
ON THE EQUIVALENCE BETWEEN COMPUTATION TREE LOGIC

AND FAILURE TRACE TESTING

by

SUNITA SINGH

A thesis submitted to the

Department of Computer Science

in conformity with the requirements for

the degree of Master of Science

Bishop’s University

Sherbrooke, Quebec, Canada

August 2017

Copyright c© Sunita Singh, 2017

Abstract

The two major systems of formal verifications are model checking and model-based test-

ing. Model checking is based on some form of temporal logic for instance Linear Temporal

Logic (LTL) or Computation Tree Logic (CTL, the focus of this thesis). Model-based test-

ing is an algebraic technique which is based on some operational semantics of processes

(such as traces and failures) and its associated preorders. The most fine-grained preorder

is based on failure traces. A previous paper showed that CTL and failure trace testing

are equivalent [5], in the sense that for any failure trace test there exist an equivalent CTL

formula and other way around. However, the proof of the conversion from failure trace

test to CTL is partially incorrect. We provide in this thesis a corrected proof. We also note

that whenever a failure trace test contains cycles the CTL formula produced by the previ-

ous conversion algorithm is infinite in size. We develop a modified conversion algorithm

which under certain, pretty general conditions produces finite formulae instead.

i

Acknowledgment

First of all, I would like to express my heartiest gratitude to my advisor Prof. Stefan D.

Bruda for his guidance during my degree and related research, his timely assistance dur-

ing the meetings and constant evaluations of my work. Without his support and valuable

assistance, this work would not have been completed. Besides my advisor, I would like

to thank the rest of my thesis committee: Prof. Layachi Bentabet, Prof. Madjid Allili, and

Prof. Juergen Dingel, for their insightful comments and questions. My appreciation also

extends to the faculty of the CS Department, especially Prof. Nelly Khouzam and Prof.

Lin Jensen for their valuable assistance during the course of my study.

Last but not the least, I’m thankful to God to give me strength, my family, my parents,

and friends for their help, support, and encouragement throughout my graduate studies.

ii

Contents

1 Introduction 1

2 Preliminaries 6

2.1 Temporal Logic and Model Checking . 6

2.2 Labeled Transition Systems and Stable Failures 9

2.3 Failure Trace Testing . 12

3 Previous Work 16

3.1 A constructive Equivalence between LTS and Kripke Structures 17

3.2 From CTL formulae to Failure Trace Tests . 20

4 CTL Is Equivalent to Failure Trace Testing 22

4.1 From Failure Trace Tests to CTL Formulae . 23

4.2 Converting Failure Trace Tests into Compact CTL Formulae 25

4.2.1 Example Generation of Compact CTL Formulae 32

5 Conclusions 36

Bibliography 38

iii

Chapter 1

Introduction

The society today is heavily dependent on computing systems to assist us in almost ev-

ery aspect of our daily life. From highly critical and complex systems to a small home

appliance, everything has become digital. These systems are becoming more and more

complex and massively encroaching on daily life. There are several control functions in

cars, cell phones, planes, etc. which are based on embedded computing systems. Au-

dio and video systems, medical devices, communications systems are containing huge

amounts of software. Transport, highway, chemical plants, nuclear power plants, traffic

control and alert systems are also increasingly using hardware and software systems, and

errors in such software and hardware can have disastrous consequences. Therefore, the

most challenging and important thing for the field of computer science is to ensure the

correctness of hardware and software systems, and often no failure is acceptable.

Verification is the process of ensuring that a system has been built according to certain

desired properties or specifications. Numerous verification methods have been proposed

to provide assurance about the correctness of the systems. The traditional verification

method is testing [15, 20] and still it is the most widely used technique. This non-formal

1

CHAPTER 1. INTRODUCTION 2

method of verification first generates input data to the system, then observes it and veri-

fies whether the output data is according to the given input. However, there is no guar-

antee that this method will be fully protected from erroneous conclusions caused by the

pseudorandom or nondeterministic behaviour of input data. Another shortcoming is that

no complete coverage is possible, meaning that the method cannot cover all the possible

situations, which means that testing can disprove correctness but rarely prove it. Deduc-

tive verification [18, 12] is a formal method of verification, also called program proving. It

is the process of proving the correctness of the system mathematically using axioms and

inference rules. An advantage of deductive verification is that it can be used for reasoning

about infinite system states. The main disadvantage of this method is that is can never be

fully automated; the needed manual intervention is very time consuming and requires

highly skilled and experienced experts in logical reasoning.

Formal methods attempt to develop verification techniques that are sound, complete,

and can be automated. We consider in this paper two such techniques: model-based test-

ing [10, 22, 3] and model checking [7, 8, 17, 1]. In model-based testing the specification

of a system is algebraic in nature, most often represented as a labeled transition system

(LTS) or a finite automaton. Such a specification is generally an abstract description of the

desired behaviour of the system under test. Test cases are generated in a systematic and

a algorithmic manner from the specification and then we run all the test cases against the

system under test and observe the result. The way tests are generated ensure that they are

sound and complete. Model checking is a method for automatic (and algorithmic) veri-

fication of finite-state systems. Some temporal logic is used to produce and then reason

about the specification of the system; indeed, the specification is a logical description of

the system’s behaviour. We then construct a Kripke structure (model) of the system under

test and then we label all the states in the given model where the formula holds, which in

turn determines whether the initial states of the model satisfy the specification formula.

CHAPTER 1. INTRODUCTION 3

If this is the case, then the system is deemed conforming to its specification.

Model checking is a complete and fully automatic verification technique but it also has

some drawbacks. It is not compositional, so the user needs to model the whole system

first, before verifying the correctness of the design. State explosion is another problem,

for the number of states in the finite-state representation will increase exponentially. Thus

the technique does not scale well to large systems. Model-based testing is compositional

by its algebraic nature, therefore it can scale better to larger systems. However, there is

no guarantee of completeness, since some of the test cases can take an infinite time to

run. In model checking it is easy to provide partial specifications due to the logical nature

of the specification, which allows us to only specify the properties of interest. In model-

based testing the algebraic nature of the specification (LTS or finite automaton) requires

the specification of more or less the whole system.

Various kinds of temporal logic are used to specify the system in model checking,

which include CTL*, CTL and LTL. In this paper we will focus on CTL. Apart from this,

we will also focus on probably the most powerful method of model-based testing which

is failure trace testing. An interesting characteristic of failure trace testing is the existence

of a simple testing scenario (consisting of so-called sequential tests) that is enough to

evaluate the failure trace relation.

Some of the system’s properties may be naturally specified by using temporal logic,

whereas others can be readily specified using LTS or finite automata. Such a mixed spec-

ification could be given by somebody else, but generally for some components algebraic

specifications are more convenient while for others logical specifications are more suit-

able. However, when this happens there is no global formal specification to verify the

whole system. Thus, some part is specified by a temporal logic formula and could be

model checked to insure the correctness, while for the other part of the same system the

specification is given algebraically so that we can do model-based testing to ensure the

CHAPTER 1. INTRODUCTION 4

correctness of that part. Still, just by combining both of these results together there is no

guarantee that the whole system is correct. The only way to ensure global correctness in

this scenario is to convert one specification to the form of other, then apply the appropri-

ate verification technique on the whole system. This paper contributes to precisely such

a conversion. Earlier work [5, 23] developed an algorithmic method of converting CTL

formulae into equivalent failure trace tests and the other way around. The conversion

from tests to formulae however featured an incorrect proof, and also has the downside

of producing potentially infinite formulae. We fix both these issues: we first correct the

faulty proof, and then we show how to produce compact formulae equivalent to failure

trace tests.

We believe that this effort opens the domain of combined algebraic and logical meth-

ods of formal system verification. The advantages of such a combined method stem not

only from the possible combined specification as mentioned above, but also from the lack

of compositionality of model checking (which can be avoided by switching to algebraic

specification), from the lack of completeness of model-based testing (that can be avoided

by switching to model checking), and from the potentially attractive feature of model-

based testing of incremental application of a test suite insuring correctness to a certain

degree (which model checking lacks, being an “all or nothing” formalism).

This thesis continues as follows: In Chapter 2 we introduce model checking, model-

based testing, temporal logic, and failure trace testing. In Chapter 3 we summarize the

related previous work which includes the equivalence between label transition systems

and Kripke structures together with a conversion method of an LTS into its equivalent

Kripke structure, and the conversion of CTL formulae to failure trace tests. Finally we

present our work namely, the algorithmic conversion from failure trace test to (compact)

CTL formula in Chapter 4. Our conclusions are provided in Chapter 5. For the remain-

der of this thesis results proved elsewhere are introduced as propositions, while original

CHAPTER 1. INTRODUCTION 5

results are stated as theorems, and lemmata.

Chapter 2

Preliminaries

This section will cover temporal logic, model checking, LTS, stable failures, and failure

trace testing. In several pieces of previous work the process algebra TLOTOS is used to

specify the system under test as well as failure trace tests. Thus, here we will present this

language as well.

Given the nature of our work, the preliminaries described in this thesis will be largely

the same as the preliminaries used for the earlier work we fix and enhance [5, 23]. The

content of this section will therefore be similar to the corresponding sections from the

previous work.

2.1 Temporal Logic and Model Checking

Temporal logic formulae are used to describe a specification of the system. The system

under test is modeled as a Kripke structure that should have identical properties as the

system under test. The main objective of model checking is then to find the set of all states

in the Kripke structure that satisfy the given logic formula. Some of the system’s states

are labeled as initial states, and then the system satisfies the specification as long as all the

initial states satisfy the logic formula.

A Kripke structure [8] K over a set of elementary propositions AP is a tuple (S, S0,→

6

CHAPTER 2. PRELIMINARIES 7

, L), where S is the set of states, S0 is the set of initial states, →⊆ S× S is the transition

relation, and L : S → 2AP is a function that labels each state with a set of atomic propo-

sitions which are true in that state. Generally we write s → t instead of (s, t) ∈→. The

relation→ is total, which means that for all s ∈ S there exists t ∈ S such that s→ t; ”sink”

states that have no outgoing transitions must feature a ”self-loop” transition. A path π in

a Kripke structure is a nonempty (finite or infinite) sequence of states s0 → s1 → s2 → · · ·
such that si → si+1 for all i ≥ 0. State s0 is the root and the path starts from that state. For

all the paths starting from the root s0 we can build a computation tree with nodes labelled

with states and the root labelled as s0, such that (s, t) is an edge in the tree iff s→ t where

s, t ∈ S.

Many variants of temporal logic have been proposed and are widely used. One fam-

ily consists of CTL* [11, 8], CTL [8, 6] (computation tree logic) and LTL [16] (linear-time

temporal logic). CTL and LTL are defined as the restricted subset of CTL*, where CTL* is

the most general one. CTL is interpreted over computation trees and LTL is interpreted

over runs or paths.

CTL* contains path quantifiers and temporal operators. The path quantifier A refers to

all computation paths, and E refers to some of the computation paths. These two quanti-

fiers are used to represent the branching structure of computation trees, given that states

in the computation tree have several other successive states which leads to multiple paths

starting from the same state. There are five temporal operators which are used to repre-

sent the individual path properties: X (requires that a property will hold in the next state

of the path), F (requires that a property will hold at some state in future along the path),

G (requires that a property will hold in every state along the path), U (requires that the

first property will hold at every preceding state along the path until the second property

becomes true and remains true afterward), and R (requires that the second property has to

be true along a path up to the point where the first property becomes true, and so release

CHAPTER 2. PRELIMINARIES 8

the second property from its obligation; if the first property never becomes true then the

second property must remain true forever). These path properties can be preceded by the

quantifiers A or E to become state properties.

There are two types of formulas in CTL* which are state formulae (that can be true

or false in a specific state and use temporal operators preceded by quantifiers) and path

formulae (that can be true or false along a specific path and so do not use path quantifiers).

CTL is a restricted subset of CTL* where each of the temporal operators X, F, G, U, and

R must be immediately preceded by the path quantifiers A, and E. Thus, we have the

following syntax for CTL formulae, noting that all the CTL formulas are state formula:

f = > | ⊥ | a | ¬ f | f1 ∧ f2 | f1 ∨ f2 |

AX f | AF f | AG f | A f1 U f2 | A f1 R f2 |

EX f | EF f | EG f | E f1 U f2 | E f1 R f2

where a is the atomic proposition ranging over AP and f , f1, f2 are state formulae.

The CTL semantics is defined with respect to Kripke structures. Basically we use the

usual notation to specify that a state formula f is true in a state s of Kripke structure K:

K, s |= f means that in Kripke structure K, formula f is true at state s. If f is a path formula

then K, π |= f means that in Kripke structure K, formula f is true along the path π . We

define the validation relation |= inductively as follows (where f and g are state formulae):

1. K, s |= > is true and K, s |= ⊥ is false for any state s in Kripke structure K

2. K, s |= a, a ∈ AP iff a ∈ L(s).

3. K, s |= ¬ f iff ¬(K, s |= f).

4. K, s |= f ∧ g iff K, s |= f and K, s |= g.

5. K, s |= f ∨ g iff K, s |= f or K, s |= g.

CHAPTER 2. PRELIMINARIES 9

6. K, s |= E f for some path formula f iff there exists a path π starting at s such that

K, s |= f .

7. K, s |= A f for some path formula f iff K, π |= f for all paths π starting at s.

We use π i to denote the i-th state of a path π , with the starting state π0 . The meaning

of the relation |= for path formula is the following:

1. K, π |= X f iff K, π1 |= f for any state formula f .

2. K, π |= f U g for state formula f and g iff there exists j ≥ 0 such that K, π j |= g and

K, πk |= g for all k ≥ j, that means g is true at the state s j and remain true afterwards

for the later states, and for all i < j, K, π i |= f , that means f is true from the initial

state of π until the state si.

3. K, π |= f R g for any state formula f and g iff for all j ≥ 0 if K, π i 6|= f and every

i < j then K, π j |= g, that means f is not true from the initial state until the state si

and g is true at the state s j and the previous states.

2.2 Labeled Transition Systems and Stable Failures

The semantics of CTL is defined over Kripke structures, where each state is labeled with

atomic propositions. In model-based testing the common models are the labeled transi-

tion system (LTS) and the finite automaton, where labels are associated with transitions

instead of states. Usually an LTS describes the abstract behaviours of the system under

test.

An LTS [13] is a tuple M = (S, A,→, s0) where S is a countable, non empty set of states.

s0 ∈ S is the initial state. A is countable set of labels which denote observable actions of

a system. The internal action (which is not observable by the external environment) is

denoted by τ such that τ 6∈ A. The relation →⊆ S × (A ∪ {τ}) × S is the transition

CHAPTER 2. PRELIMINARIES 10

relation. The fact that (p, a, q) ∈→ is written as p a−→ q and is interpreted as follows:

there is a transition from state p to state q with label a, where the label representing any

kind of visible or internal action. The set of states and its transitions can be considered

global and if so then an LTS is completely defined by its initial state. We therefore blur

whenever convenient the distinction between an LTS and an LTS state, calling them both

“processes”.

Generally, we consider a set T of relevant tests and set P of processes. In model-based

testing [10, 3, 22] tests run parallel with the process (or system under test) and synchronize

with it over observable actions. A run of a test t and a process p represent a possible

sequence of states and actions of t and p running synchronously. Now we consider the

set of exactly all the possible runs of p and t, where p ∈ P and t ∈ T. The outcome of a

run r may be true (>) whenever a success state is encountered during that run, or false

(⊥) whenever r does not contain a success state or r contains a state s such that s diverges

(meaning that s engages in an infinite computation that does not produce any observable

event) and its not preceded by successful state.

Given the nondeterministic nature of some tests and processes, we can have multiple

runs for the given test t and process p (system under test), thus a set of outcomes is needed

to provide the results of all the possible runs. Let Obs(p, t) be the set of all the outcomes

of the synchronized execution of process p and test t. We will have may and must testing

depending on the degree of assurance that a process passes a test: A process p may pass

the test t whenever there exists a run which leads to successful (that is, p may t iff > ∈
Obs(p, t)), while p must pass the test t when all runs are successful (that is, p must t iff

{>} = Obs(p, t)).

To analyze the behaviour of the processes, we need to consider those sequence of

events that can be observed at the interface of the process. There are a number of ways

through which this behaviour can be analyzed. One aspect of process behaviour is that

CHAPTER 2. PRELIMINARIES 11

the occurrence of certain events is in the right order. These observations are called traces.

A trace is simply a record of events in the order they occur. Formally, traces are sequences

of events over AX = A ∪ {X}, that might be possibly recorded. A represents the set of

actions of a process, and theX (tick) represents the termination. Events of the process can

not occur after the termination, that means any termination event (X) in a trace will only

occur at the end. The set of all possible traces of a process p is denoted as traces(p).

A path (or run) π in an LTS is a sequence p0
a1−→ p1

a2−→ · · · pk−1
ak−→ pk with k ∈

N ∪ {∞} such that k = 0, or pi−1
ai−→ pi for all 0 < i ≤ k. We use |π | to refer to k, which

indicates the length of π . If |π | ∈ N then π is finite. The visible trace of π is defined

as sequence trace(π) = (ai)0<i≤|π |,ai 6=τ ∈ A∗. Internal actions are not recorded in traces,

so we only consider the observable actions and transitions. The visible transitions are

denoted by a specific notation p w
=⇒ p′ which says that there is a sequence of transitions

whose initial state is p, final state is p′ and whose visible transitions form the sequence

w. The notation p w
=⇒ is shorthand for ∃p′ : p w

=⇒ p′. We then define the traces of

process p as traces(p) = {w : p w
=⇒}. The set of finite traces of process p is defined

as Fin(p) = {tr ∈ traces(p) : |tr| ∈ N} where |tr| refers to the length of trace tr. A

process is said to be stable [19] when it does not make any internal progress (meaning that

it has no internal outgoing actions) and it is defined as p ↓= ¬(∃p′ 6= p : p ε
=⇒ p′).

A stable process p always responds in an expected way to the offer of a set of actions

X ⊆ AX, such that there is at least one a ∈ X that p can perform. When no such an

action a is available then p will refuse the set X. We use the following notation: p ref X iff

∀a ∈ X : ¬(∃p′ : p ε
=⇒ p′ ∧ p′ ↓ ∧p′ a−→).

To describe some possible behaviour of a process in terms of refusals we will record

all the refusals together with the finite sequence of events that causes that refusal. The

observation (w, X) that contains a refusal set X and the trace w that causes it is called

a stable failure of p [19] whenever ∃pw : p w
=⇒ pw ∧ pw ↓ ∧pw ref X}, meaning that p

CHAPTER 2. PRELIMINARIES 12

performs the events in w and then reaches at the stable state, from where it refuses all the

events in the set X. The stable failures of p are then described as SF(p) = {(w, X) : ∃pw :

p w
=⇒ pw ∧ pw ↓ ∧pw ref X}.

Depending on the level of interaction with processes, many preorder relations can be

defined (like traces, stable failure, refusal etc.). In general, preorders are more convenient

and more meaningful than equivalences in comparing specifications and their implemen-

tation: if two systems are in a preorder relation with each other, then one is the imple-

mentation of other. Thus such preorders can be interpreted as implementation relations

in practice. The stable failure preorder vSF is defined as p vSF q iff Fin(p) ⊆ Fin(q) and

SF(p) ⊆ SF(q) for any two processes p and q. That means that p implements q iff the set

of finite traces of p is included in the finite traces of q and the stable failure of p are also

included in the stable failure of q. Given the preordervSF one can define the stable failure

equivalence 'SF : p 'SF q iff p vSF q and q vSF p. The preorder vSF is considered one of

the finest preorders [4].

2.3 Failure Trace Testing

In what follows we use the notation init(p) = {a ∈ A : p a
=⇒}. A failure trace [14] f is

a string of the form f = A0a1 A1a2 A2 . . . Anan, n ≥ 0, with ai ∈ A∗ (sequences of actions)

and Ai ⊆ A(sets of refusals). Suppose p be a process such that p ε
=⇒ p0

a1=⇒ p1
a2=⇒

· · · an=⇒ pn; f = A0a1 A1a2 A2 . . . Anan is a failure trace of p if the following two conditions

are observed:

• If pi
τ−→ then Ai = ∅, when pi is not a stable state then it will refuse an empty set of

events by definition.

• If ¬(pi
τ−→), then Ai ⊆ (A \ init(pi)); for a stable state the failure trace refuses any

set of events that cannot be performed in that state including the empty set.

CHAPTER 2. PRELIMINARIES 13

Generally, we find the failure trace of any process p by taking a trace of p and then place

refusal sets in it after the stable states.

In this paper, we will use the testing language TLOTOS [14, 2] which describes systems

and tests succinctly. Let A be the countable set of visible actions, ranged over by a. The

set of processes or tests are ranged over by t, t1, and t2, while T ranges over sets of tests.

Then the syntax of TLOTOS is defined as follows:

t = stop | a; t1 | i; t1 | θ; t1 | pass | t1 � t2 | ΣT

The semantics of TLOTOS is then the following:

1. inaction (stop): no rules.

2. action prefix: a; t1
a−→ t1 and i; t1

τ−→ t1

3. deadlock detection: θ; t1
θ−→ t1.

4. successful termination: pass
γ−→ stop.

5. choice: with g ∈ A ∪ {γ,θ, τ},

t1
g−→ t′1

t1 � t2
g−→ t′1

t2 � t1
g−→ t′1

6. generalized choice: with g ∈ A ∪ {γ,θ, τ},

t1
g−→ t′1

Σ({t1} ∪ t)
g−→ t′1

TLOTOS has the ability of detecting deadlock using θ (the deadlock detection label).

The special action γ signals the successful termination of a test. Any process (or LTS) can

be defined as a TLOTOS process not containing γ and θ. On the other hand, failure trace

CHAPTER 2. PRELIMINARIES 14

tests are full TLOTOS processes, and thus may contain γ and θ. According to the parallel

composition operator ‖θ, a test runs in parallel with the system under test. This operator

also defines the semantics of θ as the lowest priority action:

p τ−→ p′

p‖θt τ−→ p′‖θt
t τ−→ t′

p‖θt τ−→ p‖θt′

t
γ−→ stop

p‖θt
γ−→ stop

p a−→ p′ t a−→ t′

p‖θt a−→ p′‖θt′
a ∈ A

t θ−→ t′ ¬∃x ∈ A ∪ {τ ,γ} : p‖θt x−→
p‖θt θ−→ p‖θt′

Given that both the processes and tests can be nondeterministic then we have a set Π(p‖θt)

of possible runs of a process and a test. The success and failure of a test t and a process

p under test depends on their outcome of a particular run π ∈ Π(p‖θt): whenever the

last symbol in trace(π) is γ then the test t succeeds on process p (>), otherwise it is

not successful (⊥). All the possible outcomes of all the runs in Π(p‖θt) are denoted by

Obs(p, t). Then one can differentiate as usual the possibility and certainty of success for a

test: p may t iff > ∈ Obs(p, t), and p must t iff {>} = Obs(p, t).

The set ST of sequential tests is defined as follows: pass ∈ ST , if t ∈ ST then a; t ∈
ST for any a ∈ A, and if t ∈ ST then Σ{a; stop : a ∈ A′} � θ; t ∈ ST for any A′ ⊆ A.

A bijection between failure traces and sequential tests exists [14]. For a sequential test t

the failure trace ftr(t) is defined inductively as follows: ftr(pass) = ∅, ftr(a; t′) = a ftr(t′),

and ftr(Σ{a; stop : a ∈ A′}�θ; t′) = A ftr(t′). Conversely, let f be a failure trace. Then we

inductively define the sequential test st(f) as follows: st(∅) = pass, st(a f) = a st(f), and

st(A f) = Σ{a; stop : a ∈ A} � θ; st(f). For all failure traces f we have that ftr(st(f)) = f ,

and for all tests t we have st(ftr(t)) = t.

By the given bijection we can convert the failure trace preorder into a testing based

preorder. Indeed there exists a successful run of p in parallel with the test t, iff f is a

CHAPTER 2. PRELIMINARIES 15

failure trace of both p and t. We then define failure trace preorder vFT as follows: p vFT

q iff ftr(p) ⊆ ftr(q). This preorder is equivalent to the stable failure preorder.

Proposition 2.1 [14] Let p be a process, t be a sequential test, and f be a failure trace. Then

p may t iff f ∈ ftr(p), where f = ftr(t).

Let p1 and p2 be processes. Then p1 vSF p2 iff p1 vFT p2 iff p1 may t =⇒ p2 may t for all

failure trace tests t iff ∀t′ ∈ ST : p1 may t′ =⇒ p2 may t′.

We note that unlike other preorders, vSF can be characterized in terms of may testing

only; the must operator does not need to be considered any further.

Chapter 3

Previous Work

The body of research analyzing combined, logical and algebraic formal specification and

verification is not very large. The only work directly relevant to our work is the effort of

studying LTL and its relationship with Büchi automata [21].

Büchi automata were used as semantic basis for reasoning about combined logical and

algebraic specification namely, LTL and the DeNicola and Hennessy testing preorders [9].

A unified semantic theory for heterogeneous system specifications featuring a mixture of

LTS and LTL formulas was developed. First the Büchi must-preorder is described for a

certain class of Büchi processes by means of trace inclusion. Then Büchi processes were

constructed using a conversion of LTL formulae, such that the languages of the Büchi

processes contain exactly all the traces that satisfy the respective formulae.

To the best of our knowledge the only investigation on the equivalence between CTL

and algebraic specification is the work which is continued here [5, 23]. This work intro-

duces a constructive conversion of LTS into equivalent Kripke structures, and then it con-

structs the conversion of failure trace tests into CTL formulae and the other way around.

However, the earlier conversion of failure trace tests into equivalent CTL formulae [5] is

partially incorrect.

In this chapter we will describe the aforementioned equivalence between LTS and

16

CHAPTER 3. PREVIOUS WORK 17

Kripke structures (see Proposition 3.1 below). We will also mention the conversion of

CTL formulae into failure trace tests but only briefly (see Proposition 3.2 in section 3.2).

This presentation is largely unchanged from the original report [5].

3.1 A constructive Equivalence between LTS and Kripke Struc-
tures

The LTS satisfaction operator is defined with the same formalism and in the same spirit as

the CTL satisfaction operators over Kripke structures [5]. Basically, the actions available

in an LTS state are propositions that hold in that state.

Definition 3.1 SATISFACTION FOR PROCESS [5]: A process p satisfies a ∈ A, written by abuse

of notation p |= f , iff p a−→. That p satisfies some (general) CTL state formula is defined

inductively as follows. Let f and g are some state formulae unless stated otherwise; then:

1. p |= > is true and p |= ⊥ is false for any process p.

2. p |= ¬ f iff ¬(p |= f).

3. p |= f ∧ g iff p |= f and p |= g.

4. p |= f ∨ g iff p |= f or p |= g.

5. p |= E f for some path formula f iff there exist a path π = p
a0−→ s1

a1−→ s2
a2−→ · · · such

that π |= f .

6. p |= A f for some path formula f iff p |= f for all paths π = p
a0−→ s1

a1−→ s2
a2−→ · · · .

As before, the notation π i denotes the i-th state of a path π (with the first state being π0). The

definition of |= for LTS path is:

1. π |= X f iff π1 |= f .

CHAPTER 3. PREVIOUS WORK 18

2. π |= f U g iff there exists j ≥ 0 such that π j |= g and πk |= g for all k ≥ j, and π i |= f

for all i < j.

3. π |= f R g iff for all j ≥ 0, if π i 6|= f for every i < j then π j |= g.

We also introduce a weaker satisfaction operator for CTL. This operator is like the

original, but it is defined over a set of states rather than a single state. By abuse of notation

we also use |= for this operator.

Definition 3.2 SATISFACTION OVER SETS OF STATES [5]: Suppose a Kripke structure K =

(S, S0, R, L) over AP. For some set Q ⊆ S and some CTL state formula f is defined as follows;

K, Q |= f with f and g state formulae unless stated otherwise:

1. K, Q |= > is true and K, Q |= ⊥ is false for any set Q in any Kripke structure K.

2. K, Q |= a iff a ∈ L(s) for some s ∈ Q, a ∈ AP.

3. K, Q |= ¬ f iff ¬(K, Q |= f).

4. K, Q |= f ∧ g iff K, Q |= f and K, Q |= g.

5. K, Q |= f ∨ g iff K, Q |= f or K, Q |= g.

6. K, Q |= E f for some path formula f iff for some s ∈ Q there exists a path π = s → s1 →
s2 → · · · → si such that K, π |= f .

7. K, Q |= A f for some path formula f iff for some(any) s ∈ Q it holds that K, π |= f for all

path π = s→ s1 → s2 → · · · → si

Based on the above definitions the following equivalence relation between Kripke

structures and LTS is introduced:

CHAPTER 3. PREVIOUS WORK 19

Definition 3.3 EQUIVALENCE BETWEEN KRIPKE STRUCTURES AND LTS [5]: Given a Kripke

structure K and a set of states Q of K, the pair K, Q is equivalent to a process p, written as

K, Q ' p (or p ' K, Q), iff for any CTL formula f K, Q |= f iff p |= f .

Proposition 3.1 [5] There exist an algorithmic function ξ which converts an LTS p into a Kripke

structure K and a set of states Q such that p ' (K, Q).

Specifically, for any LTS p = (S, A,→, s0), then we define its equivalent Kripke structure K

as K = (S′, Q, R′, L′) where:

1. S′ = {〈s, x〉 : s ∈ S, x ∈ init(s)}.

2. Q = {〈s0, x〉 ∈ S′}.

3. R′ contains exactly all the transitions (〈s, N〉, 〈t, O〉) such that 〈s, N〉, 〈t, O〉 ∈ S′, and

(a) for any n ∈ N, s n
=⇒ t,

(b) for some q ∈ S and for any o ∈ O, t o
=⇒ q, and

(c) if N = ∅ then O = ∅ and t = s (these loops ensure that the relation R′ is complete).

4. L′ : S′ → 2AP such that L′(s, x) = x, where AP = A.

The process described in Proposition 3.1 is best described graphically. Refer for this

purpose to Figure 3.1 [5]. Specifically, the function ξ converts the LTS given in Figure

3.1(a) into the equivalent Kripke structure shown in Figure 3.1(b). By combining each

state with its corresponding actions in the LTS, we produce new states in its equivalent

Kripke structure. Whenever an LTS state behaves differently by performing different ac-

tions, that state will split into multiple Kripke states (which implies between other things

that the resulting Kripke structure may have multiple initial states). This generation of

CHAPTER 3. PREVIOUS WORK 20

p

tq

sr u

c d

a b

e

p, {a}

q, {d}q, {c}

s, ∅r, ∅

p, {b}

t, {e}

u, ∅

(a) (b)

Every state of the Kripke structure (b) is formed with the LTS(a) states and their
corresponding outgoing action.

Figure 3.1: Illustration of the conversion from LTS (a) to its equivalent Kripke structure
(b).

multiple initial Kripke states out of a single LTS state requires the weaker satisfaction op-

erator defined in Definition 3.2. The reader is directed to the original proof [5] for further

details.

3.2 From CTL formulae to Failure Trace Tests

In what follow P is the set of all processes, T is the set of all failure trace tests, and F is

the set of all CTL formulae.

Proposition 3.2 [23] There exist a functionT : F → T such that ξ(p) |= f iff p mayT(f) for

any p ∈ P .

Brief outline of proof: The proof is done by structural induction over CTL formulae and

the function T is also defined inductively at the same time. The basis is as follows:

1. T(>) = pass

2. T(⊥) = stop

3. T(a) = a; pass

CHAPTER 3. PREVIOUS WORK 21

The induction for non-temporal operators goes as follows:

1. T(¬ f) = T(f), where T(f) is the complement of T(f)

2. T(f1 ∨ f2) = T(f1) ∨T(f2)

3. T(f1 ∧ f2) = T(f1) ∧T(f2)

The definition of complement, conjunction, and disjunction of tests is given elsewhere

[23].

The temporal operators are converted as follows:

1. T(EX f) = Σ{a;T(f) : a ∈ A}

2. T(EF f) = t′ such that t′ = T(f) � (Σ(a; t′ : a ∈ A)).

3. T(EG f) = T(f) ∧ (T(EX f ′) � θ; pass), with f ′ = f ∧ EX f ′.

4. T(E f1 U f2) = (T(f1) ∧ (T(EX f ′) � θ; pass)) � i; (T(f2) ∧ (T(EX f ′′) � θ; pass)),

with f ′ = f1 ∧ EX f ′ and f ′′ = f2 ∧ EX f ′′.

For the more detailed information and for the full proof of the conversion of CTL formulae

to failure trace tests, the reader is invited to follow the original proof [23]. �

Chapter 4

CTL Is Equivalent to Failure Trace
Testing

The original proof of equivalence between CTL and failure trace testing [5] also went the

other way around showing how failure trace tests can be converted into equivalent CTL

formulae. However, there are two problems with this result: First, one part of the proof

(together with the resulting conversion function) turns out to be incorrect. Secondly, the

conversion does not take advantage of all but one temporal operator and so the result-

ing formulae are infinite whenever the test being converted contains cycles. This section

corrects these two shortcomings and is thus the main contribution of our work.

First, we fix the original proof mentioned above [5] and so we effectively prove the

following result:

Theorem 4.1 For some t ∈ T and f ∈ F , whenever p may t if and only if ξ(p) |= f for

any p ∈ P we say that t and f are equivalent. Then, for every failure trace test there exists

an equivalent CTL formula and the other way around. Furthermore a failure trace test can be

algorithmically converted into its equivalent CTL formula and the other way around.

Proof. One direction is given by Proposition 3.2 (see Section 3.2). The other direction

is given by Lemma 4.2 (see Section 4.1 below), which was stated elsewhere [5] with an

22

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 23

incorrect proof (which we fix here). As before, the algorithmic nature of the conversion is

shown implicitly in the proof of these two results. �

Afterward we show how to produce a compact CTL formula equivalent to a given

failure trace test (see Section 4.2).

4.1 From Failure Trace Tests to CTL Formulae

Lemma 4.2 There exists a function F : T → F such that p may t if and only if ξ(p) |= F(t)

for any p ∈ P .

Proof. The proof is by structural induction over tests. In the process we construct the

function Fwhich is also defined inductively.

We establish the basis as follows: F(pass) = > and F(stop) = ⊥. Clearly any process

passes pass and any Kripke structure satisfies >, so it is immediate that p may pass iff

ξ(p) |= F(pass). Similarly, no kripke structure satisfies ⊥ and no process passes stop.

We put F(i; t) = F(t): by definition, an internal action is not seen by the external

environment of the system under test. Then F(a; t) = a∧ EX F(t). p may (a; t) iff p may a

(p performed a and became p′) and p′ may t for some p a−→ p′. Now, p may a iffξ(p) |= a.

p′ may t iff ξ(p′) |= F(t) according to the inductive hypothesis. By Proposition 3.1 in

Section 3.1, while converting any process p to an equivalent Kripke structure ξ(p), we

combine original states together with their corresponding outgoing actions to produce

new states. Thus once we are in a state that satisfies a, all the next states of that state

correspond to the states following p after executing a. Therefore, EX(F(t)) is satisfied in

those states where t must succeed. For example, as we have seen in Figure 3.1, when two

different LTS actions are performed by an initial state (p) then that initial state split into

two initial states in its equivalent ξ(p) which are (p, {a}), and (p, {b}). In the given ξ(p)

in Figure 3.1 (b) the state which satisfies the a and next state to that state of ξ(p) is only

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 24

q. So ξ(p′) |= t which is equivalent to p′ may t (here we write p′ in place of q). Therefore

ξ(p) |= a∧ EXF(t) that means p satisfies the property a and the next state to p which is p′

only, which satisfies the formula F(t). Thus p may (a; t) iff ξ(p) |= a ∧ EXF(t).

We note that � is just a syntactic sugar, for indeed t1 � t2 is completely equivalent

with Σ{t1, t2}. We put F(ΣT) =
∨
F(t) : t ∈ T. p may ΣT iff p may t for at least one t ∈ T

iff ξ(p) |= F(t) for at least one t ∈ T(by induction hypothesis) iff ξ(p) |= ∨
F(t) : t ∈ T.

We note in passing that so far the proof is the same as the previous one [5]. The θ case

has been however stated previously [5] in an incorrect manner as follows:

Note first that whenever θ does not participate in a choice it behaves exactly

like i, so we assume without loss of generality that θ appears only in choice

constructs. We also assume without loss of generality that every choice con-

tains at most one top-levelθ, for indeedθ; t1 �θ; t2 is equivalent withθ; (t1 � t2).

For convenience let T = {t1, t2, . . . , tn}. We put F(ΣT � θ; t) = (F(t1) ∨
F(t2) ∨ · · · ∨F(tn)) ∨ (¬(F(t1) ∧F(t2) ∧ · · · ∧F(tn)) ∧F(t)).

This construction does not capture the fact that θ only operates at the top level. Indeed,

F(ΣT �θ; t) considers theθ branch if and only if the tests t1, . . . , tn all fail. However, theθ

branch should only be considered based on the initial actions of t1, . . . , tn, regardless of the

outcomes of these tests. For example let t1 �θ; t be applied to a process p such that p a
=⇒,

a ∈ init(t1). Suppose further that t1 fails on p but t succeeds on p. Given that a ∈ init(t1)

is available the θ branch is forbidden and thus the test t1 � θ; t fails on p. The formula

F(t1 � θ; t) however is true! Indeed, under the assumption that F(t1) is false and F(t) is

true we have that ¬F(t1) ∧F(t) is true and so F(t1) ∨ (¬F(t1) ∧F(t)) = F(t1 � θ; t) is

true as well.

We now provide a correct proof for the θ case. It continue to be the case that when

θ does not participate in a choice then it exactly behaves like an internal action i, so we

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 25

can assume without loss of generality that θ appears only in choice construct. As in the

previous proof we consider that every choice contains at most one top-level θ, for indeed

θ; t1 � θ; t2 is equivalent with θ; (t1 � t2). We then have F(t1 � θ; t) = ((
∨

init(t1)) ∧
F(t1)) ∨ (¬(

∨
init(t1)) ∧F(t)).

According to TLOTOS definition of ‖θ if common action is available for both p and

t then the deadlock detection action θ will not play any role. In other words, whenever

p a
=⇒ such that a ∈ init(t1) we have p may t1 � θ; t iff p may t1. We further note that

p a
=⇒ is equivalent to ξ(p) |= a and so given the inductive hypothesis (that p′ may t1 iff

ξ(p′) |= F(t1) for any process p′) we concluded that:

(p may t1 � θ; t) ∧ (p a
=⇒ ∧a ∈ init(t1)) i f fξ(p) |= (

∨
init(t1)) ∧F(t1) (4.1)

whenever it is not the case that p a
=⇒ and a ∈ init(t1) (equivalent to ξ(p) 6|= ∨

init(t1)),

then the deadlock detection transition θ of t1 � θ; t will fire and then the test will succeed

iff t succeeds. Given once more the inductive hypothesis that p′ may t iff ξ(p′) |= F(t) for

any process p′ we have:

(p may t1 � θ; t) ∧ ¬(p a
=⇒ ∧a ∈ init(t1)) i f fξ(p) |= ¬(

∨
init(t1)) ∧F(t) (4.2)

Taking the disjunction of both sides of Relations 4.1 and 4.2 we obtain the desired prop-

erty:

(p may t1 � θ; t) i f fξ(p) |= (
∨

init(t1)) ∧F(t1) ∨ξ(p) |= ¬(
∨

init(t1)) ∧F(t)

the induction is thus complete now. �

4.2 Converting Failure Trace Tests into Compact CTL Formulae

Whenever all the runs of a test are finite then the conversion shown in Lemma 4.2 will

produce a reasonable CTL formula. That formula is however not in its simplest form. In

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 26

particular, the conversion algorithm follows the run of the test step by step, so whenever

the test has one or more cycles (and thus features potentially infinite runs) the resulting

formula has an infinite length. We now show that more compact formulae can be obtained

and in particular finite formulae can be derived out of tests with potentially infinite runs.

Theorem 4.3 There exists an algorithmic function, denoted by abuse of notation F : T → F
such that p may t if and only if ξ(p) |= F(t) for any p ∈ P and F(t) is finite for any test t

provided that no loop in t features duplicate actions; in other words, for any loop state t0 from t

such that t0
a1=⇒ t1

a2=⇒ t2
a3=⇒ · · · an=⇒ tn = t0 we have a1 6= a2 6= · · · 6= an.

Proof. It is enough to show how to produce a finite formula starting from a general

“loop” test. Such a conversion can be then applied to all the loops one by one, relying on

the original conversion function from Lemma 4.2 for the rest of the test. Given the reliance

on the mentioned lemma we obtain overall an inductive construction. Therefore nested

loops in particular will be converted inductively (that is, from the innermost loop to the

outermost loop).

Thus to complete the proof it is enough to show how to obtain an equivalent, finite

CTL formula for the following, general form of a loop test:

t = a0; (t0 � a1; (t1 � · · · an−1; (tn−1 � t) · · ·))

The loop itself consists of the actions a0, . . . , an−1. Each such an action ai has the “exit”

test ti as an alternative. There is no assumption about the particular form of ti.

Given the intended use of our function, this proof will be done within the inductive

assumptions of the proof of Lemma 4.2. We will therefore consider that the formulaeF(ai)

and F(ti) exist and are finite, 0 ≤ i < n.

We have:

F(t) = E

(
n−1∨
i=0

Ci

)
U

(
n−1∨
i=0

Ei

)

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 27

where Ci represents the cycle in its various stages such that

Ci = EG(F(ai) ∧ EX(F(a(i+1) mod n) ∧ EX · · · ∧ EX(F(a(i+n−1) mod n)) · · ·))

and each Ei represents one possible exit from the cycle and so

Ei = F(ai) ∧ EX F(ti)

Intuitively, each Ci corresponds to ai as being available in the test loop, followed by

all the rest of the loop in the correct order. It therefore models the decision of the test

to perform ai and remain in the loop. Whenever some ai is available (“true”) then the

corresponding Ci is true and so the disjunction of the formulae Ci will keep being true

as long as we stay in the loop. By contrast, each Ei corresponds to the action ai being

available in the test loop, followed by the exit from the loop using the test ti. The formula

Ei will become true whenever the test is in the right place (offering ai) and the test ti

succeeds after ai is performed. Such an event releases the loop formula from its obligations

(following the semantics of the U operator), so such a path can be taken by the test and

will be successful.

The formula above assumes that neither the actions in the cycle nor the top-level ac-

tions of the exit tests areθ. We introduce the deadlock detection action along the following

cases, with k an arbitrary value, 0 ≤ k < n: θ may appear in the loop as ak but not on top

level of the alternate exit test tk−1 mod n (Case 1), on the top level of the test tk−1 mod n but

not as alternate ak (Case 2), or both as ak and on the top level of the alternate tk−1 mod n

(Case 3). Given that θ only affects the top level of the choice in which it participates, these

cases are exhaustive.

Case 1: if any ak = θ and θ 6∈ init(tk−1 mod n) then we replace all occurrences of F(ak)

in F(t) with ¬(∨b∈init(tk−1 mod n)
F(b)) in conjunction with

∨
b∈init(tk)\{θ}F(b) for the “exit”

formulae and with F(ak+1 mod n) for the “cycle” formulae). Therefore Ci = EG(F(ai) ∧

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 28

EX(· · · ∧EX(¬(∨b∈init(tk−1 mod n)
F(b))∧F(ak+1 mod n)∧EX · · · ∧EX(F(a(i+n−1) mod n)) · · ·)))

and Ek = ¬(
∨

b∈init(tk−1 mod n)
F(b)) ∧∨b∈init(tk)\{θ}F(b) ∧ EX(F(tk)).

Case 2: Whenever θ ∈ init(tk−1 mod n) and ak 6= θ then we will change the exit formula

Ek−1 mod n which in this case will contain two components. If any action in init(tk−1 mod n)

is available then such an action can be taken, so a first component is F(ak−1 mod n) ∧
EX (

∨
b∈init(tk−1 mod n)\{θ}F(b))∧F(tk−1 mod n). Note that anyθ top-level branch in tk−1 mod n

is invalidated (since some action b ∈ init(tk−1 mod n) is available). The top-levelθ branch of

tk−1 mod n can be taken only if no action from init(tk−1 mod n)∪ {ak} is available, so the sec-

ond variant isF(ak−1 mod n)∧EX¬F(a(k))∧¬(
∨

b∈init(tk−1 mod n)\{θ}F(b))∧F(tk−1 mod n(θ)),

where tk−1 mod n = t′ � θ; tk−1 mod n(θ) for some test t′ (recall that we can assume without

loss of generality that there exists a single top-level θ branch in tk−1 mod n).

By taking the disjunction of both the above variants we have Ek−1 mod n = F(ak−1 mod n)

∧ EX(
∨

b∈init(tk−1 mod n)\{θ}F(b)) ∧ F(tk−1 mod n) ∨ ¬F(a(k)) ∧ ¬(
∨

b∈init(tk−1 mod n)\{θ}F(b)) ∧
F(tk−1 mod n(θ)).

Case 3: If ak = θ and θ ∈ init(tk−1 mod n), then we must modify the cycle as well as the

exit test. Let B = init(tk−1 mod n) \ {θ}.
Whenever an action from B is available the cycle cannot continue, so we replace in

C all occurrences of ak with ¬(∨b∈BF(b)) ∧
∨

b∈{ak+1 mod n}∪init(tk)∪\{θ}F(b) so that Ci =

EG(F(ai) ∧ EX(· · · ∧ EX(F(¬(∨b∈init(tk−1 mod n)\{θ}F(b))) ∧
∨

b∈{ak+1 mod n}∪init(tk)\{θ}F(b) ∧
EX · · · ∧ EX(F(a(i+n−1) mod n)) · · ·))).

Similarly, when actions from B are available the non-θ component of the exit test is

applicable, while the θ branch can only be taken when no action from B is offered. There-

fore we have Ek−1 mod n = F(ak−1 mod n) ∧ EX
∨

b∈init(tk−1 mod n)\{θ}F(b) ∧ F(tk−1 mod n) ∨
¬(∨b∈init(tk−1 mod n)\{θ}F(b)) ∧F(tk−1 mod n(θ)). As before, tk−1 mod n(θ) is the θ-branch of

tk−1 mod n that is, tk−1 mod n = t′ � θ; tk−1 mod n(θ) for some test t′).

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 29

Finally, recall that originally Ek = F(ak) ∧ EX F(tk). Now however ak = θ and so

we must apply to Ek the same process that we repeatedly performed earlier. That is, we

replaceF(ak) with ¬(∨b∈init(tk−1 mod n)\{θ}F(b)). In addition,θ does not consume any input

by definition, so the EX construction disappear. In all we have

Ek = ¬(
∨

b∈init(tk−1 mod n)\{θ}F(b)) ∧F(tk).

We now prove that the construction described above is correct. We focus first on the initial,

θ-less formula.

If the common actions are available for both p, and t then p
ai=⇒ p1 ∧ p1

ai+1
=⇒ ∧ · · · ∧

pn−1
ai+n−1
=⇒ p, which shows that process p performs some actions in the cycle. We further

notice that these are equivalent to ξ(p) |= ai and ξ(p1) |= ai+1 ∧ · · · ∧ξ(pn−1) |= ai+n−1,

respectively. Therefore p
ai=⇒ p1 ∧ p1

ai+1
=⇒ ∧ · · · ∧ pn−1

ai+n−1
=⇒ p iff ξ(p) |= EG(F(ai) ∧

EX(F(a(i+1) mod n) ∧ EX · · · ∧ EX(F(a(i+n−1) mod n)) · · ·)). That is,

p
ai=⇒ p1 ∧ p1

ai+1
=⇒ ∧ · · · ∧ pn−1

ai+n−1
=⇒ p iff ξ(p) |= Ci (4.3)

We exit from the cycle as follows: When p
ai=⇒ p′ 6 ai+1

=⇒ then the process p must take the

test ti after performing ai and pass it. If however the action ai+1 is available in the cycle

as well as in the test ti, then it depends on the process p whether it will continue in the

cycle or will take the test ti. That means p may take ti and pass the test or it may decide

to continue in the cycle. Eventually however the process must take one of the exit tests.

Given the nature of may-testing one successful path is enough for p to pass t.

Formally, we note that p
ai=⇒ p′ ∧ p′may ti is equivalent to ξ(p) |= F(ai) ∧ EX(F(ti))

and so given the inductive hypothesis (that p′ may ti iff ξ(p′) |= F(ti) for any process p′)

we concluded that:

(p
ai=⇒ p′ ∧ p′ may ti) iff ξ(p) |= (F(ai) ∧ EX(F(ti))) = Ei (4.4)

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 30

Taking the disjunction of Relations (4.4) over all 0 ≤ i < n we have

(p
ai=⇒ p′ ∧ p′ may Σn−1

i=0 ti) iff ξ(p) |=
n−1∨
i=0

Ei (4.5)

The correctness of F(t) is then the direct consequences of Relations (4.3) and (4.5): We can

stay in the cycle as long as one Ci remains true (Relation (4.3)), and we can exit at any time

using the appropriate exit test (Relation (4.5)).

Now, we consider the possible deadlock detection action as introduced in the three

cases above. We have:

Case 1: Let ak = θ, θ 6∈ init(tk−1 mod n) and suppose that p‖θt runs along such that they

reach the point p′‖θt′
ak−1 mod n−→ p′′‖θt′′. Let b ∈ init(tk−1 mod n). If p′′‖θt′′ b−→ then the run

must exit the cycle according to the definition of ‖θ. At the same time Ck is false because

the disjunction
∨

binit(tk−1 mod n)
F(b) is true and no other Ci is true, so C is false and therefore

the only way for F(t) to be true is for Ek to be true. The two, testing and logic scenarios

are clearly equivalent. On the other hand, if p′′‖θt′′ 6 b−→ for any b ∈ init(tk−1 mod n), then

the test must take the θ branch. At the same time Ck is true and so is C, whereas Ek is false

(so the formula must “stay in the cycle”), again equivalent to the test scenario.

Case 2: Now θ ∈ init(tk−1 mod n) and ak 6= θ. The way the process and the test perform

ak and remain in the cycle is handled by the general case so we are only considering the

exit test tk−1 mod n. The only supplementary consequence of ak being available is that any

θ branch in tk−1 mod n is disallowed, which is still about the exit test rather than the cycle.

There are two possible successful runs that involve the exit test tk−1 mod n: Either

p
ak−1 mod n
=⇒ p′ ∧ ∃b ∈ init(tk−1 mod n) \ {θ} : p′ b

=⇒ ∧p′ may tk−1 mod n, or p
ak−1 mod n
=⇒

p′ ∧ ¬(∃b ∈ init(tk−1 mod n) \ {θ} : p′ b
=⇒) ∧ p′ 6 ak=⇒ ∧p′ may tk−1 mod n(θ). The first case

corresponds to a common action b being available to both the process and the test (case in

which the θ branch of tk−1 mod n is forbidden by the semantics of p′ may tk−1 mod n), while

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 31

the second case requires that the θ branch of the test is taken whenever no other action is

available.

Given the inductive hypothesis (that p′ may ti iff ξ(p′) |= F(ti) for any process p′) we

have

p
ak−1 mod n
=⇒ p′ ∧ ∃b ∈ init(tk−1 mod n) \ {θ} : p′ b

=⇒ ∧p′ may tk−1 mod n iff

ξ(p) |= F(ak−1 mod n) ∧ EX
∨

b∈init(tk−1 mod n)\{θ}F(b) ∧F(tk−1 mod n)
(4.6)

p
ak−1 mod n
=⇒ p′ ∧ ¬(∃b ∈ init(tk−1 mod n) \ {θ} : p′ b

=⇒) ∧ p′ 6 ak=⇒ ∧p′ may tk−1 mod n(θ) iff

ξ(p) |= F(ak−1 mod n) ∧ EX ¬F(a(k)) ∧ ¬(
∨

b∈init(tk−1 mod n)\{θ}F(b)) ∧F(tk−1 mod n(θ))
(4.7)

The conjunction of Relations (4.6) and (4.7) establish this case. Indeed, the left hand sides

of the two relations are the only two ways to have a successful run involving tk−1 mod n (as

argued above), and
(
F(ak−1 mod n) ∧ EX

∨
b∈init(tk−1 mod n)\{θ}F(b) ∧F(tk−1 mod n)

)
∨(

F(ak−1 mod n) ∧ EX ¬F(a(k))∧ ¬(
∨

b∈init(tk−1 mod n)\{θ}F(b)) ∧F(tk−1 mod n(θ))
)
=

Ek−1 mod n.

Case 3: Let now ak = θ and θ ∈ init(tk−1 mod n). Suppose that the process under test is

inside the cycle and has reached a state p such that p
ak−1 mod n
=⇒ p′, meaning that p′ is ready

to either continue within the cycle or pass tk−1 mod n.

Suppose first that p′ b
=⇒ for some b ∈ init(tk−1 mod n) \ {θ}. Then (a) p′ cannot con-

tinue in the cycle, which is equivalent to Ck being false (since no Ci, i 6= k can be true), and

so (b) p′ must pass tk−1 mod n, which is equivalent to ξ(p′) |= ∨
b∈init(tk−1 mod n)\{θ}F(b) ∧

F(tk−1 mod n). That Ck is false happens because ¬(∨b∈init(tk−1 mod n)\{θ}F(b)) is false. Note

incidentally that the θ branch of tk−1 mod n is forbidden, but this is guaranteed by the se-

mantics of p′ passing tk−1 mod n (and therefore by the semantics of ξ(p′) |= F(tk−1 mod n)

by inductive hypothesis).

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 32

Suppose now that p′ 6 b
=⇒ for any b ∈ init(tk−1 mod n) \ {θ}. Then the only pos-

sible continuations are (a) p′ remaining in the cycle which is equivalent to Ck being

true (ensured by
∨

b∈init(tk−1 mod n)\{θ}F(b)) being false), or (b) p′ taking the θ branch of

tk−1 mod n, which is equivalent to ¬(∨b∈init(tk−1 mod n)\{θ}F(b)) ∧ F(tk(θ)) by the fact that∨
b∈init(tk−1 mod n)\{θ}F(b) is false and the inductive hypothesis, , or (c) p′ taking the test tk

(which falls just after ak = θ and so it is an alternative in the deadlock detection branch),

which is equivalent to Ek being true, ensured by
∨

b∈init(tk−1 mod n)\{θ}F(b) being false and

F(tk) being true iff p′ passes tk by inductive hypothesis.

Once more, taking the disjunction of the two alternatives above establishes this case.

�

4.2.1 Example Generation of Compact CTL Formulae

In this section we will illustrate the conversion of failure trace test into CTL formulae. For

this purpose consider the following simple vending machines, also shown graphically in

Figure 4.1(a, b):

P1 = coin; ((coffee �water) � bang; (tea � P1))

P2 = coin; ((coffee �water) � bang; (coffee � P2))

First machine dispenses either coffee or water after accepting a coin. It can also dispense

tea, but only after the customer hits it. The second machine still dispenses coffee or water,

and it does not change its selection much upon hitting; in such a case coffee is dispensed.

The Kripke structures equivalent to the two machines and constructed according to

Proposition 3.1 are shown in Figure 4.1(c, d), respectively.

Consider now the following test:

t1 = coin; (coffee; pass � θ; water; pass � bang; (tea; pass � t1))

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 33

P1 =
tea

coinbang

coffee water

P2 =
coffee

coinbang

coffee water

(a) (b)

p1, {coin}

q1, {water}

q1, {coffee}

q1, {bang}

s1, ∅r1, ∅

p1, {tea}

t1, ∅

p2, {coin}

q2, {water}

q2, {coffee}

q2, {bang}

s2, ∅r2, ∅

p2, {coffee}

t2, ∅

(c) (d)

Figure 4.1: Two vending machines P1 and P2 (a, b) and their equivalent Kripke structures
ξ(P1) and ξ(P2) (c, d).

Using Theorem 4.3 (and thus implicitly Lemma 4.2) we can convert this test into the

following CTL formula F(t1) = E(EG(coin ∧ EX(bang)) ∨ (bang ∧ EX(coin)))U(coin ∧
EX(>)∧ coffee∧EX(>)∨¬bang∧¬coffee∧ (water∧EX(>)))∨ (bang∧EX(tea∧EX(>))).
By eliminating the true sub-formulae, we obtain the desired logically equivalent formula:

F(t1) = E(EG (coin∧ EX bang∨ bang∧ EX coin))
U (coin∧ EX (coffee∨ ¬bang∧ ¬coffee∧water) ∨ bang∧ EX tea)

It is not difficult to see that the meaning of this formula is equivalent to the meaning

of t1. Indeed, the following is true for both the test t1 as well as the formula F(t1): After

a coin coffee is offered, or if coffee is not available and also there is no bang after the coin

then the deadlock detection will be triggered and water will be offered; on the other hand,

after a coin, a bang, and if no coin is available next, then tea will be offered; or after a coin

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 34

and a bang if both coin as well as the tea are available, then two options arise: we can

either continue in the cycle, or tea is offered. In all the process can remain indefinitely in

the cycle, or can exit from the cycle and pass the test. One can get tea, coffee, or water at

the very beginning or after a few repetitions of the cycle.

The formula F(t1) holds for all the states of ξ(p1) (where either coffee or water is

offered or coin follows a bang then tea is offered), but it does not hold for the states of

ξ(p2) (where machine dispenses coffee after bang).

Here is another failure trace test, that would allow us to illustrate the behaviour of θ

inside the cycle:

t2 = coin; (coffee; pass � θ; water; pass � θ; (tea; pass � t2))

Once again if we apply Theorem 4.3 we can convert this test into the following CTL for-

mula F(t2) = E(EG(coin ∧ EX(¬coffee ∧ (water ∨ coin))) ∨ (¬coffee ∧ (water ∨ coin)) ∧
EX(coin)))U(coin∧ EX(>)∧ coffee∧ EX(>))∨ (¬coffee∧ (water∧ EX(>)))∨ (¬coffee∧
(tea ∧ EX(>))). We then eliminate the true sub-formulae as before (to enhance readabil-

ity) and so we obtain the desired logically equivalent formula:

F(t2) = E(EG (coin∧ EX ¬coffee∧ (water∨ coin)∨
¬coffee∧ (water∨ coin) ∧ EX coin))

U (coin∧ EX coffee∨ (¬coffee∧ (water∨ tea)))

As before it is easy to see that this formula is equivalent to the meaning of t2, for the

following applies to both the test t2 and the formulaF(t2): After a coin one can get coffee,

or if coffee is not available then two options arise. The first option remains in the cycle

whenever a coin is available next, or otherwise exit the cycle provided that tea is available.

In the second option water is offered. Onece again we can have an arbitrary number of

repetitions of coins and hits before the desired beverage is offered.

The formula F(t2) does not hold for any of the states of ξ(p1) and ξ(p2), since after

a coin nothing is dispensed by either machine running in parallel with the test, with the

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 35

continuation of the cycle also being unavailable. Thus both machines actually fail the test

t2.

Note in passing that if we apply Lemma 4.2 directly on t1 and t2 then we will in both

cases obtain infinite CTL formulae.

Chapter 5

Conclusions

Our work described in this paper is based on the definition of equivalence between LTS

and Kripke structures (Definition 3.3), the construction of an algorithmic function ξ that

converts an LTS into its equivalent Kripke structure (Proposition 3.1), and then the con-

struction of a functionTwhich converts the CTL formula into its equivalent tests (Propo-

sition 3.2). The existence of an algorithmic function F that converts failure trace tests into

equivalent CTL formulae was not proven correctly earlier [5], so we provided here a cor-

rect and complete proof (Lemma 4.2). Together with the previous work on that matter, we

have shown that CTL and failure trace tests are equivalent (Theorem 4.1).

We also noted that the function F produces infinite formulae whenever the test being

converted features potentially infinite runs (or loops). The reason for this is that the con-

version function does not take advantage of any temporal operator other than X. By using

the available temporal operators to their full extent we have succeeded in converting fail-

ure trace tests with loops into compact (and most importantly, finite) CTL formulae under

the assumption that the loop actions are all different from each other (Theorem 4.3). Ex-

tending this result to possibly identical loop actions is one of the arguably two remaining

open problems in this area.

The other remaining open problem has already been mentioned earlier [5]. The result

36

CHAPTER 5. CONCLUSIONS 37

of ξ(p) is a Kripke structure that may have multiple initial states, which in turn requires

the use of a weaker satisfaction operator. Whether this issue applies only to LTS that can

perform more than a single initial action and so whether this issue can be fixed by just

providing a dummy “start” action for all LTS (as claimed earlier [5]) needs to be verified.

In addition to the above the original conclusions [5] continue to apply. More signif-

icantly, we have provided a combined, algebraic and logic framework for formal verifi-

cation. The use of our conversion algorithms allows the mixed specification of a system,

where some parts are specified logically and some others algebraically. Which part is

specified in which way becomes now a matter of convenience or even taste; no matter

how mixed the specification is, we can always obtain a unified specification by applying

one of our conversion functions (which one being again a matter of convenience or even

taste).

Taste notwithstanding, the convenience of mixed specifications is nicely illustrated by

the task of specifying a communication protocol, where the two end points are algorith-

mic and so it is likely that they are more conveniently specified algebraically, while the

communication medium is unknown except for some common properties and so a logical

specification is probably more appropriate. Another, more general example is a system

with different components at different levels of maturity: the mature parts can be spec-

ified algebraically, while the more “loose” logical specification can be used for the less

mature ones.

In addition to all of the above, it is also worth noting that once we have a (any!) spec-

ification, we can effectively use it to verify a system using either model checking or a

model-based testing tool (or both!).

In all, we believe that we have provided a very useful tool for formal verification.

Bibliography

[1] C. BAIER AND J.-P. KATOEN, Principles of Model Checking, MIT Press, 2008.

[2] E. BRINKSMA, G. SCOLLO, AND C. STEENBERGEN, LOTOS specifications, their imple-

mentations and their tests, in IFIP 6.1 Proceedings, 1987, pp. 349–360.

[3] M. BROY, B. JONSSON, J.-P. KATOEN, M. LEUCKER, AND A. PRETSCHNER, eds.,

Model-Based Testing of Reactive Systems: Advanced Lectures, vol. 3472 of Lecture Notes

in Computer Science, Springer, 2005.

[4] S. D. BRUDA, Preorder relations, in Broy et al. [3], pp. 117–149.

[5] S. D. BRUDA AND Z. ZHANG, Model checking is refinement: Computation tree logic is

equivalent to failure trace testing, Tech. Rep. 2009-002, Bishop’s University, Department

of Computer Science, aug 2009.

[6] E. M. CLARKE AND E. A. EMERSON, Design and synthesis of synchronization skeletons

using branching-time temporal logic, in Works in Logic of Programs, 1982, pp. 52–71.

[7] E. M. CLARKE, E. A. EMERSON, AND A. P. SISTLA, Automatic verification of finite

state concurrent systems using temporal logic specification, ACM Transactions on Pro-

gramming Languages and Systems, 8 (1986), pp. 244–263.

[8] E. M. CLARKE, O. GRUMBERG, AND D. A. PELED, Model Checking, MIT Press, 1999.

38

BIBLIOGRAPHY 39

[9] R. CLEAVELAND AND G. LÜTTGEN, Model checking is refinement—Relating Büchi test-

ing and linear-time temporal logic, Tech. Rep. 2000-14, ICASE, Langley Research Center,

Hampton, VA, Mar. 2000.

[10] R. DE NICOLA AND M. C. B. HENNESSY, Testing equivalences for processes, Theoretical

Computer Science, 34 (1984), pp. 83–133.

[11] R. DE NICOLA AND F. VAANDRAGER, Three logics for branching bisimulation, Journal

of the ACM, 42 (1995), pp. 438–487.

[12] C. A. R. HOARE, An axiomatic basis for computer programming, Communications of the

ACM, 12 (1969), pp. 576–580 and 583.

[13] J.-P. KATOEN, Labelled transition systems, in Broy et al. [3], pp. 615–616.

[14] R. LANGERAK, A testing theory for LOTOS using deadlock detection, in Proceedings of

the IFIP WG6.1 Ninth International Symposium on Protocol Specification, Testing

and Verification IX, 1989, pp. 87–98.

[15] K. PAWLIKOWSKI, Steady-state simulation of queueing processes: survey of problems and

solutions, ACM Computing Surveys, 22 (1990), pp. 123–170.

[16] A. PNUELI, A temporal logic of concurrent programs, Theoretical Computer Science, 13

(1981), pp. 45–60.

[17] J. P. QUEILLE AND J. SIFAKIS, Fairness and related properties in transition systems — a

temporal logic to deal with fairness, Acta Informatica, 19 (1983), pp. 195–220.

[18] H. SAÏDI, The invariant checker: Automated deductive verification of reactive systems, in

Proceedings of Computer Aided Verification (CAV 97), vol. 1254 of Lecture Notes In

Computer Science, Springer, 1997, pp. 436–439.

BIBLIOGRAPHY 40

[19] S. SCHNEIDER, Concurrent and Real-time Systems: The CSP Approach, John Wiley &

Sons, 2000.

[20] T. J. SCHRIBER, J. BANKS, A. F. SEILA, I. STÅHL, A. M. LAW, AND R. G. BORN, Sim-

ulation textbooks - old and new, panel, in Winter Simulation Conference, 2003, pp. 1952–

1963.

[21] W. THOMAS, Automata on infinite objects, in Handbook of Theoretical Computer Sci-

ence, J. van Leeuwen, ed., vol. B, North Holland, 1990, pp. 133–191.

[22] J. TRETMANS, Conformance testing with labelled transition systems: Implementation rela-

tions and test generation, Computer Networks and ISDN Systems, 29 (1996), pp. 49–79.

[23] A. F. M. N. UDDIN, Computation tree logic is equivalent to failure trace testing, Master’s

thesis, Bishop’s University, July 2015.

	Introduction
	Preliminaries
	Temporal Logic and Model Checking
	Labeled Transition Systems and Stable Failures
	Failure Trace Testing

	Previous Work
	A constructive Equivalence between LTS and Kripke Structures
	From CTL formulae to Failure Trace Tests

	CTL Is Equivalent to Failure Trace Testing
	From Failure Trace Tests to CTL Formulae
	Converting Failure Trace Tests into Compact CTL Formulae
	Example Generation of Compact CTL Formulae

	Conclusions
	Bibliography

