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Abstract

The computer security became recently a subject of general concern for the main public, for 

governments, and for private companies alike.  Indeed, the latest news involving stuxnet, 

flame, and so many other viruses made clear to everybody that privilege escalation and 

security threats in general deserve a greater attention. The range of buffer overflow 

exploitations in particular is large, ranging from data leaks to taking over a complete 

computing system. These are all dangerous, and most of the time the possibilities of 

exploitation are only limited by the skills of the attacking hacker.

Our work contributes to this investigation by analyzing the hacking techniques for 

exploiting buffer overflows in order to understand the existing counter measures, and 

eventually find a more accurate way to prevent the exploitation of buffer overflows.  Our 

working platform is the GNU/Linux family of operating systems.  Our work is at the highest 

privilege levels and in the safest part of a GNU/Linux system, namely the kernel. We provide 

a system that allows the kernel to detect overflows and prevent their exploitation.  Our system

allows the kernel to inject at launch time some (minimal) code into the binary being run, and 

subsequently use this code to monitor the execution of that program with respect to its stack 

use, thus detecting stack overflows.  The system stands alone in the sense that it does not 

need any hardware support; it also works on any program, no matter how that program was 

conceived or compiled. Beside the theoretical concepts we also present a proof-of-concept 

patch to the kernel supporting our idea. Overall we effectively show that guarding against 

buffer overflows at run time is not only possible but also feasible, and we also take the first 

steps toward implementing such a defense.
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1. Introduction

IT security is a complex and important field, having a long history. One of the oldest issues 

in this field is buffer overflow. This problem appeared early in the history of computers. 

Indeed, buffer overflow is first mentioned as early as 1972 [1], and the first documentation 

of a hostile exploitation was written in 1988 [2]. However, as can be seen during events 

such as the NDH 2k11 “old hacking” conference [3], the exploitation of buffer overflows 

were present earlier, but some times documented privately and often not documented at 

all. A few worms are known to use buffer overflows for exploitation, such that “SQL 

Slammer” [4] or “Code Red” [5]. They infected a substantial number of computers and 

servers, compromising data, calculation time and the security of the entire system.

In its early history the exploitation of buffer overflows was reserved for the elite of 

hackers. It was often learned within hacker communities, and further developed and 

refined in the 80's within the most popular such communities including the German Chaos 

Computer Club (since1980) and the Cult of the Dead Cow (since 1983), but also within 

convention like the DEF CON (since 1993), the Chaos Communication Congress (since 

1984), the Chaos Communication Camp (since 2003), the Nuit Du Hack (since 2003), etc.

However, the problem got out of communities and conventions and became 

available for the non-elite people with the famous paper “Smashing the stack for fun and 

profit” [6], written by Elias Levy (alias Aleph One) and published in the Phrack webzine in 

1996. With this paper, the buffer overflow was popularized; additionally, a good and 

complete “how to” was made available to everyone.  All of a sudden buffer overflow 

exploitation was made available to everybody, even to people without strong knowledge.

Buffer overflow is an old issue but at the same time it is a current and acute 

problem. We can see this by looking at the exploit-db.com Web site, a giant archive of 
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exploits and vulnerable software: more than 100 pages (with some 20 articles per page) 

are dedicated to buffer overflows.

This family of bugs is manifest in programming languages that give liberty to the 

programmer, particularly the C and the C++ languages. This does not however limit the 

extent of the problem, as C has been one of the most popular language since 1970 [7] and

C++ is not this far behind. Such languages leave the task of managing memory (and thus 

securing it) at the latitude of the developer.

2. Preliminaries

In this section we summarize the concepts necessary for our work and then we describe 

the problem we will be considering.  We address the buffer overflow in general and then 

we particularize the discussion to stack overflow.

Abstraction layer

The abstraction layer is the trick that allows mutual comprehension between the human 

and the machine. The abstraction layer is composed of several programing languages that

form a bridge between the human and the machine. The developer can program in the 

language D, the program will be compiled in C and then compiled to assembly. Developers

can thus easily work on a higher level while the machine will still understand them. Ease of

use comes with problems, the biggest being the insertion of bugs and security 

vulnerabilities.  Indeed, whenever one link is compromised, the whole chain (and thus the 

machine) is compromised.

Binary language

Binary numbers are the core of processing on a computer.  A computer works with 
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sequences of zeroes and ones simply because logical circuits work just with 2 states: the 

electrical voltage is on on or on off or “0 or 1.” Furthermore, many algorithmic processes 

are based on the same notion of “yes or no,” “it works or it does not work.”

The machine language is however difficult to understand for humans, who can only 

understand small pieces, and even then they need lots of knowledge and practice. It is 

thus not possible to develop substantial software in binary, while the machine can not 

understand the human language. That is why many programing languages have been 

developed, creating the concept of abstraction layer.  The simplest of such a programming 

language is the assembler.

Assembly language

The assembly language or assembler is a bijection between the machine (binary) 

language and mnemonics. In machine language an instruction is an exact number of clock

cycles. The assembly maintains this idea: An instruction in assembly takes exactly the 

same amount of clock cycles than the equivalent machine instruction, as an assembly 

instruction corresponds to a binary instruction and vice versa. This supports the concept 

that we can reverse-engineer software and then debug and then patch it at execution time,

long after the compilation stage.

The assembly language work just as the binary language, so an assembly 

instruction contains in this order the opcode (that is, the operation to be performed), 

followed by the arguments (registers and/or literal integers and/or addresses). The 

following is an example of assembly program:

Hello world in assembly:

str:
.ascii "Hello World !"
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.globl _start

_start:
movl $4, %eax
movl $1, %ebx
movl $str, %ecx
movl $13, %edx
int $0x80
movl $1, %eax
movl $0, %ebx
int $0x80

Clock cycle

A clock is a boolean oscillating electrical signal, used for timing the work of the logical 

circuits of a computer. The unit of a clock cycle is the hertz. A processor of 1 hertz does 

one elementary operation per second. One elementary operation is defined at the design 

of the processor, and is often a simple and common operation. Not all operations take the 

same time. Operations can be spread over a few clock cycles, or can take less than one 

clock cycle (the rest of the cycle being unused).

The clock frequency is not a useful measure of performance in itself. Indeed, the 

actual speed of the processor also depends on the size of the elementary operation and of

course, the optimality of the set of binary operation. Additionally, all things being equal, a 

processor that takes 5 elementary operations to perform, say a modulo computation is 

obviously slower than a processor that only requires 4 elementary operations for the same 

thing.

Register

A register is a memory location internal of the processor. Registers have the smallest 

access time in a computer, but they form the most expensive storage since there are so 

few of them. A register is used to store data or executable directives, depending of the 

register.
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Stack

A stack is a data structure implementing Last-In-First-Out (or LIFO) access protocol.  A 

stack is used in a computer to keep track of function calls and returns.

Buffer overflow

The buffer overflow is a bug originating from a failure of the developer. It consists in a 

program wanting to write into a variable (e.g., array) but ending up writing outside the 

respective variable. Very often, a buffer overflow causes an overwrite on another part of 

the program's memory. This results in an unpredictable behavior of the system, ranging 

from erroneous results of the program with the bug to a system crash.

Often buffer overflows can be exploited by malicious entities.  Here is an example of

a simple buffer overflow and its exploitation.  First, we disable ASLR1:

root@bt:~# sysctl -w kernel.randomize_va_space=0

kernel.randomize_va_space = 0

We then create the following, faulty piece of C code. The failure is caused by the strcpy 

function. The function copies a string source into a buffer, but if the string is larger than the 

buffer then the function will also overwrite a part of memory outside of the destination. The 

effect is unpredictable.

root@bt:~# cat vuln.c

#include <stdio.h>

#include <stdlib.h>

 

void mainfunc(const char *s) {

   int i = 1;

   char buffer[12];

1 ASLR stands for Address Space Layout Randomization and is a technique that randomizes the memory 
space in order to reduce the likelihood of buffer overflow exploitation.  It will be described later.
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   strcpy(buffer,s);

   printf("i = %u\n",i);

}

 

int main(int argc, char **argv) {

   if(argc != 2) {

      exit(EXIT_FAILURE);

   }

   mainfunc(argv[1]);

   return EXIT_SUCCESS;

}

We compile this program:

root@bt:~# gcc vuln.c -w -O0 -ggdb -std=c99 -static 
-D_FORTIFY_SOURCE=0 -fno-pie -Wno-format -Wno-format-security
-fno-stack-protector -z norelro -z execstack -o vuln 

We test it and look for problems using an increasingly long argument:

root@bt:~# ./vuln abc

i = 1

root@bt:~# ./vuln AAAAAAAAAAA

i = 1

root@bt:~# ./vuln AAAAAAAAAAAAAAAAAAAAAAA

i = 1094795585

root@bt:~# ./vuln AAAAAAAAAAAAAAAAAAAAAAAAAA

i = 1094795585

Segmentation fault

We also create a script called SC and put it in an environment variable. We add 10 “\x90” 

(NOP) instructions, as it is easier to focus on a larger memory area than on a unique 

address. The following script is a shell code (meaning that it will launch a shell) written 

directly in machine language:

root@bt:~# export SC=$(python -c 'print "\x90" * 10 + 
"\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3
\x50\x89\xe2\x53\x89\xe1\xb0\x0b\xcd\x80"')
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With a simple program called getvarenv we find the address of SC into the memory:

root@bt:~# ./getvarenv SC

SC is located at 0xbffffe32

Then we can smash the stack putting in it the address of our shell code:

root@bt:~# ./vuln $(python -c 'print "\x32\xfe\xff\xbf"*8')

i = 3221225010

sh-4.1#

The reason for our success is that the shell code is first placed on the stack. The overflow 

produced by strcpy will overwrite the EIP value pushed on the stack and so change the 

program flow, so that the current function will jump to our shell code rather than returning. 

The program opens a shell prompt as directed by our shell code. We just took over the 

program and we thus have a full-blown shell running with the user id of the initial program:

sh-4.1# pwd

/root

If the program had root permissions to begin with, then we can do anything we want with 

the machine:

sh-4.1# cat /etc/shadow 

root:
$6$Dg25CX48$zY81UdcEsC9/quKJHRZrGZX8p1BlpMfwuAmP91zJppdtJUx7b
ZDPlTRAD3Apr859gr/fpdY.Goeu/pATDAr811:15521:0:99999:7:::

daemon:x:15521:0:99999:7:::

[...]

postgres:!:15521:0:99999:7:::

user:
$6$Az6ljxur$m34NsDLgMcC7bYSHC1I98d0Xuqc5rdwHUD0sTkuqfKJuXzAwO
r86kMMMS4li0gCmxZGK//Zl5vbZBA4tLgtoN0:15614:0:99999:7:::

sh-4.1# passwd user

Enter new UNIX password: 

Retype new UNIX password: 
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passwd: password updated successfully

Stack overflow

A stack overflow is a buffer overflow happening on the stack. The attack vector is a fixed 

size array. Often caused by the use by the strcpy() (which does not account for array size),

the stack overflow is the most popular and the easiest buffer overflow to detect, patch, and

then exploit. The attack targets the EIP register and takes over the program. Indeed, the 

register EIP is the instruction pointer register, which stores the next instruction to be 

executed. When the program calls a function, it will store the actual value of EIP on the 

stack to restore it at the end of the function. In the example above the EIP value stored on 

the stack is overwritten and replaced by the address of the shell code, which causes its 

execution.

Other overflows

Other overflows include integer overflow and the heap overflow. This first attacks integer 

variables and attempts to increase their values beyond their capacity (so that they roll 

over), while the second target the dynamic arrays created using the malloc() family of 

functions (malloc(), calloc(), realloc()).

3. Definition of the Problem

The problem I am trying to address is security.  Computer security is a huge issue in our 

ultra-connected society. People do everything with a computer, from buying stuff on-line to 

making and watching personal movies, so any failure is a notable event.
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Security failure in a critical environment

The security issue is even more of a problem for banks, governments, nuclear power 

stations, energy management companies, and armed forces.  They all operate in a “critical

environment” that is, an environment with some strict constraints on time and/or space, 

whose failure has wide and unacceptable implications, ranging from financial loss to even 

loss of life.

Security failure in legacy software

Old program running on on old computers often cannot ever be patched for bugs.  The 

reasons range from lack of expertise to inaccessibility of the course code. Our goal is 

therefore to find something to stop the exploitation of stack overflow for all the programs 

instead of cleaning all the pieces of code of stack overflows one by one.

4. Thesis

Our thesis is that a solution for stack overflow implemented at the level of the kernel of an 

operating system and not involving recompilation or supplementary components is 

possible.

The purpose of our work is thus to find a solution for the stack overflow problem. 

Our solution will be at the level of the kernel of the operating system, thus addressing the 

problem automatically for all the programs running on a machine.  We work on the Linux 

kernel, since this kernel is open source and thus we have access to its source code.  

Moreover, this kernel is modifiable by the computing community and it will be possible to 

have our patch accepted in the official kernel source (which is impossible for close-source 

kernels). 
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Overall we propose a patch to the Linux kernel that will mitigate the stack overflow 

issue.

4.1. Linux Kernel Issues

The Linux kernel is maintained by a core team of developers, but modifications (“patches”)

have been accepted from many people. Indeed, the Linux kernel is an open source project

so that everybody can modify it “unofficially” and thus fork the project. If modifications are 

interesting however, they can be adopted by some Linux distributions causing “popular 

acceptance.” Useful patches will eventually find their way back into the official kernel 

source tree. Working on the Linux kernel implies a consistent methodology and 

programming style. Patches lacking any of these will almost always be rejected 

immediately by the kernel developers, without even an evaluation of their merit. Beside a 

good programming style I therefore impose on myself the following constraints: 

performance, security, and portability. These constraints are essential qualities of the Linux

kernel.

Performance

The Linux kernel sits between the hardware and the rest of software, and also needs to be

reactive. A part of the Linux kernel which deals with memory management will be involved 

in every memory access, so it cannot afford to be slow for otherwise all programs will be 

slow.

Security

A part of the Linux kernel created for a fix of stack overflow exploitation can not be 

insecure. It would be a nonsense and at the very opposite side of what I want for my 
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project, namely better security in the Linux world. Moreover, the Linux kernel has root 

permissions so a failure in a module will open an exploitation in the kernel land and would 

be a disaster.

Portability

The Linux kernel can modify its behavior without changes to its code by using a module 

system. Indeed, the Linux kernel is a modular monolithic kernel which can load 

modifications (“modules”) without a rebuild. This is a good way to implement new 

functionality without modifying the code base.  However, the possibility of modifying the 

behavior of memory management using a module remains to be confirmed.

Following the philosophy of the Linux kernel, my work should be available for a 

huge kind of different processor architectures.  Unfortunately, I will only be able to focus on

the x86 architecture for time reasons (the length of my program) but also for logistic 

reasons (I only have access to x86 machines).

5. Previous Work

Nx-bit

The Nx-bit stands for “Never execute” and is a technique that identifies two different parts 

of the memory [8]. One part contains data, and this segment can be overwritten. The other

part contains instructions and also can not be overwritten. The Nx-bit creates a distinction 

in the writing permissions between the memory initialized at the start of the program 

(instructions, locked in writing), and the memory initialized and modified on the fly (data, 

unlocked in writing).
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The Nx-bit counters shell code injected in the memory. Indeed, the shell code can 

still be loaded in the memory of the program, the EIP register can still be overwritten to 

point to the beginning of the shell code, but because of the Nx-bit the shell code will still 

not be executed. Indeed, the stack is protected for execution, so the program will crash 

instead of executing malicious code.

This protection can however be bypassed simply with a return-to-libc attack [9].

ASLR

The ASLR stands for Address Space Layout Randomization and is a technique that 

randomizes the memory space of a program [10]. Generally the position of the stack, the 

heap and third-party libraries are all randomized. This randomization introduces a 

component of chance: The virtual addresses within the randomized space will change at 

each start of the program, which counters attacks based on fixed structures.

This security measure is pretty effective, but the automatization of the brute force or

the insertion of Nop instructions reduce the effectiveness of randomization. Indeed, the 

brute force will test quickly the program, and if the program crashes or cannot be exploited

because EIP points to a bad address or an illegal instruction (data for example), the script 

will reload immediately the program and test again and again [11]. The Nop instruction will 

allow a large landing place for EIP, thus simplifying the process.

Stack Canaries

A stack canary is a defined value that is put just after pushing the EIP value on the stack.  

It can be checked before popping the EIP at the end of the function [12].

This method prevents the modification of EIP and also the take-over of the program 
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by a third party. Stack canaries do not add code and are pretty good, but they can 

nonetheless be bypassed [13], [14]. The bypass of stack canaries will be studied in my 

project.

64-bit architecture

The 64-bit architecture changes some interesting details.  For example, the increased 

number of registers allows for function parameters (if they are less than 6) to be 

transmitted via registers rather than through the stack. The fact that an address is not 

represented using 64 rather than 32 bits increases the pool of valid address considerably, 

and so the blind stack smashing becomes harder.  Harder however does not mean 

impossible, so ultimately a 64-bit machine is just as vulnerable as a 32-bit machine.

Randomization of the mmap() base

The mmap() function (for memory map) is a POSIX system call. This function creates in 

memory clones of files or devices. The randomization of the mmap() base introduce some 

chance to avoid attacks such as return-to-libc. The return-to-libc attack uses the shared 

library libc which is linked to every C program. This attack is useful against the NX-bit 

defense, for indeed the attack does not need any injection of code, using instead the 

powerful system() function included in libc. With randomization, the addresses of the linked

shared libraries will be randomized, and so the start of the libc into the memory is no 

longer fixed.  This will slow down the attack but a brute force approach is nonetheless able

to overcome this protection.
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5.1. Most Recent Research on the Subject

Cutting-edge research on the matter comes from two different locations. The first is formal,

published research:

Defending against buffer overflow vulnerabilities [15]:

This work summarizes different ways to take over a program using overflow attacks.

It also outlines defenses at the developer level, consisting essentially in secure 

coding practice. Another defense presented here is at the compilation level and 

consists in the introduction of Stack Guards or Return Address Defenders, both of 

which will provide a protection upon compilation. A description of dynamic code 

analysis and its combination with static analysis is presented, together with network-

based instrumentation, where the network data is compared with signatures from 

older attacks. The paper finishes with the presentation of detection tools before or 

after the compilation. In the first case, the source code is analyzed, while in the 

second case the binary code is analyzed. The author essentially explains why the 

creation of a method to prevent “buffer overflows” is impossible due to the different 

attack methods. The problem of the methods presented in the paper is that either a 

compilation, or detection before compilation are needed. Without access to source 

code (and permission to compile and install software), these methods cannot be 

applied.

Security protection and checking in embedded system integration against buffer overflow 

attacks [16]:

In this work a new approach of buffer overflow defense was proposed. This 

approach is at the hardware and software level and proposes new assembly 
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functions to secure the system by two methods. 

The first method, “Hardware Boundary Check” offers a simple but very smart 

protection: When writing function is called, a parallel function runs and checks the 

value of the target address. If this address is equal or larger than the value of the 

frame pointer, the protection is engaged. 

The second method consists in the rewriting of function calls and returns with the 

introduction of two new opcodes, namely “SCALL” and “SRET.” The first one 

produces a signature at the point of the call, while the second one check the 

signature before the return and detects any modification. 

This work is really interesting but does have some limitations.  The first method 

adds new control code at each function call and return, which could be a 

performance issue. The second method need a third party component and 

specialized hardware.

Hardware/software optimization for array & pointer boundary checking against buffer 

overflow attacks [17]:

The approach in this paper is not new, as it is based on boundary checking. The 

main problem with this solution remains performance: programs took two to five 

times more to run after the introduction of boundary checks. The idea of this work is 

then the implementation of a new instruction to limit the use of resources and 

optimize the process. The optimization of a proven method is a good idea but the 

main problem is the same as for other research, namely the need of third party 

components.

The second set of sources is less academic, so included in Appendix K.
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All this related work opened questions about the security of computer sciences and more 

generally the management of buffer overflow by programming languages and operating 

systems.
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Part Two: A Kernel Patch to Prevent Stack Overflows
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6. The overall idea

The basic idea of our patch is the control of the user space eip stacking by the kernel 

space. Such a simple and less intrusive control should be possible. We will therefore 

explore the Linux kernel and accomplsh said control within its possibilities and limits. 

6.1 Possibilities and limits of the Linux kernel

Theoretically any kind of control on the software side is possible from within a kernel. 

Indeed, the kernel is the interface between the hardware and the software, and so it owns 

all the rights on everything on the hard drive as well as in the memory, including the 

context of a given process. This is however not the case on the hardware side, where the 

kernel is limited by drivers as well as hardware specification. Trivial examples include the 

obvious inability of writing 80 gigabytes of data on a 50 gigabytes disk drive, and the hard 

drive access speed limiting the usage of swap. The processor type can also be a limit; we 

will see below the difficulties generated by the CISC instruction set.

On the other hand there are invisible limits.  Even if a kernel can do everything, it is 

still necessary to implement the respective functionality. If the needed functionality does 

not exist, then it should be developed. Parts of the Linux kernel code are particularly 

difficult to understand. Indeed, some of code is pretty old, coming from the days when 

memory space was at a premium.  Comments are therefore sparse and the names of 

several variables, functions, and structures are reduced to a minimum.  Last but not least, 

working with a program of 15 millions lines of source code like the Linux kernel [18] is 

neither simple nor usual.
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6.2 Patching the eip stacking

The problem of buffer overflows clearly stems from eip stacking. An adversary can modify 

various other variables with a buffer overflow and thus dodge any protection. Once eip 

stacking is exploited the situation becomes application specific and so impossible to 

control using a general mechanism. We therefore focus of the common root cause. 

We do not have a lot of solutions to this problem: we can either forbid the 

overwriting of eip, or check the value of the stacked eip before using it. Stack canaries 

work with the second approach, while our work tries to follow the first route.

To prevent eip overwriting we will try to implement a solution close to the stack 

canaries but independent of the particular binary being run. This solution should be 

implemented into the operating system, just like the ASLR. The focus of this work will be 

the call and ret instructions, critical points of a program.

7. Early ideas and their problems

The first idea of the implementation was the design of a hook into the text segment of the 

process for each call and ret. The call instruction will stack the eip and lock for writing the 

respective stack part. The ret instruction will unlock the respective part and then restore 

the value into the eip register. Memory locking and unlocking are available with kernel 

functions. We were hoping that we will be able to hook into stacking and unstacking (push 

and pop instructions) from within the kernel, as a userspace program works with virtual 

addresses while the kernel is the one responsible for their translation into physical 

addresses. As we can see in Appendix A, the reality is different and the kernel has no 

influence on this process, so the hooking of call and ret instructions is compromised. We 

thus face our first problem.
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Even if we can hook into push and pop we still face a memory management 

problem. The most obvious memory locking mechanism is page allocation.  However, it is 

impossible to lock parts of a page, and the minimal size available for a page is 4Kib. Thus 

a naïve approach to eip locking we would effectively use 4Kib of memory to store a 32-bit 

address.  Needless to say, this is extremely wasteful and so unacceptable for anything 

else but toy demonstrators.

Unsurprisingly, naïve solutions do not work.  We had to find another approach. Such

an approach is described below.

8. Solving the problems

Hooking into stack manipulation can be done in several ways.  We however believe that 

only one such a way is realistic.  Our starting idea comes from the stack canaries 

protection, that adds a few instructions before the call and the ret instructions at the 

compilation stage. The idea is thus to inject a small piece of code in the program being run

so that we can generate an interrupt and so enter into the kernel space (where everything 

becomes possible). The simplest and most logical mechanism is system calls. Such a 

system call takes two instructions, one to move the system call number into eax and one 

to call interrupt 80, the system calls interrupt.

                 mov eax, $15f     b8 60 01 00 00
                 int 0x80          cd 80

System call example in assembly and binary, here my_call

Recall however that one of our goals is for our mechanism to be implemented into 

the operating system rather than at compilation time. This create three new problems: One

should find the process, then determine the appropriate places for the insertion of our 
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system calls into the memory, and finally modify the text segment appropriately. 

The first problem (finding the process) is easy to solve.  We have a whole family of 

probes that can be used.  The second problem (finding the insertion places) is complicated

by the CISC instruction set of the processor family used in our testing (and indeed in most 

computers in existence today). Such an instruction set features several opcodes with 

essentially the same result [19]. Moreover, the CISC instruction set features variable 

instruction lengths, which effectively prevent the sequential parsing of the text segment to 

find the needed instructions. We will consider this problem in depth a bit later. We could 

not find a definite solution to the third and final problem (modifying the text segment).  

Instead we will present a workaround and we will discuss possible approaches to a definite

solution in our conclusions.

Recall that memory locking and unlocking is unrealistically wasteful and so should 

be avoided.  We eliminate the need for such operations by the use of a kernel-space eip 

stack. As the kernel is supposedly safe, we can safely store critical data inside. As 

described above, we got a system call into the kernel space before call and ret 

instructions. When a call instruction happens we pick up the value of eip plus the size of 

the following call and store it into a variable kernel side. Then the call will push on the 

stack the eip value, as usual. Just before the ret instruction we have a new kernel interrupt

which checks the top of the stack against the value saved into the kernel.  If the two values

agree with each other then nothing else needs to be done and the program continues 

normally.  If a difference is noted, then the program should be considered corrupt and 

appropriate action should be taken.  We chose to terminate the program in such a case, 

though other actions can be easily implemented instead.  Our framework even allows for 

the possibility of a ret to the kernel-stored address, thus restoring the normal return point 
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of the current function; however we believe that such an action is not the best approach, 

as the program is already known to be corrupted so running it further is likely to result in 

errorneous (and potentially dangerous) behaviour.

All this being said, we are now ready to describe our patch to the Linux kernel and 

discuss in depth our choices.

9. Implementation

9.1 Techniques

We present here the techniques used in our development process, together with our 

motivation for using particular techniques.

9.1.1 Kernel modifications

Kernel modifications are not more difficult than changing any other substantial piece of 

software, but they do have a number of disadvantages.  First, they are particular to the 

version of the kernel being modified and may be difficult to port to different versions.  

Secondly, changing the kernel and testing the changes is more time-consuming than 

usual: The modified kernel can only be tested on a dedicated (physical or virtual) machine,

and every change implies the reboot of that machine.  Bugs during the development 

usually manifest themselves as kernel panics, which also require a reboot. Last but not 

least, particular care should be taken during coding, so that the integrity of the kernel is 

preserved, for indeed the kernel is arguably the single most important piece of software 

running on a machine.

For all these reasons we were hoping that no changes to the kernel proper will be needed,

and that our kernel-space code will reside in a separate module.  This turned out to be 
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impossible, so in the end we had to perform such changes.

9.1.2 Kernel modules

A kernel module works in the kernel space and this allows the module to use a significant 

number of kernel functions. Those kernel functions that can be used in modules are 

declared as such in the kernel source code by one of the following two statements:

EXPORT_SYMBOL_GPL(function_name); 

EXPORT_SYMBOL(function_name);

A module is different from a user space program in two additional properties.  First, 

a Linux kernel module has no standard input or output; interacting with a module can only 

be accomplished via system calls. Secondly, modules inherit the debugging difficulties 

inherent to kernels.  In particular critical bugs will cause system crashes and kernel panics,

which make rebooting and subsequent system recovery unavoidable.

There are a number of advantages of using kernel modules rather than modifying 

the main kernel code.  The facility of development is one of them.  Indeed, modifications to

a module only require the recompilation and reloading of that particular module, without 

the need to reboot the machine (provided of course that the changes do not introduce 

critical bugs).  Secondly, a module is considerably more portable between kernel versions. 

A module will work with a different kernel provided that the functions and files needed by 

the module are still present; while not complete, this is a higher degree of portability than 

for changes in the main kernel code.

9.1.3 Kprobe, Jprobe, Kretprobe

Kprobe, Jprobe and Kretprobe are all members of the *probe family, which is a mechanism

implemented in the 2.6 version of the Linux kernel by Jim Keniston, Prasanna S 
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Panchamukhi and Masami Hiramatsu [20]. This family allows us the implementation of 

probes, which between other things are accessible in modules and so help with avoiding 

kernel modifications. The available probes are different for each mechanism. Kprobe 

provides a probe before and after the target function, Jprobe give us the arguments and a 

probe before the target function, and Kretprobe give us the return as well as a probe after 

the target function.

The probe family uses the hooking technique: The module using a probe for 

function “function_name” will change the address used to call function_name to the 

address of entry into that module, while the last operation of the module will cause the 

program to jump to the original address for  function_name.  When the probe is removed, 

the original address is restored.  This is illustrated graphically in Figures 1 and 2 below.

Figure 1: normal function call.
On the top, the table function, including at the top, the name of the function and at
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the bottom the address into the memory.

Figure 2: The probing of a function.
The address of F2 into the table function was modified by the address of the probe (0x48). The flow of

instruction is modified before and after the execution of F2.

The probe family is very simple to use, the documentation is useful and some 

samples are available into the kernel source. The easiest way to get the address of the 

target function is with this command:

cat /proc/kallsyms | grep function_name

If there is no output, then the function does not exist or is not exported as we saw above.
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9.1.4 Ndisasm, objdump

Ndisasm and objdump are two disassemblers, which produce readable assembly code out

of a binary file. They were useful for the comprehension of Linux binaries (typically ELF 

files) but also for the modification of binaries manually in order to test some features of our

system.

Objdump is necessary in our system given the variable length of instructions in the 

CISC set.  It is used in order to eliminate the need of a disassembler into the kernel. We 

found Objdump better than Ndisasm for our purposes, for indeed Objdump returns the 

entire address of instructions and can also isolate the text segment. Objdump is therefore 

used by our patch in conjunction with a small script, awk and egrep. The output give the 

addresses and names of the instructions of interest.

9.1.5 System calls

As we mentioned earlier, system calls are the easiest and simplest way to generate kernel 

interrups for a user-space program. System calls are different for each architecture and 

should be implemented directly into the kernel. To manage additional system calls we 

created the associated functionality into the kernel and then performed some changes into 

the following files and folders:

• arch/x86/syscalls/syscall_32.tbl: In this file we have all the system calls for the 

x86 32-bit architecture (recall that system calls are dependent of the architecture). 

We defined here the number associated to the system call, the platform where it 

can be used, the name of the function called by the respective system call and the 

name of the function displayed in /proc/kallsyms.

• include/linux/syscalls.h: This file include the prototype of all system calls, it works 
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like a standard header file.

• kernel/my_call.c: In this file we included the code for our system call my_call.  The 

system call is exceedingly simple, as it is empty (does nothing), takes nothing as 

parameters, and returns nothing. Indeed, we use this system call just as an interrupt

so that the kernel can take control at appropriate places.

• kernel/my_ret.c: In this file we wrote our system call my_ret. Except for the name 

of the file and the name of the function, it is exactly the same than my_call and 

serves exactly the same purpose.

• kernel/Makefile: This makefile was changed so that our new system calls are 

compiled into the kernel.  Essentially the path to my_call.c and my_ret.c were 

added.

9.2 Kernel modifications

A few vital modifications into the Linux kernel were necessary:

• mm/memory.c line 4154

EXPORT_SYMBOL(access_remote_vm);

Allows modules to access virtual memory areas for reading and writing, which is 

critical to the patch.

• include/linux/mm_types.h line 324

struct Alt_stack{

    unsigned long eip;

    struct list_head mylist;

}
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This structure is used to store the stacked eip into the kernel. 

• include/linux/mm_types.h line 444 into the declaration of mm_struct

Struct Alt_stack alt_eip_stack;

The declaration of the new structure into the mm_struct. Each process has a 

structure and only userspace programs use it.

• arch/x86/syscalls/syscall_32.tlb line 360

351 i386 my_call sys_my_call

352 i386 my_ret sys_my_ret

Declaration of new system calls.

• include/linux/syscalls.h line 902

asmlinkage void sys_my_call(void);

asmlinkage void sys_my_ret(void);

Second declaration of new system calls.

• kernel/my_call

#include <linux/kernel.h>

#include <linux/init.h>

#include <linux/sched.h>

#include <linux/syscall.h>

asmlinkage void sys_my_call(unsigned long eip) {}

Implementation of my_call system call.

• kernel/my_ret.c

#include <linux/kernel.h>

#include <linux/init.h>

#include <linux/sched.h>

#include <linux/syscalls.h>
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asmlinkage void sys_my_ret(void) {}

Implementation of my_ret system call.

• kernel/Makefile

obj-y += my_call.o

obj-y += my_ret.o

Add of custom system calls at the compilation Makefile.

9.3 Module implementation

We used several modules. Each module includes a probe and so can handle just one 

address (or function). The modules my_call and my_ret are also part of the user space 

interrupt.  Our modules are as follows:

• do_exec: The do_exec module probes the kernel function “copy_process”. The 

name of the module should therefore be copy_process. However the original 

function being probed was do_exec and we kept the original name since the name 

of the module is immaterial with respect to the actual function being probed. 

This is our main module. It gets access to the program just after the respective 

binary is copied into memory. It then calls the disassembler via a Python script, 

modifies the binary into memory by injecting code and recalculating shifting. Once 

all this is done, this module initializes the linked list of stack eip values.

• my_call: The module probes the syscall my_call and so gets a chance to put the 

actual eip into the kernel linked list.

• my_ret: This module probes the syscall my_ret. It checks the last eip stacked and 

the last eip into the kernel linked list. The checks are performed before the ret so 
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that potential exploitations are prevented.

9.4 A global view of the patch

The way our system works has been described throughout the manuscript. Figures 3, 4, 

and 5 summarizes our description in a graphical manner. 

Figure 3: do_exec module process.
The module rewrite the text segment by the new text segment from the bottom to the top with a shift. This

shift is decreased each time that the module inject a patch.
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Figure 4: my_call module process. 
Here the module probe the systemcall sys_my_call and copy the actual eip of the program into the

alternate EIP stack.
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Figure 5: my_ret module process. 
This module probe the systemcall sys_my_ret, check the last eip stacked into the real stack and the last eip

stacked into the alternate stack. If they are different, the program is killed, if not, alternate eip stack is
decremented by one.
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10. Testing

Testing is fairly simple and straightforward.  We provided a “safe” program and an “unsafe”

one. Those two programs were tested using the techniques described in the previous work

section.  They were then tested, first with normal protection (ASLR, NX-bit and stack 

canaries) and a second time without the ASLR protection in place (see Appendix J) but 

running under our system. 

In the first test (that is, outside our system) the safe program executed normally and 

terminated properly. The injection of malicious code in the second program worked, as 

illustrated by the following output:

aBufferoverflow
Bufferoverflow
Bufferoverflow
Bufferoverflow
Bufferoverflow
Bufferoverflow
Bufferoverflow
Bufferoverflow
Segmentation fault

In our second test (under our system) we first investigated the in-memory code pre- and 

post-patch to ensure the correct injection of system calls, the appropriate shifting, and the 

correctness of calculations for the call arguments. Once all of these were found to be 

satisfactory, we ran the two programs. As expected, the first, correct one worked without 

any problem, while the second program stopped before the exploitation of the buffer 

overflow became possible and displayed nothing. We also used a a third program, created

to test system calls. The testing programs are included into Appendices G, H, and I.

11. Kernel wish list

The following discussion is more philosophical in nature than the one in the previous 
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section.  While working on our system we have stumbled upon several shortcomings of the

current Linux kernel. We will therefore try to address now the more general issue of what 

functionality we would like to emerge in the Linux kernel in an ideal world.  Our wish list is 

not directly related to the buffer overflow topic.

Our first wish is, of course, a powerful kernel debugging interface, for both the 

kernel itself and for the programs being run under its control. After all, the kernel own all 

the rights in the system, so it is one of the best places to follow the behaviour of all the 

programs. Kgdb exists but cannot be use on modules and also needs a second computer. 

We would like to see something between objdump, hexdump, ollydbg, ida and gdb.  As an 

example, we cannot ask objdump to send us just the assembly of a specified function. 

There is to the best of our knowledge no powerful interface to inject code into an elf file 

and even less to inject it directly into a process. However, such a thing is feasible with 

access_remote_vm and could be really useful. We saw in this manuscript how such an 

injection is useful for preventing buffer overflows, but other uses can be easily envisioned. 

For instance such a mechanism will facilitate statistics on canaries (stack or otherwise) 

and maybe discover a lack of randomness or some other issue.

Our second wish is related to the kernel source code. The code itself is proper and 

well organized but some files do not include any comments. Documentation does exist, but

sometimes it is insufficient to understand a small part of a function and some other time is 

lacking. At the same time, the name of variables created in the 90's are quite tough to 

understand and should ideally be brought to the modern naming scheme. True, the Linux 

Kernel is an open-source project so we can find and investigate the source code, but we 

also need documentation (inside as well as outside the kernel) for a proper understanding.

We were faced quite often with the thankless task of figuring out why a function was 
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written like that or why it returned this value, or worst, what is the acronym of this variable 

and what it means. Currently the only way to answer these questions is to follow the 

functions as they are called, sometimes through two or three different levels.  

As stated earlier the easiest way to manipulate the memory of a program 

(expansion, injection, deleting, reduction of text segment, bss, data, etc.) is by a function 

inside the kernel.  Some functionality in this respect exists, but we believe that expanding 

this capability is a worthy pursuit. The fixed aspect of a binary in memory is needed for 

safety and stability, but easy modification of binaries in memory is useful for developers.  A

system such as ours in particular would benefit greatly from such a support.

12. Conclusions 

At the beginning of our work we expected good theoretical and practical solutions for stack

overflow avoidance. In particular we expected to be able to block a program if an 

exploitation is tested on that program. This response should be available at the user level, 

after the conception and the compilation of the program. This will largely compensate for 

negligent development and protect the users of legacy software.

We started this project with the feeling that developers have some methods to 

counter buffer overflows at their disposal, including code checking, static analysis, 

debugging, etc. However the end-user often does not understand the problem and may 

not even be aware that a problem exists in the first place. The existing end-user protection 

either requires the intervention of third-party software (or even hardware) or is bypassable 

(NX-bit, ASLR). Our solution works on the user side, without compilation and without third 

party components.  It can be implemented in the standard kernel of the operating system.

Our focus has been the simple buffer overflows (on the stack), which are pretty 
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easy to discover and exploit. Most of the time they are not dangerous for the system, but in

a non-negligible amount of cases they are really dangerous. They are the most popular 

buffer overflow and therefore a considerable problem. 

Throughout our work we had in mind the following two goals:

• Just a few operations added: The biggest potential problem for this kind of patch is 

that adding operations for each call and return of a function in the code can easily 

incur a severe performance penalty. It is therefore really important to create a light 

patch, with just a few operation added. Indeed, the function is one of the basic entity

in the C language and it is therefore used all the time. Adding too much code to the 

patch will result in severely degraded performance, which could be especially bad 

for embedded systems.

• Backward compatible: The idea of the patch is to be effective for all the software, 

without the need of any compile-time protection measures or source modifications. 

The patch should be effective in particular for legacy software.  The only problem 

the patch will not be able to address is its absence from a particular kernel on a 

particular machine.

We believe that we have been fully successful at a theoretical level and that we 

have also provided a goos starting point for a practical application. We have violated to 

some degree our first goal (minimal overhead), but it should be noted that the bulk of the 

overhead introduced by our system happens at the beginning of the execution of the 

program; the overhead is minimal once the actual execution has started.
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12.1. Final thoughts

We believe that our work has the potential of simplifying the area of computer security 

considerably. We did not produce a production-level system but we explored a significant 

IT security issue and we have effectively shown that guarding against buffer overflows at 

run time is not only possible but also feasible.

Some old worms and other virus could still run unaffected by my patch.  However, it 

is unlikely that programs are not patched against them.  Some new threats may use a 

completely different approach, that side-steps our system. Today, the kernel defense 

against malware is based on several separate technologies including ASLR, NX-BIT, and 

stack canaries. We believe that trying to merge all the defenses into one big subsystem 

would be a big mistake. Indeed, some protections seem redundant but in certain situations

they have their own usefulness. Our patch is not here to replace the old protections but to 

fill the gap opened by their weaknesses and add a new protection.

We should also note that the same research on Microsoft Windows could have 

been more useful. Indeed, Microsoft Windows is substantially more affected by security 

vulnerabilities and more frequently used on end-user computers. However, Linux 

distributions are more frequently used on servers, mobile devices, and supercomputers. It 

is also considerably easier to work on the Linux kernel, as one does not need any special 

authorization to study, modify, and redistribute one's work.

Indeed, in our last (but not least) thought we would like to thank the GPL 

license. The Linux kernel is under this license rather than a private one, and so is our 

work.  If this kernel was closed source under a proprietary license, this project would have 

never existed. Putting our work under the GPL license in one way to thank the community 
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and to share our work with other students, teachers, and fans of the kernel.

13. Discution and shortcomings of the patch (and how to remedy them)

The patch is not perfect, for indeed this is a proof of concept that needs to be further 

refined to become a production system.  The results of testing are encouraging and so we 

believe that pursuing such a production system is possible and relatively straightforward.  

The following shortcomings need however to be addressed for this to happen.

13.1 Cleanliness of the code

The protection of the text segment is functional but is not as elegant than we 

wanted. Indeed the use of the Python script and disassembler to find the call, ret, and 

jump instructions is ugly and not secure. The lack of security is caused by the invocation of

a user-space program. Moreover, the whole process is slow. In particular objdump spends 

a considerable amount of time disassembling parts of the code that are not interesting to 

our system and putting the result into a file.  This is a waste of energy but is nonetheless 

essential to our system, as a kernel module cannot invoke objdump directly and there is no

equivalent disassembler on the kernel side.  The CISC instruction set does not appear to 

allow any cleaner solution, but this issue should definitely be investigated in depth.

13.2 Entry point

A problem discovered during tests was related to the entry point of the program. 

Indeed, a program needs to know where the main function starts, but this entry point is 

sometimes modified by the packer. If the patch modifies and moves the entry point by 
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injecting code before its location, we should rewrite the real entry point. This one can be 

easily found into the binary since it looks like this:

8048347:   68 30 84 04 08   push  $0x8048430

804834c:   e8 cf ff ff ff   call  8048320 <__libc_start_main@plt>

The modification of the entry point should be easy and look like the modification of call 

argument, except that here its address is absolute and not relative: first we find the old 

address, then we calculate the shift needed, and at the end we rewrite the new address. It 

should be easier to do at the end and to calculate the result as we proceed with the 

patching of call and ret.

13.3 Memory optimization

The part of the memory used by the first module that reads the binary is fixed and 

not optimized. It is faster to execute and it avoids some troubles with the schedule, but 

eating so much memory is bad, especially on the kernel side. The kernel obviously does 

not have an unlimited memory, for one thing because the computer does not either but 

most significantly because the address space of the kernel is limited [21]. If the module 

use 100kb, and 100 applications run together, the total of the memory used by the module 

at this time will be 10mb. This is still not that much, but what would happen if the program 

ran is a huge application such that libreoffice or gimp? The possibility of exhausting the 

kernel memory space is real and therefore memory management for the module should 

take an important place in the development of the production version.

Reducing the memory consumption requires substantial work. The module needs a 

lot of information to read the binary: location of call, ret, jump and the type of instruction (a 

simple integer) plus two addresses of the beginning and the end of the “real” text segment.
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Those two addresses should not be optimized as there are two 32-bit addresses and are 

independent of the application size. For the rest, we believe that the use of an “on the fly” 

debbuging-patcher will resolve most memory problems.

13.4 Modification of the text segment missing

We do not modify any jump or call before the main function. A call before the main 

function is however not possible because of the existence of the entry point, and a jump in 

such a place would not be really interesting either. This being said, the call before main 

function issue is easy to solve: we take the old argument of the call and find the real 

address by subtracting the argument from 0; this operation will give us the shift needed. 

The same approach deals with calls after main. The jump is dealt with in the same 

manner, with the difference that no patch injection is needed. We did not address this 

issue since we established its feasibility and we already proved the feasibility of our 

approach with “normal” calls. Such an issue nonetheless needs to be addressed in a 

production system.

13.5 Shared libraries

Shared libraries are not protected in our system. They are already compiled and not

included into the binary. Furthermore, we did not implement in our patch any detection 

mechanism for shared libraries.  It could be argued that shared libraries are safer and they

can therefore be left alone, but a system is as weak as its weakest link so ignoring libraries

does not seem like a good idea.  We therefore believe that our system should be extended

to shared libraries. It should be noted that a shared library implies that two or more 

programs will access the same memory space, so patching the library should be 
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approached with caution (since one program might want to patch a piece of code that is 

already patched).  Ideally, we believe that shared libraries should be patched at the 

moment they are loaded by the system that is, when they are copied into the shared 

memory space.

13.6 Complex buffer overflow

Our work is only focused on “easy” buffer overflow. In the real world however 

viruses and other malicious programs are now most of the time packed or embed a 

cryptographic module to hide their signature. Even more deviously, they can hide their 

source code in order to defeat behavioral studies by anti virus software [22][23]. Packers 

can be avoided easily by unpacking the binary with the execution of its first instruction, but 

matters become more complicated for the encrypted module. Considering this is not in the 

scope of our work; we believe that this is more pertinent in a discussion on kernel policy on

user space program memory access.  That is, countermeasures on this matter should 

probably be implemented deeper into the Linux kernel.

13.7 Expansion of the text segment

The expansion of the text segment for the injection of the code is not implemented. 

The easiest way to expand the text segment is to do so well before the code is injected, 

namely at compilation time. This way the binary will not corrupted and the text segment will

have the appropriate size to accommodate the patch.  The goal of our patch however is 

not to modify the compilation process, so such an easy approach is not acceptable.  The 

allocation of the text segment is deeper in the kernel compared with the place of our 

modifications, but modifying it should be feasible.  Given that this functionality is critical to 
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our system we regard this shortcoming as the major flaw of our approach.

We are able to expand the text segment at the level of our work but this does pose 

a number of issues. The data segment start just at the end of the text segment, and the 

text segment cannot grow in the opposite direction of the data segment. Indeed there is 

nothing before the text segment, and so the addresses will no longer be valid.  Then the 

text segment should grow toward the data segment, meaning that the data segment itself 

should be shifted, eating into the heap space.  The main complication of such an approach

is that it implies the reallocation and modification of all statically accessed data.

13.8 Patch on all instructions

Our proof of concept patches just three instructions: a ret, a call, and a simple jump.

A CISC processor becomes a problem not only because of the variable-length instruction 

set (that necessitated the use of a disassembler with all the negative effects outlined 

above) but also because several more opcodes accomplish the same thing and so should 

be patched as well.  Unfortunately most computers have such an instruction set, so no 

matter how hindering this architecture is, the whole bunch of call, jump, and ret-equivalent 

instructions should be patched in a production system.

13.9 Dependence of the *probes module

The usage of probe family and more generally the usage of module allows a fast 

development, modularity, and an amazing interface. The probe family gave us the power to

perform temporary modifications in a lot of different places without kernel recompilation. 

However, probe family is better used for testing (as a temporary solution) rather than final 

implementations. Indeed the working of probes is based on hooking functions, but these 
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functions can disappear with a new kernel version. In addition, the address of a function 

might change with every kernel recompilation, so probes should be reconfigured every 

time the kernel is compiled.

13.10 Optimization, crashes and kernel modification

Modules cannot use all the kernel functions, but only those functions that are 

exported. For this purpose the function access_remote_vm had to be exported. The 

implications of such an export need to be investigated.

Optimization was not considered at all at this stage of our work.  There are a 

number of good candidates for such. Most notably the use of disassembler and Python 

scripts are sub-optimal. Using external tools works fine for a proof-of-concept such as 

ours, but optimization should be given a hard look for a production system.

Some freezes even crashes on big applications exist and are caused by two issues.

First, the time it takes for the patching process on a large piece of code will often exceed 

various kernel timeouts (especially from the scheduling system). Secondly, we did not 

patch all the versions of the call and ret opcodes (as detailed above, the number is large 

for a CISC processor); the mix of patched and unpatched opcodes could thus lead to 

incorrect behaviour. This shortcoming is however the easiest to fix.

Scheduling was a problem during the development of the patch. Indeed, we delay 

the execution of the program, but in the kernel a program has a spot into the execution 

queue and if this execution is delayed, the schedule can crash.  This issue needs careful 

consideration, but in the process management rather than memory management system. 

An elegant solution would be to pause the program at the beginning of the patching 

process and resuming it afterward. This should be easy to implement, as the mechanisms 
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for suspending and resuming a program are already present.

Note that none of these problems are show-stoppers.  Fixing them is no longer a 

matter of “how” but more a matter of spending time to code their solutions.  We therefore 

regard out system in its present proof-of-concept form as a substantial step forward toward

more secure computing systems.  
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Appendix A

Discussion on the mailing list of the memory management development for Linux available
online here: http://comments.gmane.org/gmane.linux.kernel.mm/99735

Hi,

I'm Benjamin and I'm studying the kernel. I write you this email
because I've a trouble with the mmu and the virtual memory. I try to
understand how a program (user land) can write something into the stack
(push ebp, for example), indeed, the program works with virtual address
(between 0x00000 and 0x8... if my memory is good) but at the hardware
side the address is not the same (that's why mmu was created, if I'm right).

My problem is the following: how the data is wrote on the physical
memory. When I try a strace (kernel 2.6.32 on a simple program) I have
no hint on the transfer of data. Moreover, according to the Wikipedia
web page on syscall (
https://en.wikipedia.org/wiki/System_call#The_library_as_an_intermediary
), a call is not managed by the kernel. So, how the transfer between
virtual memory and physical memory is possible?

I hope my email is understandable, I tried to put words on my troubles.

Thanks a lot for your help and have a nice day.

Benjamin.

------

On Thu, May 09, 2013 at 10:33:21AM -0400, Ben Teissier wrote:
> 
> I'm Benjamin and I'm studying the kernel. I write you this email
> because I've a trouble with the mmu and the virtual memory. I try to
> understand how a program (user land) can write something into the stack
> (push ebp, for example), indeed, the program works with virtual address
> (between 0x00000 and 0x8... if my memory is good) but at the hardware
> side the address is not the same (that's why mmu was created, if I'm right).

Yes, this is the purpose of pages tables; to map virtual addresses to real
memory addresses (more precisely virtual memory _pages_ to real memory pages).

> My problem is the following: how the data is wrote on the physical
> memory. When I try a strace (kernel 2.6.32 on a simple program) I have
> no hint on the transfer of data. Moreover, according to the Wikipedia
> web page on syscall (
> https://en.wikipedia.org/wiki/System_call#The_library_as_an_intermediary
>), a call is not managed by the kernel. So, how the transfer between
> virtual memory and physical memory is possible?

That is because writing to a memory location in userspace isn't an operation
that requires a syscall or any kind of kernel intervention at all.  It is an
assembly store instruction executed directly on the CPU by the program.  The
only time the kernel is involved in a store operation is if the virtual address
translation doesn't exist in the TLB (or is write-protected, etc..), in which
case the hardware generates a fault so the kernel take the required action to
populate the TLB with the translation.

Hope this answers your question.

Seth
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Appendix B

Python script to disassemble the binary and its C wrapper to be called from a kernel 
module

import os
import sys
import string

#we take args
src = '/tmp/'
#src = '/home/user/poc'
path1 = sys.argv[1]
path2 = sys.argv[1]
path2 = path2.replace('/', '.')

#we call objdump
a = os.popen('/usr/bin/objdump -j.text -d ' + path1).read()

#we send the address of the begining of the main and
b = a.split('<frame_dummy>:')
b = b[1].split('\n\n')
address_first = b[1].split(' ')

#we take the address of the first instruction of the text segment not shared
a = a.split(address_first[0])
a = a[1].split('<__lib')

a = a[0].split('\n')
path2 = '1'
#loop to catch call jump and ret
f = open(src + path2, 'w')
for b in a:

if (b.find("jmp") > 0):
b = b.split('\t')
f.write('0' + b[0].split(':')[0].split(' ')[1] + " " + '2\n')
b[2].split(' ')[0]

elif(b.find("call") > 0):
b = b.split('\t')
#we take the address pointed by the call
print a[len(a) - 1]
print '0'+b[2].split(' ')[3]
print address_first[0]
print"\n"
if((('0'+b[2].split(' ')[3]) < (a[len(a) - 1])) & (('0'+b[2].split('

')[3]) > (address_first[0]))):
f.write('0' + b[0].split(':')[0].split(' ')[1] + " " + '0\n')

b[2].split(' ')[0]
elif(b.find("ret") > 0):

b = b.split('\t')
f.write('0' + b[0].split(':')[0].split(' ')[1] + " " + '1\n')
b[2].split(' ')[0]

f.close()
f2 = open(src + path2 + '2', 'w')
f2.write(address_first[0] + '\n' + b)
f2.close()
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#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{

char *truc = "/home/user/wrappertest/a.out";
char *cmd = "python /home/user/wrappertest/dat.py ";
char *final_cmd = malloc((strlen(cmd) + strlen(argv[1] + 1) * 

sizeof(char)));
strncpy(final_cmd, cmd, strlen(cmd));
strncpy(final_cmd + strlen(cmd), argv[1], strlen(argv[1]));
final_cmd[strlen(cmd) + strlen(argv[1])] = '\0';
system(final_cmd);

}
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Appendix C

my_call.c module

#include <linux/module.h>
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/mm_types.h>
#include <linux/ptrace.h>
#include <linux/list.h>
#include <linux/slab.h>

void stacking_eip(void)
{

//variables
struct mm_struct *mm;
struct Alt_stack *insert;
struct pt_regs *my_regs;

//allocation
mm = current->mm;
insert = kmalloc(sizeof(*insert), GFP_KERNEL);
my_regs = task_pt_regs(current);

//we pick up eip
//the current eip is on the int 0x80
//we have to add size of call to the current eip
//sizeof(call) = 5
insert->eip = my_regs->ip + 7;

//we create the node
INIT_LIST_HEAD(&insert->mylist);

//we add it at the end of the linked list
list_add_tail(&insert->mylist, &mm->alt_eip_stack.mylist);

}

int Pre_Handler(struct kprobe *p, struct pt_regs *regs)//, unsigned long flags)
{

//we hook just the kernel space
if(current_uid() != 0)
{

stacking_eip();
printk("CALL\n");

}
return(0);

}

void Post_Handler(struct kprobe *p, struct pt_regs *regs, unsigned long flags)
{
}

static struct kprobe kp;

int myinit(void)
{

Benjamin Teissier 56



An approach to stack overflow counter-measures using kernel properties 

printk("module inserted\n");
kp.pre_handler = Pre_Handler;
kp.post_handler = Post_Handler;
kp.addr = (kprobe_opcode_t *)0xc1045cac;
register_kprobe(&kp);
return(0);

}

void myexit(void)
{

unregister_kprobe(&kp);
printk("module removed\n");

}

module_init(myinit);
module_exit(myexit);
MODULE_AUTHOR("BEN");
MODULE_DESCRIPTION("my_call hook");
MODULE_LICENSE("GPL");
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Appendix D

my_ret.c module

#include <linux/module.h>
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/ptrace.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/mm_types.h>
#include <linux/list.h>
#include <linux/sys.h>

void unstacking_eip(void)
{

//variables
struct mm_struct *mm;
struct Alt_stack *remove, *tmp;
struct pt_regs *my_regs;
unsigned long eip = 0;
unsigned char temp[4];

//allocation
mm = current->mm;
my_regs = task_pt_regs(current);

//we take the value of eip stacked
//it should be the top of the stack
access_remote_vm(current->mm, my_regs->sp, temp, 4, 0);
eip += temp[0];
eip += temp[1] * 0x100;
eip += temp[2] * 0x10000;
eip += temp[3] * 0x1000000;

//we check if eip stacked is the same than the value stored into the 
linked list

//we loop the linked list, the last element will be the last stacked !
list_for_each_entry(remove, &(mm->alt_eip_stack.mylist), mylist)
{

//we do nothing, indeed we just want to travel the linked list
tmp = remove;

}
//here the structure remove got the last element of the linked list
//and we compare his eip value with the value on the stack
if((tmp->eip - eip - 0x2) != 0x0)
{

//if it's not the same value, we stop the program and delete the 
entire linked list

//SIGKILL is sended because the program is consided as corrupted and
//a SIGQUIT give the control back to the program and it should be 

avoided
//so => SIGKILL
printk("STOP THE SOFT !\n");

//and we clean the alt eip
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list_for_each_entry_safe(remove, tmp, &(mm->alt_eip_stack.mylist), 
mylist)

{
list_def(remove->mylist);
kfree(remove);

}
kill(current->pid, 9);

}
else
{

//else, the program is safe, we remove the last element (struct 
remove)

//and let the program running
list_del(&tmp->mylist);
kfree(tmp);
printk("START THE SOFT !\n");

}
}

void Pre_Handler(struct kprobe *p, struct pt_regs *regs, unsigned long flags)
{
}

void Post_Handler(struct kprobe *p, struct pt_regs *regs, unsigned long flags)
{

if(current_uid() != 0)
{

unstacking_eip();
}

}

static struct kprobe kp;

int myinit(void)
{

printk("module inserted\n");
kp.pre_handler = Pre_Handler;
kp.post_handler = Post_Handler;
kp.addr = (kprobe_opcode_t *)0xc1045cc0;
register_kprobe(&kp);
return(0);

}

void myexit(void)
{

unregister_kprobe(&kp);
printk("module removed\n");

}

module_init(myinit);
module_exit(myexit);
MODULE_AUTHOR("BEN");
MODULE_DESCRIPTION("KPROBE TEST");
MODULE_LICENSE("GPL");
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Appendix E

do_exec.c module

#include <linux/module.h>
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/ptrace.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/mm_types.h>
#include <linux/kmod.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/delay.h>
struct file* file_open(const char *path, int flags, int mode)
{

struct file* filp = NULL;
mm_segment_t oldfs;
int err = 0;

oldfs = get_fs();
set_fs(get_ds());
filp = filp_open(path, flags, mode);
set_fs(oldfs);

if(IS_ERR(filp))
{

err = PTR_ERR(filp);
return(NULL);

}
return(filp);

}

void file_close(struct file* the_file)
{

filp_close(the_file, NULL);
}

int file_read(struct file* file, unsigned long long offset, unsigned char* data,
unsigned int size)
{

mm_segment_t old_fs;
int ret = 0;

old_fs = get_fs();
set_fs(get_ds());

ret = vfs_read(file, data, size, &offset);

set_fs(old_fs);
return ret;

}

static int uhm(void)
{
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char *argv[] = {"/home/user/wrappertest/a.out\0", 
"/home/user/poc/vuln4\0", NULL};

static  char *envp[] =
{

"HOME=/",
"TERM=linux",
"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
NULL

};

return call_usermodehelper_fns(argv[0], argv, envp, 1, NULL, NULL, NULL);
}

void create_list_node(void)
{

//we initialize the linked list for this task
struct mm_struct *mm = current->mm;
INIT_LIST_HEAD(&mm->alt_eip_stack.mylist);

}

//unsigned int *disass[2] is an 2D array, first cell is the address
//second cell is the type (0 = call, 1 = ret, 2 = jmp)
int read_memory_process(char *path1, char *path2)
{

//variables
unsigned char buf[1];
unsigned int i = current->mm->end_code;
unsigned char patch_call[7] = {0xb8, 0x5f, 0x01, 0x00, 0x00, 0xcd, 0x80};
unsigned char patch_ret[7] = {0xb8, 0x60, 0x01, 0x00, 0x00, 0xcd, 0x80};
unsigned int shift = 0;
unsigned int j = 0, k = 0;
unsigned int disass[90][2];
unsigned char tmp_read[180];
unsigned char tmp_add[8];
unsigned int nb_read = 0;

   unsigned int nb_elem = 0;
   unsigned int real_start;
   unsigned int real_end;

struct file *f = NULL;
unsigned int cmp = 0;
unsigned char add_read[4];
unsigned char temp_int_add = 0;
unsigned int temp_shift = 0;

//we read the second document
f = file_open(path2, O_RDONLY, 0);
if (f == NULL)
{

//ERROR
printk("FIRST\n");
return(-1);

}
//we read the entire
nb_read = file_read(f, 0, tmp_read, 20);
//we copy the first addresse and the second
strncpy(tmp_add, tmp_read, 8);
sscanf(tmp_add, "%08x", &real_start);
strncpy(tmp_add, tmp_read + 9, 8);
sscanf(tmp_add, "%08x", &real_end);

file_close(f);
f = NULL;

//we read the first document
f = file_open(path1, O_RDONLY, 0);
if (f == NULL)
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{
//ERROR
printk("SECOND");
return(-1);

}
//we read the entire file
nb_read = file_read(f, 0, tmp_read, 2000);

//we loop to put everything at the good place
while(j < nb_read)
{

//we read the addresse 8 bits
strncpy(tmp_add, tmp_read + j, 8);
sscanf(tmp_add, "%08x", &disass[k][0]);
//we shift and drop the space
j += 9;
// x - 48 value in ascii to decimal
disass[k][1] = tmp_read[j] - 48;

//we shift to align to the first char of the next line
j += 2;

//we inc the nb_elem
nb_elem++;
cmp++;
k++;

}
//we start from 0 each time so we dec the cmp
cmp--;

file_close(f);

j = 0;
k = 0;

//we calculate the shift
for (j = 0 ; j < nb_elem ; j++)
{

//if the type != 2 we have a shift
if (disass[j][1] != 2)
{

shift += 7;
}

}

//we start to copy from the end_code - shift, the add of nop gave us space
i = real_end - shift - 17;

while(i > real_start)
{

if(cmp + 1 > 0 && i <= disass[cmp][0])
{

//we have something to do and the instruction is already wrote
if(disass[cmp][1] == 0)
{

//call part
//is the call point to the text segment ?
//if not, no patch
if((disass[cmp][0] > real_start) && (disass[cmp][0] < 

real_end))
{

//we change the add
//we copy the prefix of the call first
access_remote_vm(current->mm, i, buf, 1, 0);
access_remote_vm(current->mm, i + shift , buf, 1, 

1);
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//we read args of the call
access_remote_vm(current->mm, i + 1, add_read, 4, 

0);
temp_int_add = 0x000000 + add_read[0];
//we check if the call is in the range of the real

text segment
//if not we do nothing, the rest of the patch will

copy the old value
if(((i + shift + temp_int_add + 5) >= real_start) 

&& ((i + shift + temp_int_add + 5) <= real_end))
{

temp_shift = 1; //we start from one to do 
not forget the actual injection

//we loop the array to find the injection 
BETWEEN the call and the function called

for (j = cmp ; disass[j][0] > i && j >= 0 ; 
j--)

{
if ((disass[j][0] < (disass[cmp][0] + 

temp_int_add + 5))) //&& (disass[j][0] < (disass[cmp][0] - temp_int_add +5)))
{

if(disass[j][1] != 2)
{

temp_shift++;
}

}
}
//now we recalculate the shift
add_read[0] = temp_int_add + (temp_shift * 

7);
//and we rewrite the call
access_remote_vm(current->mm, i + 1 + shift,

add_read, 4, 1);
if ((shift - 6) >= 0) /* // */
{

shift -= 7;
}
//we inject the patch
access_remote_vm(current->mm, i + shift, 

patch_call, 7, 1);
i--;

}
}

}
else if(disass[cmp][1] == 1)
{

//ret part
//first we copy the ret op code
access_remote_vm(current->mm, i, buf, 1, 0);
access_remote_vm(current->mm, i + shift, buf, 1, 1);
//we inject the patch
if ((shift - 6) >= 0) /* // */
{

shift -= 7;
}
access_remote_vm(current->mm, i + shift, patch_ret, 7, 

1);
i--;

}
else if(disass[cmp][1] == 2)
{

//jmp part
//is the jump point to the text segment ?
//if not, no patch
if((disass[cmp][0] > real_start) && (disass[cmp][0] < 

real_end))
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{
//we change the add

}
}
else
{

//ERROR !
}
cmp--;

}
else
{

//we copy the rest of the program if no modification is needed
access_remote_vm(current->mm, i, buf, 1, 0);
access_remote_vm(current->mm, i + shift, buf, 1, 1);
i--;

}
}
access_remote_vm(current->mm, 0x0804823e, buf, 1, 0);
return(0);

}

int Pre_Handler(struct kprobe *p, struct pt_regs *regs)
{

//do nothing
return(0);

}

void Post_Handler(struct kprobe *p, struct pt_regs *regs, unsigned long flags)
{

if(current_uid() != 0)
{

struct mm_struct *mm = get_task_mm(pid_task(find_get_pid(current-
>pid), PIDTYPE_PID));

down_read(&mm->mmap_sem);
uhm();
if(read_memory_process("/tmp/1", "/tmp/12") == -1)
{

printk("ERROR at the file reading.\n");
}
create_list_node();
up_read(&mm->mmap_sem);

}
}

static struct kprobe kp;

int myinit(void)
{

printk("module inserted\n");
kp.pre_handler = Pre_Handler;
kp.post_handler = Post_Handler;
kp.addr = (kprobe_opcode_t *)0xc1001596;
register_kprobe(&kp);
return(0);

}

void myexit(void)
{

unregister_kprobe(&kp);
printk("module removed\n");

}

module_init(myinit);
module_exit(myexit);
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MODULE_AUTHOR("BEN");
MODULE_DESCRIPTION("KPROBE TEST");
MODULE_LICENSE("GPL");
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Appendix F

Makefile for modules

obj-m +=my_module.o 
KDIR= /lib/modules/$(shell uname -r)/build
all:

$(MAKE) -C $(KDIR) SUBDIRS=$(PWD) modules
clean:

rm -rf *.o *.ko *.mod .c* .t*
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Appendix G

Simple test program

void c();
int main(void)
{

c();
}
void c(void)
{
}
 
__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm
__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("N
OP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");
__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm
__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("N
OP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");
__asm__("NOP");__asm__("NOP");
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Appendix H

Simple test program already patched (to test system call)

void c();
int main(void)
{

__asm__("MOV $351, %eax");
__asm__("INT $0x80");
c();

}
void c(void)
{

__asm__("MOV $352, %eax");
__asm__("INT $0x80");

}
 
__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm
__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("N
OP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");
__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm
__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("N
OP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");
__asm__("NOP");__asm__("NOP");
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Appendix I

Program with a buffer overflow

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

char sc[]= "\x10\x84\x04\x08";
void p();

void c()
{

printf("Bufferoverflow\n");
}

int main(int argc, char *argv[])
{

p("ab");
}

void p(char *string_to_copy)
{

char str[8];
for(int i = 0 ; i < 58 ; i++)
{

str[i] = sc[i % 4];
}
printf("a");

}

__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm
__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("N
OP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");
__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm
__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("N
OP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");__asm__("NOP");
__asm__("NOP");__asm__("NOP");
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Appendix J

Compilation command for testing programs, it removes all protections

gcc source.c -w -O0 -ggdb -std=c99 -static -D_FORTIFY_SOURCE=0 -fno-pie -Wno-
format -Wno-format-security -fno-stack-protector -z norelro -z execstack -o 
output.out
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Appendix K 

We present here our alternate source of research that is non-academic in nature. It 

consists in blogs of independent IT security consultants and researchers, repositories of 

community knowledge, and sometimes directly the community through conventions and 

other meetings:

• Phrack [24] (repo of webzine): Phrack is a webzine where we can find some papers

on computer science and particularly IT security, such as the famous “Smashing the

stack for fun and profit” [4], This resource contains old but also new, original papers.

• Exploit-db.com [25] (repo): Exploit-db is a repository similar to the dead milw00rm 

where we can find numerous security vulnerabilities and proof-of-concepts for their 

exploitation.  This resource is really useful to know if a particular program (or a 

particular version) is vulnerable.

• Zenk-security [26] (repo and community): Zenk-security is a French community 

centered on IT security.  Without a professional structure, it is more a passionate 

group where we can find some help from personalities of the French IT security.

• Hackerzvoice [27] (repo and community): Hackerzvoice is a French community like 

Zenk-security, with quite the same people but featuring public access.

• Nuit Du Hack [28] (convention): The Nuit Du Hack is a French convention on IT 

security like DefCon but smaller. Some of people from Zenk-security and 

Hackerzvoice talk on security problem and issues.

All of those non-academic resources are interesting because of their more technical 

aspect, closer to the IT security industry. Indeed, communities often take less time than 
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research facilities to speak about a problem and are more in the present. For example the 

result of the “0 day java” query to a search engine will consist largely in blogs wrote by 

member of the IT security community. When the community is more “cutting edge” we can 

have access to resources even before their official announcement. Overall through 

communities we can be closer to the present.
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