)*$+,!"

 !"#$%!&' !"#$%!&(

)$""*"&*+&,-!&

.!"#$%!.

-
.
/
.
&!
/
0
1
+!
,
&,
!
#
$%
!
&2

!
"#
$%
!
&/

!
"#
$%
!
&0

-
.
/
.
&!
/
0
1
+!
,
&,
!
#
$%
!
&3

!
"#
$%
!

4(/5"(+&

.($/5

4(/5"(+&

.($/5&3

 !"#$%!&'$""("&)*$+,!"

 !"#$%!&' !"#$%!&(

)$""*"&*+&,-!&

.!"#$%!.

-
.
/
.
&!
/
0
1
+!
,
&,
!
#
$%
!
&2

!
"#
$%
!
&/

!
"#
$%
!
&0

-
.
/
.
&!
/
0
1
+!
,
&,
!
#
$%
!
&3

!
"#
$%
!

4(/5"(+&

.($/5

4(/5"(+&

.($/5&3

 !"#$%!&'$""("&)*$+,!"

 !"#$%!&' !"#$%!&(

)$""*"&*+&,-!&

.!"#$%!.

-
.
/
.
&!
/
0
1
+!
,
&,
!
#
$%
!
&2

!
"#
$%
!
&/

!
"#
$%
!
&0

-
.
/
.
&!
/
0
1
+!
,
&,
!
#
$%
!
&3

!
"#
$%
!

4(/5"(+&

.($/5

4(/5"(+&

.($/5&3

 !"#$%!&'$""("&)*$+,!"

 !"#$%!&' !"#$%!&(

)$""*"&*+&,-!&

.!"#$%!.

-
.
/
.
&!
/
0
1
+!
,
&,
!
#
$%
!
&2

!
"#
$%
!
&/

!
"#
$%
!
&0

-
.
/
.
&!
/
0
1
+!
,
&,
!
#
$%
!
&3

!
"#
$%
!

4(/5"(+&

.($/5

4(/5"(+&

.($/5&3

6/5!"%(//!%5

7/*5!++0&

4+$!/5

7/*5!++0&

4+$!/5

7/*5!++0&

4+$!/5

7/*5!++0&

4+$!/5

7/*5!++0&

4+$!/5

12341&567829:&/ 12341&567829:&'

12341&567829:&0

12341&567829:&(

12341&567829:&;

Figure 4.1: A distributed architecture for remote service discovery (doted lines show
the Gnutella network overlay; each local network has the structure shown in Fig-
ure 4.2)

CHAPTER 4. A NEW REMOTE SERVICE DISCOVERY ARCHITECTURE 35

In addition, each local network runs a Gnutella client software, shown as a 5-

point star in Figure 4.1. These Gnutella clients are specialized clients that share local

services to the outside world and find services requested by their service mirror builder.

The local networks establish a Gnutella network between them. We use dotted lines

in the figure to show the overlay of the Gnutella network. In our example client 1

is connected to clients 2 and 4; client 2 is connected to clients 1 and 3; client 3 is

connected to clients 2, 4 and 5; client 4 is connected to clients 1 and 3; and client 5

is connected only to client 3.

4.2 The Local Network

Refer to Figure 4.2 for a closer look at one of the local networks (and assume for

demonstration purposes that this is the local network 1). A local network contains a

number of (local) devices, services, and control points. Every local network contains

a unique service mirror builder. The network is an IP based network with all of these

devices connected through UPnP (the UPnP protocol with its six steps is described

in Chapter 2).

Since UPnP uses the TCP/IP and Web models, it has the following features:

• Media and device independency: UPnP can run on any media including phone

lines, power lines, Ethernet, RF, and IEEE 1394 seamlessly and in a peer to

peer manner [31].

• Operating System and programming language independency: Like the Internet,

UPnP is not dependent on any particular operating system installed on devices

or any particular programming language used to write services.

CHAPTER 4. A NEW REMOTE SERVICE DISCOVERY ARCHITECTURE 36

 !"#$%!&'$""("&)*$+,!"-.(/0"(+&1($/0&2

 !"#$%!&' !"#$%!&(

)$""*"&*+&,-!&.!"#$%!.

3
1
/
1
&!
/
4
5
+!
,
&,
!
#
$%
!
&6

!
"#
$%
!
&/

!
"#
$%
!
&0

3
1
/
1
&!
/
4
5
+!
,
&,
!
#
$%
!
&7

!
"#
$%
!

.(/0"(+&1($/0

.(/0"(+&1($/0&
7

8/*0!++4&
.+$!/0

Figure 4.2: Local network structure

CHAPTER 4. A NEW REMOTE SERVICE DISCOVERY ARCHITECTURE 37

• User Interface control: Each device and service can have a User Interface de-

scribed in XML

Addressing Addressing is accomplished using the standard UPnP protocol. All

devices and services first search for a DHCP server; if no DHCP response is received,

then they must wait and again multicast a request for IP address from the DHCP

server. As a failover mechanism, device must assign an IP address to itself whenever

no DHCP server can be reached. This address is multicast to the network, and the

process is repeated whenever another device is found to have the same self-assigned

IP address. Multicasting is accomplished using UDP, while TCP is used for all the

remaining steps.

The sample local network in Figure 4.2 features four components: UPnP-enabled

device 1 (just device 1 or even D1 for short), UPnP-enabled device 2 (device 2 or D2),

one control point (control point 1) and one service mirror builder (SMB for short).

The service mirror builder typically resides on the smart environment gateway (such

as a connected home gateway). All of these components have unique IP addresses.

Discovery-advertisement Now all the devices, control points, and the service

mirror builder are connected to the network and have unique IP addresses. The

subsequent discovery dialogue is depicted in Figures 4.3, 4.4, 4.5, and 4.6. Initially

device 1 has not introduced its service to other control points except the service mirror

builder, and its control point has discovered a mirror of a remote service (service 3).

Device 2 is a UPnP device with 2 embedded services (service 1 and service 2) which

are similarly not known to the others. Now device 2 must inform all the available

control points in the network about its services; it does so by multicasting a message

and thus advertising services 1 and 2.

CHAPTER 4. A NEW REMOTE SERVICE DISCOVERY ARCHITECTURE 38

 !"#$%!&'$""("&)*$+,!"

 !"#$%!&'

($"")"&)*&+,!&-!"#$%!-

-
.
/
.
&!
/
0
1
+!
,
&

,
!
#
$%
!
&2

!
"#
$%
!

3(/4"(+&

.($/4

Figure 4.3: SMB and a device connected in the UPnP network

These advertisement messages have a timestamp to indicate for how long this

advertisement is valid. Before this time expires, the device must renew the adver-

tisement; otherwise all the control points will infer that the respective service is no

longer available on the network.

In local network 1 used in our example, the multicast message will be received

by the service mirror builder and also by device 1. The control point in device 1 is

not interested in (or not capable to control) either service 1 or service 2 and so it

ignores this message. However, the service mirror builder must be aware of all the

available services in the local network, so it cannot ignore any multicast message.

The service mirror builder uses this information for remote service discovery, which

will be discussed later. In local network 1 the service mirror builder is (obviously)

interested in service 1 and service 2. It then sends a message to device 1 to retrieve

CHAPTER 4. A NEW REMOTE SERVICE DISCOVERY ARCHITECTURE 39

 !"#$%!&'$""("&)*$+,!"

 !"#$%!&'

($"")"&)*&+,!&-!"#$%!-

-
.
/
.
&!
/
0
1
+!
,
&

,
!
#
$%
!
&2

!
"#
$%
!
&.

!
"#
$%
!
&/

-
.
/
.
&!
/
0
1
+!
,
&

,
!
#
$%
!
&3

!
"#
$%
!

4(/5"(+&

.($/5

Figure 4.4: SMB requests descriptions of Services 1 and 2

the description of the two services as discussed in the next step below (Description).

Figure 4.4 shows this step.

When the service mirror builder receives a request for a service (which is not

locally available), it tries to request it from a remote network. Once such a service is

found, a mirror of that service is made available in the local network. In Figure 4.2

the mirrors of the remote services are shown in the service mirror builder box.

Discovery-Search Another possibility of discovery is when a new control point is

added to the network. In Figure 4.5 device 1, device 2, and the service mirror builder

have all discovered each other. Control point 1 is then added to the network, has its

own IP address, but has not discovered any services to control yet. In such a case the

newly added control point multicasts a Simple Service Discovery Protocol (SSDP)

discovery message [45] sent using HTTPMU [19, 36], thus searching for available

CHAPTER 4. A NEW REMOTE SERVICE DISCOVERY ARCHITECTURE 40

 !"#$%!&'$""("&)*$+,!"

 !"#$%!&'

($"")"&)*&+,!&-!"#$%!-

-
.
/
.
&!
/
0
1
+!
,
&

,
!
#
$%
!
&2

!
"#
$%
!
&.

!
"#
$%
!
&/

-
.
/
.
&!
/
0
1
+!
,
&

,
!
#
$%
!
&3

!
"#
$%
!

4(/5"(+&

.($/5

4(/5"(+&

.($/5&3

Figure 4.5: SMB, D1, D2 have discovered each others’ services (control point 1 is now
added to the network)

services and devices in the network. The search message (which is encapsulated

in the SSDP request) contains vendor-specific information which includes device or

service types and identifiers.

All the devices in the network must listen to these SSDP messages and respond

whenever any of their services match the criteria specified by the SSDP message.

The response message is a unicast message sent via UDP with SSDP headers and

contains the same information as the advertisement message. The service mirror

builder listens to all these messages and for each such a message it checks whether

the requested service is in the list of available local services. If it is, then the service

mirror builder drops the message; otherwise, it proceeds to discovering the respective

service remotely.

In Figure4.5, service 1 in device 2 is matched with the request of control point 1.

CHAPTER 4. A NEW REMOTE SERVICE DISCOVERY ARCHITECTURE 41

 !"#$%!&'$""("&)*$+,!"

 !"#$%!&'

($"")"&)*&+,!&-!"#$%!-

-
.
/
.
&!
/
0
1
+!
,
&

,
!
#
$%
!
&2

!
"#
$%
!
&.

!
"#
$%
!
&/

-
.
/
.
&!
/
0
1
+!
,
&

,
!
#
$%
!
&3

!
"#
$%
!

4(/5"(+&
.($/5

4(/5"(+&
.($/5&3

6$7%(#!"8& !0"%9&:("& !"#$%!&;

Figure 4.6: Searching for a service which is not available locally (control point 1
multicasts a discovery search message for service 4 which is not available locally)

Therefore device 2 unicasts a response message to control point 1. Now that control

point 1 has discovered one of its needed services, it will ask for a description. Once

the description is received, control point 1 can control service 1 in device 2. Assume

now that control point 1 multicasts a discovery search message requesting a service

which is not locally available (say, service 4). Figure4.6 shows this step. The service

mirror builder will recognize that this service is not locally available, and so it sends

a query for that service to the local Gnutella client. The Gnutella client will then

propagate that query to the Gnutella network. We will show in detail how the remote

discovery is accomplished in the next section (Section 4.3).

Description After the discovery step (which makes the control points aware of the

available services), the control points must know how to use these available services.

CHAPTER 4. A NEW REMOTE SERVICE DISCOVERY ARCHITECTURE 42

 !"#$%%&'
(%)$!#'*

 !"#$%%&'
(%)$!#'+

 !"#$%%&'
(%)$!#',

 !"#$%%&'
(%)$!#'-

 !"#$%%&'
(%)$!#'.

Figure 4.7: The overlay Gnutella network (five connected servents or local networks)

The process that accomplishes this is called Description. Advertising messages cir-

culated during discovery contain URLs from which the control points can retrieve

the description of the respective devices. The control points then issue HTTP GET

requests to the devices to obtain the descriptions. In our sample network from Figure

4.2 control point 1 will request a description for service 1 in device 2.

The UPnP description for a device or a service is an XML document which contains

vendor specific information, definition of all embedded devices, and an URL for the

presentation of the device [36].

CHAPTER 4. A NEW REMOTE SERVICE DISCOVERY ARCHITECTURE 43

Control, Eventing and Presentation Once a control point has the device or

service description it can invoke actions on that service and get result values in return.

Invoking an action in UPnP is a particular instance of Remote Procedure Call [36, 41].

Control points send control messages (formatted in XML) which are encapsulated in a

specific format using SOAP and then transmitted using HTTP over TCP/IP [36, 44].

The major focus of this research contribution is service discovery so we will not

elaborate further on service control, eventing and presentation.

4.3 The Gnutella Protocol and Remote Service Dis-

covery

Two major characteristics of pervasive computing are distributedness and mobility. In

such an environment we want to connect nodes in a distributed manner and without

any dependency to a central server (such as the presence server from Section 3.2). We

therefore chose in our architecture Gnutella as the connecting protocol, since Gnutella

is a strongly decentralized peer to peer system [25].

Servents in Gnutella can share any type of resources [25]. In our design servents

are sharing their local services with remote servents. Figure 4.1 on page 34 shows this

architecture and Figure 4.7 shows the overlaying Gnutella network. We now explain

the remote service discovery process in our architecture.

The first step toward remote service discovery is the establishment of a Gnutella

network. This is accomplished as follows.

1. In Figures 4.1 and 4.7 we have 5 local networks. Each local network has a

Gnutella client which is specialized in sharing the services aggregated by the

service mirror builder. We assume that local networks 2, 3, 4, and 5 are already

connected to the Gnutella network. Local network 1 then can use one of the

CHAPTER 4. A NEW REMOTE SERVICE DISCOVERY ARCHITECTURE 44

 !"#$%%&'
(%)$!#'*

 !"#$%%&'
(%)$!#'+

 !"#$%%&'
(%)$!#',

 !"#$%%&'
(%)$!#'-

 !"#$%%&'
(%)$!#'.

/*
0'

!
"
#$
%%&
'1
2
!
!
$
1
#

/+
0'
!
"
#$
%%&
'3
4

Figure 4.8: Local network 1 joins the Gnutella network

techniques discussed in Chapter 2 to join the Gnutella network. Suppose that

the address of network 2 is thus given.

2. Local network 1 then tries to connect to local network 2. Local network 1 sends

a “Gnutella connect” to local network 2 in order to join the Gnutella network.

Local network 2 responds with a “Gnutella OK” to the local network 1. Local

network 1 is now part of the Gnutella network. Figure 4.8 shows this step.

3. Gnutella servents periodically Ping their neighbours with their information. In

figure 4.9 local network 4 Pings its information to its connected neighbour, local

CHAPTER 4. A NEW REMOTE SERVICE DISCOVERY ARCHITECTURE 45

 !"#$%%&'

(%)$!#'*

 !"#$%%&'

(%)$!#'+

 !"#$%%&'

(%)$!#',

 !"#$%%&'

(%)$!#'-

 !"#$%%&'

(%)$!#'.

 !
"#$

%
&
'
(#)

#*
+,

-

 .
"#
$
%
&
'
(#
/
#*

%
,
-

 /"#$%&'(#)#*+,-

)
"#$

%
&
'
(#)

#*
+,

-

 /
"#$

%
&
'
(#)

#*
+,

-

 0"#1,234(('#&%,,4&3

 5"#1,234(('#67

Figure 4.9: Local network 1 finds Local network 4 and connects to it via Ping mes-
sages

network 3. Local network 3 replies to local network 4 with a Pong message and

propagates this Ping to its direct connected neighbours local network 5 and local

network 2. Local network 2 and 5 do the same. Finally local network 1 receives

Ping message from local network 4. Local network 1 uses the address of local

network 4 from the Ping message and through ”Gnutella connect” connects to

the local network 4. Figure 4.9 shows this step.

4. Now we have a Gnutella network with 5 nodes which are connected to each

other like in Figure 4.7.

CHAPTER 4. A NEW REMOTE SERVICE DISCOVERY ARCHITECTURE 46

 !"#$%%&'
(%)$!#'*

 !"#$%%&'
(%)$!#'+

 !"#$%%&'
(%)$!#',

 !"#$%%&'
(%)$!#'-

 !"#$%%&'
(%)$!#'.

 !"#$%&'(#)*'#+&',-.&#!

 !
"#$

%
&
'(

#)*
'#+

&
',

-.
&
#!

 /
"#$

%
&
'(

#)*
'#+

&
',

-.
&
#!

 0"#$%&'(#)*'#+&',-.&#! 1"#$
%&'(#)*'#+&',-.&#!

Figure 4.10: Finding a remote service (a query message for a service is sent from
Gnutella client 1 to the Gnutella network)

Remote service discovery in the new architecture Now that both the local

networks and the Gnutella network are established, remote service discovery can

begin. Such an event happens whenever a control point requests a service but this

service is not locally available. The service mirror builder then activates and tries to

remotely discover it.

Each service mirror builder has a cached description of all of the available local

services. When a control point requests a service, the service mirror builder checks in

its local service directory and if there is such a service just ignores the query (since the

control point can locally discover and control that service). However, if that service is

CHAPTER 4. A NEW REMOTE SERVICE DISCOVERY ARCHITECTURE 47

not in the local directory, the service mirror builder proceeds to discover it remotely,

as follows.

1. The service mirror builder sends a request for the service to the Gnutella client.

The Gnutella client issues a query message asking for the requested service and

sends this query to its directly connected servents. In Figure 4.10 local network

1 performs such a query. Gnutella client 1 then sends the appropriate query

message to its directly connected neighbours, namely local networks 2 and 4.

The Gnutella clients in local networks 2 and 4 first send the request to their

service mirror builders to see whether the requested service is locally available.

Suppose that both answers are negative; then Gnutella clients 2 and 4 send the

query to their direct connected neighbours except to local network 1 (which

originated the query). The query thus goes in local network 3. Gnutella client

3 receives this query message two times but discards the second instance after a

muid check. This continues until the query reaches a network that can provide

the requested service (local network 5 in our example).

2. Gnutella client 5 checks the query against its service mirror builder and receives

a positive answer. Therefore Gnutella client 5 sends a query-hit to the requester

(Gnutella client 1). This query-hit can be sent along the reverse path or directly

to the Gnutella client 1. Figure 4.11 shows this action.

3. Now that the service has been discovered, node 5 can send a service description

and other information back to the node 1. This information will be delivered

to the service mirror builder of that node (1). This service mirror builder then

creates a mirror of the service in the local network 1 (in our example service

4 which will be controlled by control point 1). From the point of view of the

CHAPTER 4. A NEW REMOTE SERVICE DISCOVERY ARCHITECTURE 48

 !"#$%%&'

(%)$!#'*

 !"#$%%&'

(%)$!#'+

 !"#$%%&'

(%)$!#',

 !"#$%%&'

(%)$!#'-

 !"#$%%&'

(%)$!#'.

!
"
#$
%&
'()*
+
)(,
"
)#"
-
"
#.
"
)/
0
(,

!"#$%&

'()*+)0)1'#"2()/0(,

Figure 4.11: Query-hit response (a query-hit can reach Gnutella client 1 on the reverse
path or directly)

control points in local network 1 the service looks just likes a local one and can

be controlled in the usual way.

4.4 Gnutella and UPnP Messages in the New Ar-

chitecture

This section shows the possibility of using the Gnutella distributed search protocol

to search for services in remote networks (remote services). We do this by discussing

the Gnutella and UPnP message structure and the modifications that are needed in

CHAPTER 4. A NEW REMOTE SERVICE DISCOVERY ARCHITECTURE 49

our architecture.

In our architecture all local network components communicate and work with each

other under UPnP protocol standards. All six steps in UPnP (addressing, discovery,

description, control, eventing and presentation) are being done as per the UPnP

protocol.

As far as the remote connections are concerned, all servents are working under

the Gnutella standards and specification. All Gnutella connect, Gnutella OK, ping

and pong messages are exactly according to the available Gnutella protocol. The only

differences happen in the Gnutella query and Gnutella query-hit messages (since the

original query and query-hit messages are used for requesting for and responding with

shared files). We are then explaining the structure of these messages in more detail

along with some recommendation for changing them to work in the new architecture

for the purpose of service discovery instead of file sharing.

All of the Gnutella protocol messages, including query and query-hit, include a

header with the following byte structure [29]:

Bytes Description
0-15 Message ID/GUID (Globally Unique ID)
16 Payload Type
17 TTL (Time To Live)
18 Hops
19-22 Payload Length

This message header structure will remain unchanged in our architecture. The pay-

load type in the header indicates the type of the message. The following are possible

values [29]:

0x00 = Ping 0x01 = Pong 0x02 = Bye
0x40 = Push 0x80 = Query 0x81 = Query-Hit

Other Gnutella message types can be used as long as all the participating servents

support them [29].

CHAPTER 4. A NEW REMOTE SERVICE DISCOVERY ARCHITECTURE 50

Payload length shows the size of the payload. The whole Gnutella message (ac-

cording to the available specification) should not be more than 4 kB. Immediately

following the message header is a payload which can be one of the following messages:

ping, pong, query, query-hit and push [29].

The query message Since query messages are broadcast to many nodes, servents

normally send query messages that are smaller than 256 bytes; however, query mes-

sages can be as large as 4 kB. A query message has the following structure [29]:

Bytes Description
0-1 Minimum speed
2 Search criteria
Rest Optional extension block

The rest field of a query message is used for the original query which in our

case is a query for a remote service. The allowed extension types in the rest field

can be specified using the Gnutella Generic Extension Protocol (GGEP), Hash/URN

Gnutella Extensions (HUGE), and XML [29]. The Gnutella Generic Extension Pro-

tocol (GGEP) allows arbitrary extensions in a Gnutella message; a GGEP block is a

framework for other extensions [29].

In a UPnP network service discovery is accomplished using Simple Service Dis-

covery Protocol (SSDP) [45]. All SSDP messages are sent using the HTTP protocol

version 1.1 [18]. The HTTP 1.1 and Gnutella protocols are both application layer

protocols. The fundamental data in a SSDP discovery search or discovery advertise-

ment message (in a UPnP network) contains a few essential specifics about the device

or one of its services (e.g., its type, universally unique identifier, and so on) [45]. All

this information can be readily encoded in a GGEP extension by the service mirror

builders and then sent to the Gnutella network agent. Then the Gnutella network

agent can put this GGEP-formatted information in the Rest part of a Gnutella query

CHAPTER 4. A NEW REMOTE SERVICE DISCOVERY ARCHITECTURE 51

message and send it to the Gnutella network.

The query-hit message A query-hit message has the following fields [29]:

Bytes Description
0 Number of Hits
1-2 Port
3-6 IP Address
7-10 Speed
11- Result Set

The result set is used for the response to the query and has the following structure

[29]:

Bytes Description:
0-3 File Index
4-7 File Size
8- File Name; terminated by a null (i.e. 0x00)
x Extensions Block; terminated by a null byte

The first three fields of the result set are defined specifically to hold information

about a requested file (or portion thereof); this happens because Gnutella is mainly

used for peer to peer file sharing. In our approach it is possible to redefine all of these

fields. In order to prevent increased complexity and the extra work needed to define

a new specification, we recommend that these fields be filled with some default and

fixed labels. In other words these fields of the result set are simply ignored.

GGEP, HUGE, and plain text metadata are all allowed in the extension block.

We recommend that the response messages from service mirror builders be formatted

in a GGEP extension and sent back to the network in the extensions field of the

query-hit message.

Chapter 5

Conclusions

Service discovery plays an important role in pervasive computing. At the same time

pervasive computing creates many challenges for service discovery protocols, which

now need to work properly in a heterogeneous and dynamic environment. One other

challenge is the problem of remote service discovery.

We described in Chapter 3 two architectures that enable the service discovery pro-

tocols and in particular UPnP to discover remote services. Similar to their attempts,

we introduced a new approach that is decentralized and fully distributed. We there-

fore believe that our approach offers better compatibility with pervasive computing

environments.

The core part of the new architecture is the new function in a UPnP network

called service mirror builder and its cooperation with a specialized Gnutella client

software to discover remote services and then present these remote services as local

ones. Conversely, a service mirror builder can also control local services to serve them

as remote services for other, remote service mirror builders.

The service mirror builder can communicate with the specialized Gnutella client

software. From the point of view of the local network however the service mirror

builder is just a UPnP-enabled device: It can control other services (whenever the

52

CHAPTER 5. CONCLUSIONS 53

respective service is offered outside the local network) but can also offer services (the

mirrors of the remote services); overall, it is just a normal service discovery-enabled

device. We used UPnP for illustration purposes, but the service mirror builder can

be defined based on any service discovery protocol (Bluetooth, Apple Bonjour, etc.)

as defined in Section 1.2. Our solution is in fact general and not dependent on any

particular service discovery protocol.

The very definition of pervasive computing is distributed and mobile computing

[1]. In this dissertation we propose the Gnutella protocol as a distributed search

protocol for discovering remote services. The very design of a Gnutella network as a

decentralized and distributed protocol moves this remote service discovery architec-

ture one step ahead toward truly distributed computing. In other words, Gnutella

helps this remote service discovery architecture to be more compatible and adapted

to the pervasive computing environment, as opposed to both the Atom base and

Presence service solutions, which have a centralized architecture.

We used the basic Gnutella protocol in our architecture. During the years many

changes and refinements have been added to the Gnutella protocol. Some refinements

and new techniques like Ultrapeers and Leaves, Distributed Hash Table, Query Rout-

ing Protocol (QRP), and so on helped to reduce the traffic in Gnutella network and

have increased the efficiency of the protocol. These refinements can be trivially added

to our architecture.

5.1 A Critical Comparison with Related Work

The main focus of the DOTOCS solution (Section 3.3) is the optimization of the peer

to peer search mechanism. Its authors believe that this search mechanism is best

suited for content sharing (audio, video and digital data) among UPnP gateways.

CHAPTER 5. CONCLUSIONS 54

For the actual communication between UPnP gateways they refer to a transparent

interaction solution [34] which enables two connected local UPnP networks to discover

and control each others’ services. Overall, we note that in the DOTOCS case neither

the functionality and cooperation of its transparent solution, nor the peer to peer

search mechanism are discussed in any detailed way. We also note that DOTOCS

only aims to enable media content sharing. As a consequence, we will not include

DOTOCS in our comparison; we will instead compare our approach with DOTOCS’

underlying transparent interaction solution [34] (named “transparent interaction so-

lution” henceforth).

A good evaluation of the previous work outlined in Sections 3.1 and 3.2 can be

found in Chapter IV of [23]. Partially based on this evaluation we now compare our

architecture with these two previous approaches as well as the transparent interaction

solution (from the previous paragraph).

• Compatibility with the available trends and technologies:

Atom-based solution. Each local network needs to be enhanced with a

UPnP Device Aggregator to be able to discover remote services. Each

remote network must also be enhanced with Enhanced control points and

devices to be able to serve a service to a remote UPnP Device Aggregator.

Presence service-based solution. Each local network must have a service

discovery gateway and a service virtualizer. In addition, all local networks

need to be connected to one or several presence servers by means of pres-

ence service applications.

Transparent interaction solution. Each local network has to be enhanced

with a specialized UPnP gateway which encapsulates/extracts messages

CHAPTER 5. CONCLUSIONS 55

into/from SOAP messages.

Gnutella-based solution. Each local network must be enhanced with a

service mirror builder and a Gnutella agent software. There is no need for

any central server, and remote service discovery is accomplished as soon as

a Gnutella servent connects to the Gnutella network (in cooperation with

the respective service mirror builder).

• Scalability:

Atom-based solution. The main shortcoming of this solution is the need

for VPN. Indeed, VPN does not scale well, as it requires careful admin-

istration of IP addresses and subnetworks [23]. Additionally, there is a

need in pervasive computing for general solutions that are able to support

heterogeneity. VPN also limits the architecture to some domains within

the VPN network.

Presence service-based solution. We do not believe that this architecture

has any scalability limitation. A presence service application can be used

for instant messaging with support for millions of users. The only potential

problem is the availability of presence servers in geographically remote

areas. Servers geographically very far from the presence server may not be

able to serve the clients very well due to possibly frequent disconnections.

Transparent interaction solution. Local networks are connected to the In-

ternet and implement Network Address Port Translation (NAPT). Scala-

bility between local networks is manageable. However, each gateway multi-

casts in its local UPnP network any received discovery message (regardless

CHAPTER 5. CONCLUSIONS 56

whether the demanded service in that discovery message is locally avail-

able or not). This creates substantial traffic in the local network, most

of it useless. Therefore the transparent interaction solution reduces the

scalability of the local UPnP networks.

Gnutella-based solution. If only the basic Gnutella protocol is used the

architecture does not scale well because of the fully distributed nature of

the Gnutella architecture that requires the exchange of many messages of

different types. However, the network traffic can be easily lowered by using

the recent enhancements of the protocol (such as Ultrapeers, or servents

that perform some extra functions such as indexing [35]), case in which

our architecture scales very well.

It is worth noting that as opposed to the transparent interaction solution,

our protocol does not multicast remote requests to the local network (for

indeed the service mirror builder has already discovered the locally avail-

able services), so the local UPnP network will not be loaded with spurious

messages.

• Remote service discovery for pervasive computing: All four approaches support

remote service discovery for pervasive computing.

• Distributed architecture:

Atom-based solution. The main focus of this research is remotely access-

ing a home network from another network. Therefore all remote service

discovery requests are addressed to the home network. This architecture

can thus be considered centralized or partially centralized: there are some

service coordinators (named UPnP Device Aggregators) to register and

CHAPTER 5. CONCLUSIONS 57

cache services [17] .

Presence service-based solution. This architecture is also partially central-

ized. Presence servers serve as service coordinators to cache and register

services. Remote service providers and remote service requesters must first

find a presence server to register or request a service. Although presence

servers (as service coordinators) provide service visibility, the benefit does

not come without cost and complexity [16, 17].

Transparent interaction solution. The main focus of this research is re-

mote service discovery between two connected UPnP networks and so their

architecture cannot be considered distributed.

Gnutella-based solution. Our architecture is fully distributed: no central-

ized coordinator is necessary. Each service mirror builder in cooperation

with a Gnutella agent software can provide remote service to others, run

itself as a service discovery server, and responds to remote service discovery

requests for its own services. In other words all servents in this architec-

ture are equal in performance, and are both clients and servers at the same

time.

If Ultrapeers are used, then the architecture changes to hybrid. A hybrid

approach allows fully distributed service discovery servers to co-exist with

some coordinators [17]. Ultrapeers in this case are servents that perform

some extra functions such as indexing [35]. We note that robustness is

maintained in an Ultrapeers structure, as typically any servent can become

an Ultrapeer if it satisfies certain criteria and so the loss of an Ultrapeer

does not compromise the network.

CHAPTER 5. CONCLUSIONS 58

• Security:

Atom-based solution. Security depends on the existence of a secure VPN

tunnel which is used for the connection between remote networks and the

home network.

Presence service-based solution. Security is accomplished by applying

access control policies at the level of service presence servers.

Transparent interaction solution. Security and privacy are not considered.

Gnutella-based solution. The focus of this work is service discovery. Se-

curity is more important in the service control phase which follows service

discovery and is outside the scope of this work. Although the scope of

this work does not allow for security issues, it is worth mentioning that

authentication mechanisms based on Web Services Security (WS-Security,

WSS) [17] can offer a good solution for allowing only authenticated users

to use remote services.

Bibliography

[1] B. Abdualrazak, Y. Malik, and H.-I. Yang, A taxonomy driven approach

towards evaluating pervasive computing system, in Aging Friendly Technology

for Health and Independence, vol. 6159 of Lecture Notes in Computer Science,

Springer, 2010, pp. 32–42.

[2] R. Anderson, Security Engineering: A Guide to Building Dependable Dis-

tributed Systems, Wiley, 2008.

[3] Apple Inc., Open Source Development Resources. http://developer.ap-

ple.com/opensource.

[4] P. Belimpasakis, Seamless User-Generated Content Sharing in the Extended

Home, PhD thesis, Julkaisu-Tampere University of Technology, 2009.

[5] P. Belimpasakis and V. Stirbu, Remote access to universal plug and play

(UPnP) devices utilizing the Atom publishing protocol, in International Confer-

ence on Networking and Services, IEEE Computer Society, 2007, p. 59.

[6] M. Bell, Service-Oriented Modeling: Service Analysis, Design, and Architec-

ture, Wiley, 2008, ch. Introduction to service-oriented modeling.

[7] Bluetooth Special Interest Group (SIG), Specification of the Bluetooth

System Version 1.1, 2001. http://www.tscm.com/BluetoothSpec.pdf.

59

BIBLIOGRAPHY 60

[8] E. Buyukkaya, M. Abdallah, and R. Cavagna, VoroGame: A hybrid P2P

architecture for massively multiplayer games, in 6th IEEE Consumer Communi-

cations and Networking Conference (CCNC), IEEE, 2009, pp. 1–5.

[9] S. Chen, D. Katsaros, A. Nanopoulos, and Y. Manolopoulos, Wire-

less Information Highways, IRM Press, 2005.

[10] Y. Chen, Service oriented architecture, Journal of Healthcare Information Man-

agement, 24 (2006), pp. 45–52.

[11] Clip2 Distributed Search Services, The Gnutella Protocol Specification

Version 0.4. http://www.stanford.edu/class/cs244b/gnutella protocol 0.4.pdf.

[12] B. Cohen, The BitTorrent Protocol Specification, 2008. http://www.bittorrent.

org/beps/bep 0003. html.

[13] M. Day, J. Rosenberg, and H. Sugano, A Model for Presence and Instant

Messaging, Internet Engineering Task Force, 2000. RFC 2778.

[14] M. Debbabi and M. Rahman, The war of presence and instant messaging:

right protocols and apis, in 1st IEEE Consumer Communications and Networking

Conference (CCNC), 2004, pp. 341–346.

[15] Domotique et informatique mobile (DOMUS). Université de Sherbrooke;

http://domus.usherbrooke.ca.

[16] P. Engelstad, Y. Zheng, and J. Tore, Service discovery and name resolu-

tion architectures for on-demand MANETs, in 23rd International Conference on

Distributed Computing Systems, IEEE Computer Society, 2003, pp. 736–742.

BIBLIOGRAPHY 61

[17] W. Feng, Remote service provision for connected homes, PhD thesis, De Mont-

fort University, 2010.

[18] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,

P. Leach, and T. Berners-Lee, The Hypertext transfer protocol—

HTTP/1.1, Internet Engineering Task Force, 1999. RFC 2616.

[19] Y. Y. Goland and J. Schlimmer, Multicast and unicast UDP HTTP mes-

sages, 2000. UPnP Forum Technical Committee Draft: http://www.upnp.org/

resources/specifications.asp.

[20] J. Gregorio and B. de Hora, The Atom Publishing Protocol, Internet En-

gineering Task Force, 2006. RFC 5023.

[21] Gtk-Gnutella, Gnutella Bootstrapping. http://gtk-gnutella.sourceforge.net/

en/?page=bootstrap.

[22] E. Guttman, C. Perkins, J. Veizades, and M. Day, Service Location

Protocol, Internet Engineering Task Force, 1999. RFC 2608.

[23] A. Häber, Remote Service Discovery and Control for Ubiquitous Service Envi-

ronments in Next-Generation Networks, PhD thesis, University of Agder, 2010.

[24] T. Hodes, S. Czerwinski, B. Zhao, A. Joseph, and R. Katz, An ar-

chitecture for secure wide-area service discovery, Wireless Networks, 8 (2002),

pp. 213–230.

[25] D. Ilie, Gnutella Network Traffic-Measurements and Characteristics, Master’s

thesis, Blekinge Tekniska Högskola, 2006.

BIBLIOGRAPHY 62

[26] J. Jeon, J. M. Lee, K. J. Myoung, K. R. Lee, W. H. Kwon, and B. Ko,

Design and implementation of the HNCP-UPnP bridge using a virtual device, in

International Symposium on Power-Line Communications and Its Applications,

2004, pp. 357–361.

[27] E. Kawamoto, K. Kadowaki, T. Koita, and K. Sato, Content shar-

ing among UPnP gateways on unstructured P2P network using dynamic overlay

topology optimization, in 6th IEEE Consumer Communications and Networking

Conference (CCNC), IEEE, 2009, pp. 1–5.

[28] D. Kim, J. Park, P. Yevgen, K. Moon, and Y. Lee, IEEE 1394/UPnP

software bridge, IEEE Transactions on Consumer Electronics, 51 (2005), pp. 319–

323.

[29] T. Klingberg and R. Manfredi, Gnutella 0.6, Network Working Group,

2002.

[30] Q. Mahmoud, Service-Oriented Architecture (SOA) and Web Services: The

road to Enterprise Application Integration (EAI), Oracle Corporation, 2005.

http://www.oracle.com/technetwork/articles/javase/soa-142870.html.

[31] Microsoft Developer Network, Overview of UPnP Architecture, 2010.

http://msdn.microsoft.com/en-us/library/aa382261%28v=vs.85%29.aspx.

[32] M. Nidd, Service discovery in DEAPspace, Personal Communications, IEEE, 8

(2001), pp. 39–45.

[33] M. Nottingham and R. Sayre, The Atom Syndication Format, Internet

Engineering Task Force, 2005. RFC 4287.

BIBLIOGRAPHY 63

[34] M. Ogawa, H. Hayakawa, T. Koita, and K. Sato, Transparent UPnP in-

teractions over global network, in Proceedings of SPIE, vol. 6794, 2007, p. 67944P.

[35] A. Oram, Peer-to-Peer: Harnessing the Benefits of a Disruptive Technology,

O’Reilly Media, 2001.

[36] Understanding Universal Plug and Play. White paper: http://www.upnp.org/

download/UPNP understandingUPNP.doc.

[37] B. A. S. Cheshire and E. Guttman, Dynamic Configuration of IPv4 Link-

Local Addresses, Internet Engineering Task Force, 2005. RFC 3927.

[38] The Salutation Consortium Inc., Salutation Architecture Specification.

1999.

[39] A. Sameh and R. El-Kharboutly, Modeling Jini-UPnP bridge using rapide

ADL, in IEEE/ACS International Conference on Pervasive Services, IEEE Com-

puter Society, 2004, pp. 237–237.

[40] R. Schollmeier, A definition of peer-to-peer networking for the classification

of peer-to-peer architectures and applications, in 1st International Conference on

Peer-to-Peer Computing, aug 2001, pp. 101 –102.

[41] R. Srinivasan, RPC: Remote Procedure Call Protocol Specification Version 2,

Internet Engineering Task Force, 1995. RFC 1831.

[42] C. A. Steinkuehler, Learning in massively multiplayer online games, in 6th

international conference on Learning sciences, 2004, pp. 521–528.

[43] Sun Microsystems Inc., Jini Technology Core Platform Specification Version

1.2, 2001. http://www-csag.ucsd.edu/teaching/cse291s03/Readings/core1 2.pdf.

BIBLIOGRAPHY 64

[44] UPnP forum. http://www.upnp.org.

[45] UPnP forum, UPnP Device Architecture 1.1, 2008. http://www.upnp.org/

specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf.

[46] S. Vaughan-Nichols, Presence technology: More than just instant messaging,

Computer, 36 (2003), pp. 11–13.

[47] M. Weiser, Some computer science issues in ubiquitous computing, Communi-

cations of the ACM, 36 (1993), pp. 75–84.

[48] H. Wong, Developing Jini applications using J2ME technology, Addison-Wesley,

2002.

[49] J. York and P. C. Pendharkar, Human-computer interaction issues for

mobile computing in a variable work context, International Journal of Human-

Computer Studies, 60 (2004), pp. 771–797.

[50] F. Zhu, M. Mutka, and L. Ni, Service discovery in pervasive computing

environments, Pervasive Computing, 4 (2005), pp. 81–90.

