
COMPUTATION TREE LOGIC IS EQUIVALENT TO FAILURE TRACE

TESTING

by

A. F. M. NOKIB UDDIN

A thesis submitted to the

Department of Computer Science

in conformity with the requirements for

the degree of Master of Science

Bishop’s University

Sherbrooke, Quebec, Canada

July 2015

Copyright c© A. F. M. Nokib Uddin, 2015

Abstract

The two major systems of formal verification are model checking and algebraic techniques

such as model-based testing. Model checking is based on some form of temporal logic such

as linear temporal logic (LTL) or computation tree logic (CTL). CTL in particular is capable

of expressing most interesting properties of processes such as liveness and safety. Alge-

braic techniques are based on some operational semantics of processes (such as traces and

failures) and its associated preorders. The most fine-grained practical preorder is based on

failure traces. The particular algebraic technique for formal verification based on failure

traces is failure trace testing.

It was shown earlier [8] that CTL and failure trace testing are equivalent; that is, for

any failure trace test there exists a CTL formula equivalent to it, and the other way around.

Both conversions are constructive and algorithmic. The proof of the conversion from fail-

ure trace tests to CTL formulae and implicitly the associated algorithm is however incor-

rect [6].

We now provide a correct proof for the existence of a conversion from failure trace tests

to CTL formulae. We also offer intuitive support for our proof by providing worked ex-

amples related to the examples used earlier [9] to support the conversion the other way

around, thus going full circle not only with the conversion but also with our examples.

The revised proof continues to be constructive and so the conversion continues to be algo-

rithmic.

Our corrected proof completes an algorithmic solution that allows the free mix of logic

i

and algebraic specifications for any system, thus offering increased flexibility and conve-

nience in system specification for formal verification.

ii

Acknowledgments

In writing this thesis I have been greatly assisted in terms of encouragement, time, and

guidance by a number of individuals. I would like to thank my supervisor Stefan D. Bruda

for his timely assistance during our meetings, for his constant evaluation of the various

drafts of my work, and for lots of helpful ideas and technical support. Without him I

would not be in the position of writing this thesis. Then I would like to acknowledge

Professor Nelly Khouzam for her friendship and support throughout my MSc studies.

An equally important contribution has come from my mother Satal Moni, my father

Md. Abdus Sattar, my close friend Kaniz Afrin, my sisters, and my friends here at Bishop’s

University.

This research was supported by two research grants from Bishop’s University. Part

of this research was also supported by the Natural Sciences and Engineering Research

Council of Canada.

iii

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Temporal Logic and Model Checking . 5

2.2 Labeled Transition Systems and Stable Failures 8

2.3 Failure Trace Testing . 10

3 Previous Work 14

3.1 An Equivalence between LTS and Kripke Structures 15

3.2 From Failure Trace Tests to CTL Formulae . 18

4 CTL Is Equivalent to Failure Trace Testing 22

5 Conclusions 37

Bibliography 40

iv

List of Figures

3.1 A conversion of an LTS (a) to an equivalent Kripke structure (b) [8, 9]. . . . 18

3.2 Two coffee machines. 19

4.1 Test equivalent to the CTL formula EF f (a) and its unfolded version (b). . . 30

4.2 Conversion of the test T(EXφ′) (a) into its negation T(EXφ′) (b). 35

v

Chapter 1

Introduction

Computing systems are already ubiquitous in our everyday life, from entertainment sys-

tems at home, to telephone networks and the Internet, and even to health care, transporta-

tion, and energy infrastructure. Ensuring the correct behaviour of software and hardware

has been one of the goals of Computer Science since the dawn of computing. Since then

computer use has skyrocketed and so has the need for assessing correctness.

Historically the oldest verification method, which is still widely used today, is empiri-

cal testing [23, 28]. This is a non-formal method which provides input to a system, observes

the output, and verifies that the output is the one expected given the input. Such testing

cannot check all the possible input combinations and so it can disprove correctness but can

never prove it. Deductive verification [17, 19, 26] is chronologically the next verification

method developed. It consists of providing proofs of program correctness manually, based

on a set of axioms and inference rules. Program proofs provide authoritative evidence of

correctness but are time consuming and require highly qualified experts.

Various techniques have been developed to automatically perform program verifica-

tion with the same effect as deductive reasoning but in an automated manner. These ef-

forts are grouped together in the general field of formal methods. The general technique

is to verify a system automatically against some formal specification. Model-based testing

and model checking are the two approaches to formal methods that became mainstream.

1

CHAPTER 1. INTRODUCTION 2

Their roots can be traced to simulation and deductive reasoning, respectively. These for-

mal methods however are sound, complete, and to a large extent automatic. They have

proven themselves through the years and are currently in wide use throughout the com-

puting industry.

In model-based testing [4, 15, 30] the specification of a system is given algebraically,

with the underlying semantics given in an operational manner as a labeled transition sys-

tem (LTS for short), or sometimes as a finite automaton (a particular, finite kind of LTS).

Such a specification is usually an abstract representation of the system’s desired behaviour.

The system under test is modeled using the same formalism (either finite or infinite LTS).

The specification is then used to derive systematically and formally tests, which are then

applied to the system under test. The way the tests are generated ensures soundness and

completeness. In this thesis we focus on arguably the most powerful method of model-

based testing, namely failure trace testing [21]. Failure trace testing also introduces a

smaller set (of sequential tests) that is sufficient to assess the failure trace relation.

By contrast, in model checking [11, 12, 25] the system specification is given in some

form of temporal logic. The specification is thus a (logical) description of the desired

properties of the system. The system under test is modeled as Kripke structures, another

formalism similar to transition systems. The model checking algorithm then determines

whether the initial states of the system under test satisfy the specification formulae, in

which case the system is deemed correct. There are numerous temporal logic variants

used in model checking, including CTL*, CTL and LTL. In this thesis we focus on CTL.

There are advantages as well as disadvantages to each of these formal methods tech-

niques. Model checking is a complete verification technique, which has been widely stud-

ied and also widely used in practice. The main disadvantage of this technique is that it is

not compositional. It is also the case that model checking is based on the system under test

being modeled using a finite state formalism, and so does not scale very well with the size

of the system under test. By contrast, model-based testing is compositional by definition

CHAPTER 1. INTRODUCTION 3

(given its algebraic nature), and so has better scalability. In practice however it is not nec-

essarily complete given that some of the generated tests could take infinite time to run and

so their success or failure cannot be readily ascertained. The logical nature of specification

for model checking allows us to only specify the properties of interest, in contrast with the

labeled transition systems or finite automata used in model-based testing which more or

less require that the whole system be specified.

Some properties of a system may be naturally specified using temporal logic, while

others may be specified using finite automata or labeled transition systems. Such a mixed

specification could be given by somebody else, but most often algebraic specifications are

just more convenient for some components while logic specifications are more suitable for

others. However, such a mixed specification cannot be verified. Parts of it can be model

checked and some other parts can be verified using model-based testing. However, no

global algorithm for the verification of the whole system exists. Before even thinking of

verifying such a specification we need to convert one specification to the form of the other.

Precisely such a conversion was investigated relatively recently and published as a

technical report [8]. An equivalence between labeled transition systems (the semantic

model used in model-based testing) and Kripke structures (the semantic model used in

model checking) was first established, and then it was shown that for each failure trace

test there exists an equivalent CTL formula and the other way around. The conversion

from tests to CTL formulae was further published [9]. It was discovered however that the

conversion the other way around (from CTL formulae to tests) is incorrect as presented

earlier [8]. The purpose of this thesis is to fix this conversion.

We prove that though the original construction of the conversion function [8] was in-

correct, the existence of such a function does hold. Specifically, we show that for each

CTL formula there exists an equivalent failure trace test, finally showing that the two (al-

gebraic and logic) formalisms are equivalent. Like all the earlier proofs [8, 9] our proof is

constructive, so that implementing back and forth automated conversions is an immediate

CHAPTER 1. INTRODUCTION 4

consequence of our result combined with the earlier ones.

We believe that we are thus opening the domain of combined, algebraic and logic meth-

ods of formal system verification. The advantages of such a combined method stem from

the above considerations but also from the lack of compositionality of model checking

(which can thus be side-stepped by switching to algebraic specifications), from the lack

of completeness of model-based testing (which can be side-stepped by switching to model

checking), and from the potentially attractive feature of model-based testing of incremental

application of a test suite insuring correctness to a certain degree (which the all-or-nothing

model-checking lacks).

The thesis continues as follows: We introduce the basic concepts used in our work

including model checking, temporal logic, model-based testing, and failure trace testing

in Chapter 2. Previous work is reviewed in Chapter 3. In particular the work on labeled

transition system and Kripke structure equivalence and on converting failure trace tests to

CTL formulae [8, 9] is presented in detail in Sections 3.1 and 3.2, respectively. Chapter 4

then presents our conversion from CTL formulae to failure trace tests. We discuss the

significance and consequences of our work (as a whole together with the conversion the

other way [9]) in Chapter 5. For the remainder of this thesis results proved elsewhere are

introduced as Propositions, while original results are stated as Theorems, Lemmata, and

Corollaries.

Chapter 2

Preliminaries

This chapter is dedicated to introducing the necessary background information on model

checking, temporal logic, and failure trace testing. For technical reasons we also introduce

here the language TLOTOS, a process algebra used for describing algebraic specifications,

tests, and systems under test. The reason for using this particular language is that earlier

work on failure trace testing uses this language as well.

Our preliminaries are necessarily the same to the preliminaries used in the work we

are fixing [8]. For this reason the content of this section is largely identical to the earlier

work, though we have streamlined and somehow shortened the presentation.

Given a set of symbols A we use as usual A∗ to denote exactly all the strings of symbols

from A. The empty string, and only the empty string is denoted by ε. We useω to refer to

|N|, the cardinality of the set of natural numbersN. The power set of a set A is denoted as

usual by 2A.

2.1 Temporal Logic and Model Checking

A specification suitable for model checking is described by a temporal logic formula. The

system under test is given as a Kripke structure. The goal of model checking is then to

find the set of all states in the Kripke structure that satisfy the given logic formula. The

system then satisfies the specification provided that all the designated initial states of the

5

CHAPTER 2. PRELIMINARIES 6

respective Kripke structure satisfy the logic formula.

Formally, a Kripke structure [12] K over a set AP of atomic propositions is a tuple

(S, S0,→, L), where S is a set of states, S0 ⊆ S is the set of initial states, →⊆ S × S is

the transition relation, and L : S → 2AP is a function that assigns to each states exactly

all the atomic propositions that are true in that state. As usual we write s → t instead of

(s, t) ∈→. It is usually assumed [12] that → is total, meaning that for every state s ∈ S

there exists a state t ∈ S such that s → t. Such a requirement can however be easily estab-

lished by creating a “sink” state that has no atomic proposition assigned to it, is the target

of all the transitions from states with no other outgoing transitions, and has one outgoing

“self-loop” transition back to itself.

A path π in a Kripke structure is a sequence s0 → s1 → s2 → · · · such that si → si+1

for all i ≥ 0. The path starts from state s0. Any state may be the start of multiple paths.

It follows that all the paths starting from a given state s0 can be represented together as a

computation tree with nodes labeled with states. Such a tree is rooted at s0 and (s, t) is an

edge in the tree if and only if s→ t. Some temporal logics reason about computation paths

individually, while some other temporal logics reason about whole computation trees.

There are several temporal logics currently in use. We will focus in this thesis on the

CTL* family [12, 16] and more precisely on the CTL variant. CTL* is a general temporal

logic which is usually restricted for practical considerations. One such a restriction is the

linear-time temporal logic or LTL [12, 24], which is an example of temporal logic that rep-

resents properties of individual paths. Another restriction is the computation tree logic or

CTL [10, 12], which represents properties of computation trees.

In CTL* the properties of individual paths are represented using five temporal opera-

tors: X (for a property that has to be true in the next state of the path), F (for a property

that has to eventually become true along the path), G (for a property that has to hold in

every state along the path), U (for a property that has to hold continuously along a path

until another property becomes true and remains true for the rest of the path), and R (for

CHAPTER 2. PRELIMINARIES 7

a property that has to hold along a path until another property becomes true and releases

the first property from its obligation). These path properties are then put together so that

they become state properties using the quantifiers A (for a property that has to hold on all

the outgoing paths) and E (for a property that needs to hold on at least one of the outgoing

paths).

CTL is a subset of CTL*, with the additional restriction that the temporal constructs X,

F, G, U, and R must be immediately preceded by one of the path quantifiers A or E. More

precisely, the syntax of CTL formulae is defined as follows:

f = > | ⊥ | a | ¬ f | f1 ∧ f2 | f1 ∨ f2 |

AX f | AF f | AG f | A f1 U f2 | A f1 R f2 |

EX f | EF f | EG f | E f1 U f2 | E f1 R f2

where a ∈ AP, and f , f1, f2 are all state formulae.

CTL formulae are interpreted over states in Kripke structures. Specifically, the CTL

semantics is given by the operator � such that K, s � f means that the formula f is true

in the state s of the Kripke structure K. All the CTL formulae are state formulae, but their

semantics is defined using the intermediate concept of path formulae. In this context the

notation K, π � f means that the formula f is true along the path π in the Kripke structure

K. The operator � is defined inductively as follows:

1. K, s � > is true and K, s � ⊥ is false for any state s in any Kripke structure K.

2. K, s � a, a ∈ AP if and only if a ∈ L(s).

3. K, s � ¬ f if and only if ¬(K, s � f) for any state formula f .

4. K, s � f ∧ g if and only if K, s � f and K, s � g for any state formulae f and g.

5. K, s � f ∨ g if and only if K, s � f or K, s � g for any state formulae f and g.

CHAPTER 2. PRELIMINARIES 8

6. K, s � E f for some path formula f if and only if there exists a path π = s → s1 →
s2 → · · · → si, i ∈ N∪ {ω} such that K, π � f .

7. K, s � A f for some path formula f if and only if K, π � f for all paths π = s→ s1 →
s2 → · · · → si, i ∈ N∪ {ω}.

We use π i to denote the i-th state of a path π , with the first state being π0. The operator

� for path formulae is then defined as follows:

1. K, π � X f if and only if k, π1 � f for any state formula f .

2. K, π � f U g for any state formulae f and g if and only if there exists j ≥ 0 such that

K, πk � g for all k ≥ j, K, π i � f for all i < j.

3. K, π � f R g for any state formulae f and g if and only if for all j ≥ 0, if K, π i 6� f for

every i < j then K, π j � g.

2.2 Labeled Transition Systems and Stable Failures

CTL semantics is defined over Kripke structures, where each state is labeled with atomic

propositions. By contrast, the common model used for system specifications in model-

based testing is the labeled transition system (LTS), where the labels (or actions) are asso-

ciated with the transitions instead.

An LTS [20] is a tuple M = (S, A,→, s0) where S is a countable, non empty set of

states, s0 ∈ S is the initial state, and A is a countable set of actions. The actions in A are

called visible (or observable), by contrast with the special, unobservable action τ 6∈ A (also

called internal action). The relation →⊆ S× (A ∪ {τ})× S is the transition relation; we

use p a−→ q instead of (p, a, q) ∈→. A transition p a−→ q means that state p becomes state

q after performing the (visible or internal) action a.

The notation p a−→ stands for ∃p′ : p a−→ p′. The sets of states and transitions can

also be considered global, in which case an LTS is completely defined by its initial state.

CHAPTER 2. PRELIMINARIES 9

We therefore blur whenever convenient the distinction between an LTS and a state, calling

them both “processes”. Given that → is a relation rather than a function, and also given

the existence of the internal action, an LTS defines a nondeterministic process.

A path (or run) π starting from state p′ is a sequence p′ = p0
a1−→ p1

a2−→ · · · pk−1
ak−→ pk

with k ∈ N ∪ {ω} such that pi−1
ai−→ pi for all 0 < i ≤ k. We use |π | to refer to k,

the length of π . If |π | ∈ N, then we say that π is finite. The trace of π is the sequence

trace(π) = (ai)0<i≤|π |,ai 6=τ ∈ A∗ of all the visible actions that occur in the run listed in their

order of occurrence and including duplicates. Note in particular that internal actions do

not appear in traces. The set of finite traces of a process p is defined as Fin(p) = {tr ∈
traces(p) : |tr| ∈ N}. If we are not interested in the intermediate states of a run then we

use the notation p w
=⇒ q to state that there exists a run π starting from state p and ending

at state q such that trace(π) = w. We also use p w
=⇒ instead of ∃p′ : p w

=⇒ p′.

A process p that has no outgoing internal action cannot make any progress unless it

performs a visible action. We say that such a process is stable [27]. We write p ↓ whenever

we want to say that process p is stable. Formally, p ↓= ¬(∃p′ 6= p : p ε
=⇒ p′). A

stable process p responds predictably to any set of actions X ⊆ A, in the sense that its

response depends exclusively on its outgoing transitions. Whenever there is no action

a ∈ X such that p a−→ we say that p refuses the set X. Only stable processes are able to

refuse actions; unstable processes refuse actions “by proxy”: they refuse a set X whenever

they can internally become a stable process that refuses X. Formally, p refuses X (written

p ref X) if and only if ∀a ∈ X : ¬(∃p′ : (p ε
=⇒ p′) ∧ p′ ↓ ∧p′ a−→).

To describe the behaviour of a process in terms of refusals we need to record each

refusal together with the trace that causes that refusal. An observation of a refusal plus the

trace that causes it is called a stable failure [27]. Formally, (w, X) is a stable failure of process

p if and only if ∃pw : (p w
=⇒ pw) ∧ pw ↓ ∧(pw ref X). The set of stable failures of p is then

SF (p) = {(w, X) : ∃pw : (p w
=⇒ pw) ∧ pw ↓ ∧(pw ref X)}.

Several preorder relations (that is, binary relations that are reflexive and transitive but

CHAPTER 2. PRELIMINARIES 10

not necessarily symmetric or antisymmetric) can be defined over processes based on their

observable behaviour (including traces, refusals, stable failures, etc.) [5]. Such preorders

can then be used in practice as implementation relations, which in turn create a process-

oriented specification technique. The stable failure preorder is defined based on stable fail-

ures and is one of the finest such preorders (but not the absolute finest) [5].

Let p and q be two processes. The stable failure preorder vSF is defined as p vSF q

if and only if Fin(p) ⊆ Fin(q) and SF (p) ⊆ SF (q). Given the preorder vSF one can

naturally define the stable failure equivalence 'SF : p 'SF q if and only if p vSF q and

q vSF p.

2.3 Failure Trace Testing

In model-based testing [4] a test runs in parallel with the system under test and synchro-

nizes with it over visible actions. A run of a test t and a process p represents a possible

sequence of states and actions of t and p running synchronously. The outcome of such a

run is either success (>) or failure (⊥). The precise definition of synchronization, success,

and failure depends on the particular type of tests being considered. We will present below

such definitions for the particular framework of failure trace testing.

Given the nondeterministic nature of LTS there may be multiple runs for a given pro-

cess p and a given test t and so a set of outcomes is necessary to give the results of all the

possible runs. We denote by Obs(p, t) the set of exactly all the possible outcomes of all the

runs of p and t. Given the existence of such a set of outcomes, two definitions of a process

passing a test are possible. More precisely, a process p may pass a test t whenever some run

is successful (formally, p may t if and only if > ∈ Obs(p, t)), while p must pass t whenever

all runs are successful (formally, p must t if and only if {>} = Obs(p, t)).

In what follows we use the notation init(p) = {a ∈ A : p a
=⇒}. A failure trace f [21] is

a string of the form f = A0a1 A1a2 A2 . . . an An, n ≥ 0, with ai ∈ A∗ (sequences of actions)

and Ai ⊆ A (sets of refusals). Let p be a process such that p ε
=⇒ p0

a1=⇒ p1
a2=⇒ · · · an=⇒ pn;

CHAPTER 2. PRELIMINARIES 11

f = A0a1 A1a2 A2 . . . an An is then a failure trace of p whenever the following two conditions

hold:

• If ¬(pi
τ−→), then Ai ⊆ (A \ init(pi)); for a stable state the failure trace refuses any

set of events that cannot be performed in that state (including the empty set).

• If pi
τ−→ then Ai = ∅; whenever pi is not a stable state it refuses an empty set of

events by definition.

In other words, we obtain a failure trace of p by taking a trace of p and inserting refusal

sets after stable states.

Systems and tests can be concisely described using the testing language TLOTOS [3,

21], which will also be used in this thesis. A is the countable set of observable actions,

ranged over by a. The set of processes or tests is ranged over by t, t1 and t2, while T ranges

over the sets of tests or processes. The syntax of TLOTOS is then defined as follows:

t = stop | a; t1 | i; t1 | θ; t1 | pass | t1 � t2 | ΣT

The semantics of TLOTOS is then the following:

1. inaction (stop): no rules.

2. action prefix: a; t1
a−→ t1 and i; t1

τ−→ t1

3. deadlock detection: θ; t1
θ−→ t1.

4. successful termination: pass
γ−→ stop.

5. choice: with g ∈ A ∪ {γ,θ, τ},

t1
g−→ t′1

t1 � t2
g−→ t′1

t2 � t1
g−→ t′1

CHAPTER 2. PRELIMINARIES 12

6. generalized choice: with g ∈ A ∪ {γ,θ, τ},

t1
g−→ t′1

Σ({t1} ∪ t)
g−→ t′1

Failure trace tests are defined in TLOTOS using the special actions γ which signals the

successful completion of a test, and θ which is the deadlock detection label (the precise be-

haviour will be given later). Processes (or LTS) can also be described as TLOTOS processes,

but such a description does not contain γ or θ. A test runs in parallel with the system un-

der test according to the parallel composition operator ‖θ. This operator also defines the

semantics of θ as the lowest priority action:

p τ−→ p′

p‖θt τ−→ p′‖θt
t τ−→ t′

p‖θt τ−→ p′‖θt

t
γ−→ stop

p‖θt
γ−→ stop

p a−→ p′ t a−→ t′

p‖θt a−→ p′‖θt′
a ∈ A

t θ−→ t′ ¬∃x ∈ A ∪ {τ ,γ} : p‖θt x−→
p‖θt θ−→ p‖θt′

Given that both processes and tests can be nondeterministic we have a set Π(p‖θt) of

possible runs of a process and a test. The outcome of a particular run π ∈ Π(p‖θt) of a

test t and a process under test p is success (>) whenever the last symbol in trace(π) is γ,

and failure (⊥) otherwise. One can then distinguish the possibility and the inevitability of

success for a test as mentioned earlier: p may t if and only if > ∈ Obs(p, t), and p must t if

and only if {>} = Obs(p, t).

The set ST of sequential tests is defined as follows [21]: pass ∈ ST , if t ∈ ST then

a; t ∈ ST for any a ∈ A, and if t ∈ ST then Σ{a; stop : a ∈ A′} � θ; t ∈ ST for any

A′ ⊆ A.

A bijection between failure traces and sequential tests exists [21]. For a sequential test t

the failure trace ftr(t) is defined inductively as follows: ftr(pass) = ∅, ftr(a; t′) = a ftr(t′),

and ftr(Σ{a; stop : a ∈ A′}�θ; t′) = A′ ftr(t′). Conversely, let f be a failure trace. Then we

CHAPTER 2. PRELIMINARIES 13

can inductively define the sequential test st(f) as follows: st(∅) = pass, st(a f) = a st(f),

and st(A f) = Σ{a; stop : a ∈ A}�θ; st(f). For all failure traces f we have that ftr(st(f)) =

f , and for all tests t we have st(ftr(t)) = t. We then define the failure trace preorder vFT

as follows: p vFT q if and only if ftr(p) ⊆ ftr(q).

The above bijection effectively shows that the failure trace preorder (which is based on

the behaviour of processes) can be readily converted into a testing-based preorder (based

on the outcomes of tests applied to processes). Indeed there exists a successful run of p in

parallel with the test t, if and only if f is a failure trace of both p and t. Furthermore, these

two preorders are equivalent to the stable failure preorder introduced earlier:

Proposition 2.1 [21] Let p be a process, t a sequential test, and f a failure trace. Then p may t if

and only if f ∈ ftr(p), where f = ftr(t).

Let p1 and p2 be processes. Then p1 vSF p2 if and only if p1 vFT p2 if and only if

p1 may t =⇒ p2 may t for all failure trace tests t if and only if ∀t′ ∈ ST : p1 may t′ =⇒
p2 may t′.

Let t be a failure trace test. Then there exists T(t) ⊆ ST such that p may t if and only if

∃t′ ∈ T(t) : p may t′.

We note in passing that unlike other preorders, vSF (or equivalentlyvFT) can be in fact

characterized in terms of may testing only; the must operator needs not be considered any

further.

Chapter 3

Previous Work

The investigation into connecting logical and algebraic frameworks of formal specification

and verification has not been pursued in too much depth. To our knowledge the only

substantial investigation on the matter is based on linear-time temporal logic (LTL) and

its relation with Büchi automata [29]. Such an investigation started with timed Büchi au-

tomata [1] approaches to LTL model checking [12, 15, 18, 31, 32].

An explicit equivalence between LTL and the may and must testing framework of

De Nicola and Hennessy [15] was developed as a unified semantic theory for heteroge-

neous system specifications featuring mixtures of labeled transition systems and LTL for-

mulae [13]. This theory uses Büchi automata [29] rather than LTS as underlying semantic

formalism. The Büchi must-preorder for a certain class of Büchi process was first estab-

lished by means of trace inclusion. Then LTL formulae were converted into Büchi pro-

cesses whose languages contain the traces that satisfy the formula.

The relation between may and must testing and temporal logic mentioned above [13]

was also extended to the timed (or real-time) domain [7, 14]. Two refinement timed pre-

orders similar to may and must testing were introduced, together with behavioural and

language-based characterizations for these relations (to show that the new preorders are

extensions of the traditional preorders). An algorithm for automated test generation out

of formulae written in a timed variant of LTL called Timed Propositional Temporal Logic

14

CHAPTER 3. PREVIOUS WORK 15

(TPTL) [2] was then introduced.

To our knowledge a single effort that considers the equivalence of CTL and algebraic

specification exists [8, 9]. This work analyzes the equivalence between labeled transition

systems and Kripke structures, and then establishes the conversion of failure trace tests

into equivalent CTL formulae. An attempt at establishing the conversion the other way

around also exists [8] but is incorrect [6]. Our work fixes this incorrect conversion. The

remainder of this chapter is therefore dedicated to an in-depth presentation of the equiva-

lence between LTS and Kripke structures, followed by the same treatment for the conver-

sion of failure trace tests into CTL formulae [9].

Our presentation below follows faithfully the original technical report [8], with no

change in the content but possible slight changes in the language being used. We include

the original examples but for brevity we exclude the proofs. The only exception is the

actual construction of the conversion function, which is shown originally in a proof; for

completeness we therefore include a sketch of that proof in our manuscript which outlines

the construction but omits the argument of correctness for that construction (see Proposi-

tion 3.2 in Section 3.2).

3.1 An Equivalence between LTS and Kripke Structures

A CTL satisfaction operator over LTS was defined in the same manner as for Kripke struc-

tures [8, 9]. In essence, the elementary propositions that hold in an LTS state are the actions

that state can perform. Satisfaction for the rest of the CTL formulae is then defined induc-

tively as usual.

Definition 3.1 SATISFACTION FOR PROCESSES [8, 9]: A process p satisfies a ∈ A, written by

abuse of notation p � a, if and only if p a−→. That p satisfies some (general) CTL* state formula is

defined inductively as follows: Let f and g be some state formulae unless stated otherwise; then,

1. p � > is true and p � ⊥ is false for any process p.

CHAPTER 3. PREVIOUS WORK 16

2. p � ¬ f if and only if ¬(p � f).

3. p � f ∧ g if and only if p � f and p � g.

4. p � f ∨ g if and only if p � f or p � g.

5. p � E f for some path formula f if and only if there exists a path π = p
a0−→ s1

a1−→ s2
a2−→

· · · such that π � f .

6. p � A f for some path formula f if and only if π � f for all paths π = p
a0−→ s1

a1−→ s2
a2−→

· · · .

As usual π i denotes the i-th state of a path π (with the first state being state 0, or π0). The

definition of � for LTS paths is:

1. π � X f if and only if π1 � f .

2. π � f U g if and only if there exists j ≥ 0 such that π j � g and πk � g for all k ≥ j, and

π i � f for all i < j.

3. π � f R g if and only if for all j ≥ 0, if π i 6� f for every i < j then π j � g.

A weaker satisfaction operator for CTL was also introduced. This operator is defined

over sets of states rather than single states.

Definition 3.2 SATISFACTION OVER SETS OF STATES [8, 9]: Consider a Kripke structure K =

(S, S0, R, L) over AP. For some set Q ⊆ S and some CTL state formula f , K, Q � f is defined as

follows, with f and g state formulae unless stated otherwise:

1. K, Q � > is true and K, Q � ⊥ is false for any set Q in any Kripke structure K.

2. K, Q � a if and only if a ∈ L(s) for some s ∈ Q, a ∈ AP.

3. K, Q � ¬ f if and only if ¬(K, Q � f).

CHAPTER 3. PREVIOUS WORK 17

4. K, Q � f ∧ g if and only if K, Q � f and K, Q � g.

5. K, Q � f ∨ g if and only if K, Q � f or K, Q � g.

6. K, Q � E f for some path formula f if and only if for some s ∈ Q there exists a path

π = s→ s1 → s2 → · · · → si such that K, π � f .

7. K, Q � A f for some path formula f if and only if for some s ∈ Q it holds that K, π � f for

all paths π = s→ s1 → s2 → · · · → si.

Then the following equivalence between Kripke structures and LTS was introduced.

One nice property of this equivalence is that a Kripke structure equivalent to a given LTS

can be constructed algorithmically.

Definition 3.3 EQUIVALENCE BETWEEN KRIPKE STRUCTURES AND LTS [8, 9]: Given a

Kripke structure K and a set of states Q of K, the pair K, Q is equivalent to a process p, writ-

ten K, Q ' p (or p ' K, Q), if and only if for any CTL* formula f K, Q � f if and only if

p � f .

Proposition 3.1 [8, 9] There exists an algorithmic functionK which converts a labeled transition

system p into a Kripke structure K and a set of states Q such that p ' (K, Q).

Specifically, for any labeled transition system p = (S, A,→, s0), its equivalent Kripke struc-

ture K is defined as K = (S′, Q, R′, L′) where:

1. S′ = {〈s, x〉 : s ∈ S, x ⊆ init(s)}.

2. Q = {〈s0, x〉 ∈ S′}.

3. R′ contains exactly all the transitions (〈s, N〉, 〈t, O〉) such that 〈s, N〉, 〈t, O〉 ∈ S′, and

(a) for any n ∈ N, s n
=⇒ t,

(b) for some q ∈ S and for any o ∈ O, t o
=⇒ q, and

(c) if N = ∅ then O = ∅ and t = s (these loops ensure that the relation R′ is complete).

CHAPTER 3. PREVIOUS WORK 18

p

tq

sr u

c d

a b

e

p, {a}

q, {d}q, {c}

s, ∅r, ∅

p, {b}

t, {e}

u, ∅

(a) (b)

Each state of the Kripke structure (b) is labeled with the LTS state it came from, and
the set of propositions that hold in that Kripke state.

Figure 3.1: A conversion of an LTS (a) to an equivalent Kripke structure (b) [8, 9].

4. L′ : S′ → 2AP such that L′(s, x) = x, where AP = A.

A notable property of the conversion function K is that a single LTS state can result

in multiple states in the resulting Kripke structure. This happens whenever an LTS state

evolves differently after performing different actions. This is the case for the states p and

q of the LTS shown in Figure 3.1(a), whose equivalent Kripke structure is shown in Fig-

ure 3.1(b). Such a “split” is also the reason for needing the weaker satisfaction operator

(Definition 3.2).

3.2 From Failure Trace Tests to CTL Formulae

Let P be the set of all processes, T the set of all tests, and F the set of all CTL formulae.

Proposition 3.2 [8, 9] There exists a function F : T → F such that p may t if and only if

K(p) � F(t) for any p ∈ P .

Proof sketch [8, 9]. The function F is defined inductively. The basis is naturally defined

as follows:

1. F(pass) = >

CHAPTER 3. PREVIOUS WORK 19

b1 =

coffee tea

bang bang

tea coffee

coin coin

b2 =

tea coffee

bang bang

tea coffee

coin coin

Figure 3.2: Two coffee machines.

2. F(stop) = ⊥

The inductive constructs are then defined as follows:

1. F(i; t) = F(t)

2. F(a; t) = a ∧ EX F(t)

3. F(ΣT) =
∨

t∈T F(t), where
∨

t∈T={t1 ,...,tn} t is the usual shorthand for t1 ∨ · · · ∨ tn

4. F(ΣT � θ; t) = (F(t1) ∨ F(t2) ∨ · · · ∨ F(tn)) ∨ (¬(F(t1) ∧ F(t2) ∧ · · · ∧ F(tn)) ∧
F(t)), where T = {t1, t2, . . . , tn}.

Several constructs were not considered since they can be expressed using the above con-

structs. For example t1 � t2 is equivalent to Σ{t1, t2} and so the � operator does not need

individual consideration. The function F is also defined by assuming without loss of gen-

erality that there is at most one deadlock (θ) branch in every choice. The interested reader

is directed to the original proof [8, 9] for details. �

We conclude our description of previous work with the example used originally [9] to

illustrate the conversion of failure trace tests into CTL formulae. This example does illus-

trate this conversion so it is relevant by itself. However, the primary purpose of including

it in this manuscript is that we will follow the same example later (see Example 3 at the

CHAPTER 3. PREVIOUS WORK 20

end of Chapter 4) to illustrate our conversion function from CTL formulae to failure trace

tests, thus going full circle.

Example 1 HOW TO TELL LOGICALLY THAT YOUR COFFEE MACHINE IS WORK-

ING [9].:

The coffee machines b1 and b2 below were famously introduced to illustrate

the limitations of the may and must testing framework of De Nicola and Hen-

nessy. Indeed, they have been found [21] to be equivalent under testing pre-

order [15] but not equivalent under stable failure preorder [21].

b1 = coin; (tea � bang; coffee) � coin; (coffee � bang; tea)

b2 = coin; (tea � bang; tea) � coin; (coffee � bang; coffee)

These machines are also shown graphically (as LTS) in Figure 3.2.

The first machine accepts a coin and then dispenses either tea or coffee

nondeterministically. One can however hit the machine to change its origi-

nal choice. The second machine gives either tea or coffee, just as b1. By contrast

with b1 however the beverage offered will not be changed by hits. One failure

trace test that differentiate these machines [21] is

t = coin; (coffee; pass � θ; bang; coffee; pass)

The conversion of the failure trace test t into a CTL formula as per Proposi-

tion 3.2 yields [9]:

F(t) = coin∧ EX (coffee∨ ¬coffee∧ bang∧ EX coffee)

The meaning of this formula is clearly equivalent to the meaning of t, as it

literally reads “a coin is expected, and in the next state either coffee is offered,

CHAPTER 3. PREVIOUS WORK 21

or coffee is not offered but a bang is available and then the next state will offer

coffee.”

F(t) holds for both the initial states of K(b1) (where coffee is offered from

the outset or follows a hit on the machine) but holds in only one of the initial

states ofK(b2) (the one that dispenses coffee).

Chapter 4

CTL Is Equivalent to Failure Trace
Testing

Let as before P be the set of all processes, T the set of all failure trace tests, and F the set

of all CTL formulae.

This section presents the main contribution of this thesis. We go the other way around

and show that CTL formulae can be converted into failure trace tests. Combined with

earlier work in the matter [8, 9] we thus establish that CTL formulae and failure trace tests

are equivalent:

Theorem 4.1 For some t ∈ T and f ∈ F , whenever p may t if and only if K(p) � f for any

p ∈ P we say that t and f are equivalent. Then, for every failure trace test there exists an equivalent

CTL formula and the other way around. Furthermore a failure trace test can be algorithmically

converted into its equivalent CTL formula and the other way around.

Proof. Immediate from Proposition 3.2 (in Section 3.2) and Theorem 4.5 (below). The

algorithmic nature of the conversion is shown implicitly in the proofs of these two results.

�

We find it convenient to show first how to construct logical (but not temporal) combi-

nations of tests.

22

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 23

Lemma 4.2 For any test t ∈ T there exists a test t ∈ T such that p may t if and only if

¬(p may t) for any p ∈ P .

Proof. We follow the original construction for negation [8, 9], which continues to work.

Specifically, we modify t to produce t as follows: We first force all the success states

to become deadlock states by eliminating the outgoing action γ from t completely. If the

action that leads to a state thus converted is θ then this action is removed as well (indeed,

the “fail if nothing else works” phenomenon thus eliminated is implicit in testing). Finally,

we add to all the states having their outgoing transitions θ or γ eliminated in the previous

steps one outgoing transition labeled θ followed by one outgoing transition labeled γ.

The test t must fail every time the original test t succeeds. The first step (eliminating γ

transitions) has exactly this effect.

In addition, we must ensure that t succeeds in all the circumstances in which t fails. The

extra θ outgoing actions (followed by γ) ensure that whevever the end of the run reaches

a state that was not successful in t (meaning that it had no outgoing γ transition) then this

run is extended in t via the θ branch to a success state, as desired. �

Lemma 4.3 For any two tests t1, t2 ∈ T there exists a test t1 ∨ t2 ∈ T such that p may (t1 ∨ t2)

if and only if (p may t1) ∨ (p may t2) for any p ∈ P .

Proof. We construct such a disjunction on tests by induction over the structure of tests.

For the base case it is immediate that pass ∨ t = t ∨ pass = pass and stop ∨ t = t ∨
stop = t for any structure of the test t.

For the induction step we consider without loss of generality that t1 and t2 have the

following structure:

t1 = Σ{b1; t1(b1) : b1 ∈ B1} � θ; tN1

t2 = Σ{b2; t2(b2) : b2 ∈ B2} � θ; tN2

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 24

Indeed, all the other possible structures of t1 (and t2) are covered by such a form since θ

not appearing on the top level of t1 (or t2) is equivalent to tN1 = stop (or tN2 = stop),

while not having a choice on the top level of the test is equivalent to B1 (or B2) being an

appropriate singleton.

We then construct t1 ∨ t2 for the form of t1 and t2 mentioned above under the inductive

assumption that the disjunction between any of the “inner” tests t1(b1), tN1 t2(b2), and tN2

is known. We have:

Σ{b1; t1(b1) : b1 ∈ B1} � θ; tN1 ∨ Σ{b2; t2(b2) : b2 ∈ B2} � θ; tN2
= Σ{b; (t1(b) ∨ t2(b)) : b ∈ B1 ∩ B2} �

Σ{b; (t1(b) ∨ [tN2]b) : b ∈ B1 \ B2} �
Σ{b; (t2(b) ∨ [tN1]b) : b ∈ B2 \ B1} �
θ; (tN1 ∨ tN2)

(4.1)

where [t]b is the test t restricted to performing b as its first action and so is inductively

constructed as follows:

1. If t = stop then [t]b = stop.

2. If t = pass then [t]b = pass.

3. If t = b; t′ then [t]b = t′.

4. If t = a; t′ with a 6= b then [t]b = stop.

5. If t = i; t′ then [t]b = [t′]b.

6. If t = t′ � t′′ such that neither t′ nor t′′ contain θ in their topmost choice then [t]b =

[t′]b � [t′′]b.

7. If t = b; t′ � θ; t′′ then [t]b = t′.

8. If t = a; t′ � θ; t′′ with a 6= b then [t]b = [t′′]b.

If the test t1 ∨ t2 is offered an action b that is common to the top choices of the two

tests t1 and t2 (b ∈ B1 ∩ B2) then the disjunction succeeds if and only if b is performed

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 25

and then at least one of the tests t1(b) and t2(b) succeeds (meaning that t1(b) ∨ t2(b) suc-

ceeds inductively) afterward. The first term of the choice in Equation (4.1) represents this

possibility.

If the test is offered an action b that appears in the top choice of t1 but not in the top

choice of t2 (b ∈ B1 \ B2) then the disjunction succeeds if and only if t1(b) succeeds after

b is performed, or tN2 performs b and then succeeds; the same goes for b ∈ B2 \ B1 (only

in reverse). The second and the third terms of the choice in Equation (4.1) represent this

possibility.

Finally whenever the test t1 ∨ t2 is offered an action b that is in neither the top choices

of the two component tests t1 and t2 (that is, b 6∈ B1 ∪ B2), then the disjunction succeeds if

and only if at least one of the tests tN1 or tN2 succeeds (or equivalently tN1 ∨ tN2 succeeds

inductively). This is captured by the last term of the choice in Equation (4.1). Indeed,

b 6∈ B1 ∪ B2 implies that b 6∈ (B1 ∩ B2) ∪ (B1 \ B2) ∪ (B2 \ B1) and so such an action will

trigger the deadlock detection (θ) choice.

There is no other way for the test t1 ∨ t2 to succeed so the construction is complete. �

We believe that an actual example of how disjunction is constructed is instructive. The

following is therefore an example to better illustrate disjunction over tests. A further ex-

ample (incorporating temporal operators and also negation) will be provided later (see

Example 3).

Example 2 A DISJUNCTION OF TESTS:

Consider the construction t1 ∨ t2, where:

t1 = (bang; tea; pass) �

(coin; (coffee; stop � θ; pass))

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 26

t2 = (coin; pass) �

(nudge; stop) �

(θ; (bang; water; pass � turn; stop))

Using the notation from Equation (4.1) we have B1 = {coin, bang}, B2 =

{coin, nudge} and so B1 ∩ B2 = {coin}, B1 \ B2 = {bang}, and B2 \ B1 =

{nudge}. We further note that t1(coin) = coffee; stop � θ; pass, t1(bang) =

tea; pass, tN1 = stop, t2(coin) = pass, t2(nudge) = stop, and tN2 =

bang; water; pass � turn; stop. Therefore we have:

t1 ∨ t2 = (coin; (t1(coin) ∨ t2(coin))) �

(bang; (t1(bang) ∨ [tN2]bang)) �

(nudge; (t2(nudge) ∨ [tN1]nudge)) �

θ; (tN1 ∨ tN2)

= (coin; pass) �

(bang; (t1(bang) ∨ [tN2]bang)) �

(nudge; stop) �

(θ; (bang; water; pass � turn; stop))

Indeed, t1(coin) = pass so t1(coin) ∨ t2(coin) = pass; [tN1]nudge = stop; and

tN1 = stop so tN1 ∨ tN2 = tN2.

We further have [tN2]bang = water; pass, and therefore t1(bang) ∨
[tN2]bang = (tea; pass) ∨ (water; pass). We proceed inductively as above, ex-

cept that in this degenerate case tN1 = tN2 = stop and B1 ∩ B2 = ∅, so the

result is a simple choice between the components: t1(bang) ∨ [tN2]bang =

(tea; pass) � (water; pass). Overall we reach the following result:

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 27

t1 ∨ t2 = (coin; pass) �

(bang; ((tea; pass) � (water; pass))) �

(nudge; stop) �

(θ; (bang; water; pass � turn; stop)) (4.2)

Intuitively, t1 specifies that we can have tea if we hit the machine, and if we put

a coin in we can get anything except coffee. Similarly t2 specifies that we can

put a coin in the machine, we cannot nudge it, and if none of the above happen

then we can either hit the machine (case in which we get water) or we can turn

it upside down. On the other hand, the disjunction of these tests as shown in

Equation (4.2) imposes the following specification:

1. If a coin is inserted then the test succeeds. Indeed, this case from t2 su-

persedes the corresponding special case from t1: the success of the test

implies that the machine is allowed to do anything afterward, including

not dispensing coffee.

2. We get either tea or water after hitting the machine. Getting tea comes

from t1 and getting water from t2 (where the bang event comes from the θ

branch).

3. If we nudge the machine then the test fails immediately; this comes di-

rectly from t2.

4. In all the other cases the test behaves like theθ branch of t2. This behaviour

makes sense since there is no such a branch in t1.

We can thus see how the disjunction construction from Lemma 4.3 makes intu-

itive sense.

This all being said, note that we do not claim that either of the tests t1 and

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 28

t2 are useful in any way, and so we should not be held responsible for the be-

haviour of any machine built according to the disjunctive specification shown

above.

Corollary 4.4 For any tests t1, t2 ∈ T there exists a test t1 ∧ t2 ∈ T such that p may (t1 ∧ t2) if

and only if (p may t1) ∧ (p may t2) for any p ∈ P .

Proof. Immediate from Lemmata 4.2 and 4.3 using the De Morgan rule a ∧ b = ¬(¬a ∨
¬b). �

We are now ready to show that any CTL formula can be converted into an equivalent

failure trace test.

Theorem 4.5 There exists a functionT : F → T such thatK(p) � f if and only if p mayT(f)

for any p ∈ P .

Proof. The proof is done by structural induction over CTL formulae. As before, the

function Twill also be defined recursively in the process.

We have naturally T(>) = pass and T(⊥) = stop. Clearly any Kripke structure

satisfies > and any process passes pass, so it is immediate that K(p) � > if and only if

p may pass = T(>). SimilarlyK(p) � ⊥ if and only if p may stop is immediate (neither is

ever true).

To complete the basis we have T(a) = a; pass, which is an immediate consequence of

the definition of K. Indeed, the construction defined in Proposition 3.1 ensures that for

every outgoing action a of an LTS process p there will be an initial Kripke state in K(p)

where a holds and so p may a; pass if and only ifK(p) � a.

The constructions for non-temporal logical operators have already been presented

in Lemma 4.2, Lemma 4.3, and Corollary 4.4. We therefore have T(¬ f) = T(f) with

T(f) as constructed in Lemma 4.2, while T(f1 ∨ f2) = T(f1) ∨T(f2) and T(f1 ∧ f2) =

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 29

T(f1)∧T(f2) with test disjunction and conjunction as in Lemma 4.3 and Corollary 4.4, re-

spectively. That these constructions are correct follow directly from the respective lemmata

and corollary.

We then move to the temporal operators. Their conversion comes largely (but not com-

pletely) unmodified from the original proof [8].

We haveT(EX f) = Σ{a;T(f) : a ∈ A}. When applied to some process p the resulting

test performs any action a ∈ A and then (in the next state p′ such that p a−→ p′) gives

control to T(f). T(f) will always test the next state (since there is no θ in the top choice),

and there is no restriction as to what particular next state p′ is expected (since any action

of p is accepted by the test).

Concretely, suppose that p may Σ{a;T(f) : a ∈ A}. Then there exists some action

a ∈ A such that p performs a, becomes p′, and p′ may T(f) (by definition of may testing).

It follows by inductive assumption that K(p′) � f and so K(p) � X f (since K(p′) is one

successor ofK(p)). Conversely, by the definition ofK all successors ofK(p) have the form

K(p′) such that p a−→ p′ for some a ∈ A. Suppose then thatK(p) � X f . Then there exists

a successor K(p′) of K(p) such that K(p′) � f , which is equivalent to p′ may T(f) (by

inductive assumption), which in turn implies that (p = a; p′) may Σ{a;T(f) : a ∈ A} (by

the definition of may testing), as desired.

We then haveT(EF f) = t′ such that t′ = T(f)� (Σ(a; t′ : a ∈ A)). The test t′ is shown

graphically in Figure 4.1(a). It specifies that at any given time the system under test has a

choice to either pass T(f) or perform some (any) action and then pass t′ anew. Repeating

this description recursively we conclude that to be successful the system under test can

passT(f), or perform an action and then passT(f), or perform two actions and then pass

T(f), and so on. The overall effect (which is shown in Figure 4.1(b)) is that exactly all

the processes p that perform an arbitrary sequence of actions and then pass T(f) at the

end of this sequence will pass t′ = T(EF f). Given the inductive assumption that T(f) is

equivalent to f this is equivalent toK(p) being the start of an arbitrary path to some state

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 30

(f)

a ∈ A

(f)

(f) (f)

...

(f).

a ∈ A
a ∈ A

a ∈ A

a ∈ A

a ∈ A

a ∈ A

(a) (b)

Figure 4.1: Test equivalent to the CTL formula EF f (a) and its unfolded version (b).

that satisfies f , which is precisely the definition ofK(p) � EF f , as desired.

Following a similar line of thought we have T(EG f) = T(f) ∧ (T(EX f ′) � θ; pass),

with f ′ = f ∧ EX f ′. Suppose that p mayT(EG f). This implies that p mayT(f). This also

imply that p may T(EX f ′) but only unless p = stop; indeed, the θ choice appears in con-

junction with a multiple choice that offers all the possible alternatives (see the conversion

for EX above) and so can only be taken if no other action is available.

By inductive assumption p may T(f) if and only if K(p) � f . By the conversion of

EX (see above) p may T(EX f ′) if and only if K(p′) � f ′ where p a−→ p′ for some a ∈ A

and so K(p′) is the successor of K(p) on some path. We thus have p may T(EG f) if and

only ifK(p) � f andK(p′) � f ′ for some successor p′ of p. Repeating the reasoning above

recursively (starting from p′, etc.) we conclude that p mayT(EG f) if and only ifK(p1) � f

for all the states K(p1) on some path that starts from K(p), which is clearly equivalent to

K(p) � EG f ′. The recursive reasoning terminates at the end of the path, when the LTS

state p becomes stop, and the process is therefore released from its obligation to have states

in which f holds (since no states exist any longer). In this caseK(p) is a “sink” state with

no successor (according to Item 3c in Proposition 3.1) and so the corresponding Kripke

path is also at an end (and so there are no more states for f to hold in).

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 31

Finally we have T(E f1 U f2) = (T(f1) ∧ (T(EX f ′) � θ; pass)) � i; (T(f2) ∧
(T(EX f ′′) � θ; pass)), with f ′ = f1 ∧ EX f ′ and f ′′ = f2 ∧ EX f ′′. Following the same rea-

soning as above (in the EG case) the fact that a process p follows the test T(f1) ∧T(EX f ′)

without deadlocking until some arbitrary state p′ is reached is equivalent to K(p) featur-

ing a path of arbitrary length ending in state K(p′) whose states K(p1) will all satisfy f1.

At the arbitrary (and nondeterministically chosen) point p′ the test T(E f1 U f2) will exer-

cise its choice and so p′ has to pass T(f2) ∧T(EX f ′′) in order for p to pass T(E f1 U f2).

We follow once more the same reasoning as in the EG case and we thus conclude that this

is equivalent to K(p1) � f for all the states K(p1) on some path that starts from K(p′).

Putting the two phases together we have that p may T(E f1 U f2) if and only if K(p) fea-

tures a path along which f1 holds up to some state and f2 holds from that state on, which

is equivalent to K(p) � E f1 U f2, as desired. The θ; pass choices play the same role as in

the EG case (namely, they account for the end of a path since they can only be taken when

no other action is available).

Thus we complete the proof and the conversion between CTL formulae and sequential

tests. Indeed, note that EX, EF, EG, and EU is a minimal set of temporal operators for

CTL [12], so all the remaining CTL constructs can be rewritten using only the constructs

discussed above. �

Example 3 HOW TO TEST THAT YOUR COFFEE MACHINE IS WORKING:

We turn our attention again to the coffee machines b1 and b2 below, as pre-

sented earlier in Example 1, and also graphically as LTS in Figure 3.2:

b1 = coin; (tea � bang; coffee) � coin; (coffee � bang; tea)

b2 = coin; (tea � bang; tea) � coin; (coffee � bang; coffee)

Also recall that the following CTL formula was found to differentiate between

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 32

the two machines:

φ = coin∧ EX (coffee∨ ¬coffee∧ bang∧ EX coffee)

Indeed, the formula holds for both the initial states of K(b1) (where coffee is

offered from the outset or follows a hit on the machine) but holds in only one

of the initial states ofK(b2) (the one that dispenses coffee).

Let C = {coin, tea, bang, coffee} be the set of all actions. We will henceforth

convert silently all the testsθ; pass into pass as long as these tests do not partic-

ipate in a choice. We will also perform simplifications of the intermediate tests

as we go along in order to simplify (and so clarify) the presentation.

The process of converting the formula φ to a test suite T(φ) then goes as

follows:

1. We convert first bang∧ EX coffee = ¬(¬bang∨ ¬EX coffee).

We have T(¬bang) = bang; stop � θ; pass. On the other hand

T(EX coffee) = Σ{a; coffee; pass : a ∈ C} and so T(¬EX coffee) =

Σ{a; coffee; stop �θ; pass : a ∈ C}�θ; pass = Σ{a; coffee; stop �θ; pass :

a ∈ C} (we ignore the topmost θ branch since the rest of the choice covers

all the possible actions).

Now we compute the disjunction T(¬bang) ∨T(¬EX coffee). With the

notations used in the proof of Lemma 4.3 we have B1 = {bang}, B2 = C,

t1(bang) = stop, tN1 = pass, t2(b) = coffee; stop � θ; pass for all b ∈
B2, and tN2 = pass. We therefore have T(¬coffee) ∨T(¬EX coffee) =

bang; (coffee; stop � θ; pass) � Σ{a; pass : a ∈ C \ {bang}} � θ; pass.

Therefore:

T(¬(bang∧ EX coffee)) = bang; (coffee; stop � θ; pass)

� θ; pass (4.3)

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 33

For brevity we integrated the C \ {bang} into the θ branch. Negating this

test yields:

T(bang∧ EX coffee) = bang; coffee; pass

Note in passing that that the negated version as shown in Equation (4.3)

will suffice. The last formula is only provided for completeness and also

as a checkpoint in the conversion process. Indeed, the equivalence be-

tween bang ∧ EX coffee and bang; coffee; pass can be readily ascertained

intuitively.

2. We move to ¬coffee ∧ bang ∧ EX coffee = ¬(coffee ∨ ¬(bang ∧
EX coffee)). By Equation (4.3) we haveT(coffee∨¬(bang∧EX coffee)) =

coffee; pass ∨ (bang; (coffee; stop � θ; pass) � θ; pass). This time B1 =

{coffee}, B2 = {bang}, t1(b) = pass, t2(b) = coffee; stop � θ; pass,

tN1 = stop, and tN2 = pass. ThereforeT(coffee∨ ¬(bang∧ EX coffee)) =

coffee; pass � bang; (coffee; stop � θ; pass) � θ; pass (note that B1 ∩ B2 =

∅). Negating this test yields:

T(¬coffee∧ bang∧ EX coffee) = coffee; stop �

bang; coffee; pass (4.4)

This is yet another checkpoint in the conversion, as the equivalence above

can be once more easily ascertained.

3. The conversion of coffee ∨ ¬coffee ∧ bang ∧ EX coffee combines in a dis-

junction the test coffee; pass and the test from Equation (4.4). None of

these tests feature a θ branch in their top choice and so the combination is

a simple choice between the two:

T(coffee∨ ¬coffee∧ bang∧ EX coffee)

= coffee; pass � bang; coffee; pass (4.5)

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 34

In what follows we use for brevity φ′ = coffee ∨ ¬coffee ∧ bang ∧
EX coffee.

4. We have T(EXφ′) = Σ{a;T(φ′) : a ∈ C} and therefore

T(EXφ′) = Σ{a; (coffee; pass

� bang; coffee; pass) : a ∈ C} (4.6)

We will actually need in what follows the negation of this formula, which

is the following:

T(¬EXφ′) = Σ{a; (coffee; stop

� bang; (coffee; stop � θ; pass)

� θ; pass) : a ∈ C}

� θ; pass (4.7)

At this point our test becomes complex enough so that we can use it to

illustrate in more detail the negation algorithm (Lemma 4.2). We thus

take this opportunity to explain in detail the conversion betweenT(EXφ′)

from Equation (4.6) and T(EXφ′) = T(¬EXφ′) shown in Equation (4.7).

(a) The test T(EX φ′) is shown as an LTS in Figure 4.2(a). For conve-

nience all the states are labeled ti, 1 ≤ i ≤ 7 so that we can easily refer

to them.

(b) We then eliminate all the success (γ) transitions. The states t3 and t6

are thus converted from pass to stop.

(c) All the states that were not converted in the previous step (that is,

states t1, t2, and t4) gain a θ; pass branch. The result is the negation of

the original test and is shown in Figure 4.2(b).

(d) If needed, the conversion the other way around would proceed as

follows: The success transitions are eliminated (this affects t8, t9, and

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 35

t1 = (EX φ′)

t2

t3 t4

t5 t6

t7

a ∈ C

coffee bang

γ coffee

γ

t1 = (EX φ′)

t2

t3 t4

t6

t8

t9

t10

a ∈ C

coffee bang

coffee

θ
γ

θ

γ

θ

γ

(a) (b)

Figure 4.2: Conversion of the test T(EXφ′) (a) into its negation T(EXφ′) (b).

t10). The precedingθ transitions are also eliminated (which eliminates

t8, t9, t10 and affects the states t1, t2, and t4). The states unaffected by

this process are t3 and t6 so they both gain a θ; pass branch; however,

such a branch is the only outgoing one for both t3 and t6 so it is equiv-

alent to a simple pass in both cases. The result is precisely the test

T(EXφ′) as shown in Figure 4.2(a).

5. We finally reach the top formula φ. Indeed, φ = coin ∧ EX φ′ =

¬(¬coin ∨ ¬EX φ′). We thus need to combine in a disjunction the test

coin; stop � θ; pass with the test shown in Equation (4.7). We have:

T(¬coffee∨ ¬EXφ′) = coin; (coffee; stop

� bang; (coffee; stop � θ; pass)

� θ; pass)

� Σ{b; pass : b ∈ C \ {coin}}

� θ; pass

Indeed, B1 = {coin}, B2 = C, t1(b) = stop, t2(b) =

CHAPTER 4. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 36

coffee; stop � bang; (coffee; stop � θ; pass) � θ; pass, and tN1 = tN2 =

pass.

To reduce the size of the expression we combine the C \ {coin} and θ

choices and so we obtain:

T(¬coffee∨ ¬EXφ′) = coin; (coffee; stop

� bang; (coffee; stop � θ; pass)

� θ; pass)

� θ; pass

Negating the above expression results in the test equivalent to the original

formula:

T(φ) = coin; (coffee; pass � bang; coffee; pass)

Recall now that the test we started from in Example 1 was slightly different,

namely:

t = coin; (coffee; pass � θ; bang; coffee; pass)

We argue however that these two tests are in this case equivalent. Indeed, both

tests succeed whenever coin is followed by coffee. Suppose now that coin does

happen but the next action is not coffee. Then t will follow on the deadlock de-

tection branch, which will only succeed if the next action is bang. On the other

hand T(φ) does not have a deadlock detection branch in the choice following

coin; however, the only alternative to coffee inT(φ) is bang, which is precisely

the same alternative as for t (as shown above). We thus conclude that t and

T(φ) are indeed equivalent.

Chapter 5

Conclusions

Our work builds on the previous work summarized earlier in Sections 3.1 and 3.2 [8, 9].

This work consists of the definition of an equivalence between a process or a labeled tran-

sition system and a Kripke structure (Definition 3.3), the development of an algorithmic

functionK that converts any labeled transition system into an equivalent Kripke structure

(Proposition 3.1), and then the development of an algorithmic function F that converts the

failure trace tests to equivalent CTL formulae (Proposition 3.2). A function for the conver-

sion the other way around was also developed [8], but one of the authors of the original

paper subsequently realized that this conversion is incorrect [6].

The purpose of the present work was thus to fix this conversion function. We therefore

constructed an algorithmic function T that converts any CTL formula into an equivalent

failure trace test (Theorem 4.5). Combined with the previous work on the matter we have

shown that failure trace tests and CTL formulae are equivalent (Theorem 4.1).

Given the nature of our work, the conclusions of the original paper apply, while no

substantial new conclusions are introduced. The reminder of this chapter is therefore ded-

icated to a revision of the previous conclusions [8] and so covers the whole (and now fully

correct) work.

As already mentioned, the function K [8] creates a Kripke structure that may have

multiple initial states, and so a weaker satisfaction operator (over sets of states rather than

37

CHAPTER 5. CONCLUSIONS 38

states) was needed. It was further noted [8] that this issue only happens for those LTS that

start with a choice of multiple visible actions (a phenomenon that was deemed somehow

incorrectly “initial nondeterminism” in the original paper). It follows that in order to elim-

inate the need for a new satisfaction operator (over sets of states) one can simply create an

extra LTS state which becomes the initial state and performs an artificial “start” action to

give control to the original initial state. It was originally claimed that when this is done

the proofs of Proposition 3.1, Proposition 3.2, and Theorem 4.5 all revert to the normal

satisfaction operator (over states), and so the results are without loss of generality.

This being said, the claim mentioned above still needs to be verified. Alternatively (and

ideally) we believe that the investigation into a conversion between LTS and Kripke struc-

tures that preserves the nice properties (used subsequently) of the conversion described in

Definition 3.3 and which also copes directly with the so-called initial nondeterminism is

worth pursuing.

We believe that our results (providing a combined, logical and algebraic method of sys-

tem verification) has unquestionable advantages. To emphasize this consider the scenario

of a network communication protocol between two end points and through some commu-

nication medium being formally specified. The two end points are likely to be algorithmic

(or even finite state machines) and so the natural way of specifying them is algebraic. The

communication medium on the other hand has a far more loose specification. Indeed, it

is likely that not even the actual properties are fully known at specification time, since

they can vary widely when the protocol is actually deployed (between say, the proper-

ties of a 6-foot direct Ethernet link and the properties of a nondeterministic and congested

Internet route between Afghanistan and Zimbabwe). The properties of the communica-

tion medium are therefore more suitable for logic specification. Such a scenario is also

applicable to systems with components at different levels of maturity (some being fully

implemented already while others being at the prototype stage of even not being imple-

mented at all and so less suitable for being specified algebraically). Our work enables

CHAPTER 5. CONCLUSIONS 39

precisely this kind of mixed specification. In fact no matter how the system is specified we

enable the application of either model checking of model-based testing (or even both) on

it, depending on suitability or even personal taste.

The original paper [8] identified several directions of further investigation. We believe

that these directions continue to be pertinent and interesting.

First, the issue of tests taking an infinite time to complete is an ever-present issue in

model-based testing. Our conversion of CTL formulae is no exception, as the tests result-

ing from the conversion of expressions that use EF, EG, and EU fall all into this category.

Furthermore Rice’s theorem [22] (which states that any non-trivial and extensional prop-

erty of programs is undecidable) guarantees that tests that take an infinite time to complete

will continue to exist no matter how much we refine our conversion algorithms. We there-

fore believe that it is very useful to investigate methods and algorithms for partial (or

incremental) application of tests. Such methods will offer increasingly stronger guaran-

tees of correctness as the test progresses, and total correctness at the limit (when the test

completes).

It continues to be potentially interesting to extend this work to other temporal logics

(such as CTL*) and whatever testing framework turns out to be equivalent to it (in the

same sense as used in our work).

Finally, it is worth noting that the original paper [8] did mention a substantial disad-

vantage of the conversion of tests to CTL formulae. Specifically, the resulting F(t) are

almost surely not in their simplest form, as the conversion does not really exploit the ex-

pressiveness of temporal operators. In fact the resulting formulae may even have infinite

length. This thesis did not modify anything in this conversion and so this issue is outside

the scope of our work, but bringing these formulae to more compact forms is definitely an

immediate open problem.

Bibliography

[1] R. ALUR AND D. L. DILL, A theory of timed automata, Theoretical Computer Science,

126 (1994), pp. 183–235.

[2] P. BELLINI, R. MATTOLINI, AND P. NESI, Temporal logics for real-time system specifica-

tion, ACM Computing Surveys, 32 (2000), pp. 12–42.

[3] E. BRINKSMA, G. SCOLLO, AND C. STEENBERGEN, LOTOS specifications, their imple-

mentations and their tests, in IFIP 6.1 Proceedings, 1987, pp. 349–360.

[4] M. BROY, B. JONSSON, J.-P. KATOEN, M. LEUCKER, AND A. PRETSCHNER, eds.,

Model-Based Testing of Reactive Systems: Advanced Lectures, vol. 3472 of Lecture Notes

in Computer Science, Springer, 2005.

[5] S. D. BRUDA, Preorder relations, in Broy et al. [4], pp. 117–149.

[6] , Private communication, 2014.

[7] S. D. BRUDA AND C. DAI, A testing theory for real-time systems, International Journal

of Computers, 4 (2010), pp. 97–106.

[8] S. D. BRUDA AND Z. ZHANG, Model checking is refinement: Computation tree logic is

equivalent to failure trace testing, Tech. Rep. 2009-002, Bishop’s University, Department

of Computer Science, aug 2009.

40

BIBLIOGRAPHY 41

[9] , Refinement is model checking: From failure trace tests to computation tree logic, in

Proceedings of the 13th IASTED International Conference on Software Engineering

and Applications (SEA 09), Cambridge, MA, Nov. 2009.

[10] E. M. CLARKE AND E. A. EMERSON, Design and synthesis of synchronization skeletons

using branching-time temporal logic, in Works in Logic of Programs, 1982, pp. 52–71.

[11] E. M. CLARKE, E. A. EMERSON, AND A. P. SISTLA, Automatic verification of finite state

concurrent systems using temporal logic specification, ACM Transactions on Program-

ming Languages and Systems, 8 (1986), pp. 244–263.

[12] E. M. CLARKE, O. GRUMBERG, AND D. A. PELED, Model Checking, MIT Press, 1999.

[13] R. CLEAVELAND AND G. LÜTTGEN, Model checking is refinement—Relating Büchi testing

and linear-time temporal logic, Tech. Rep. 2000-14, ICASE, Langley Research Center,

Hampton, VA, Mar. 2000.

[14] C. DAI AND S. D. BRUDA, A testing framework for real-time specifications, in Proceed-

ings of the 9th IASTED International Conference on Software Engineering and Appli-

cations (SEA 08), Orlando, Florida, Nov. 2008.

[15] R. DE NICOLA AND M. C. B. HENNESSY, Testing equivalences for processes, Theoretical

Computer Science, 34 (1984), pp. 83–133.

[16] R. DE NICOLA AND F. VAANDRAGER, Three logics for branching bisimulation, Journal

of the ACM, 42 (1995), pp. 438–487.

[17] R. W. FLOYD, Assigning meanings to programs, in Mathematical Aspects of Computer

Science, J. T. Schwartz, ed., vol. 19 of Proceedings of Symposia in Applied Mathemat-

ics, American Mathematical Society, 1967, pp. 19–32.

BIBLIOGRAPHY 42

[18] R. GERTH, D. PELED, M. Y. VARDI, AND P. WOLPER, Simple on-the-fly automatic verifi-

cation of linear temporal logic, in Proceedings of the IFIP symposium on Protocol Speci-

fication, Testing and Verification (PSTV 95), Warsaw, Poland, 1995, pp. 3–18.

[19] C. A. R. HOARE, An axiomatic basis for computer programming, Communications of the

ACM, 12 (1969), pp. 576–580 and 583.

[20] J.-P. KATOEN, Labelled transition systems, in Broy et al. [4], pp. 615–616.

[21] R. LANGERAK, A testing theory for LOTOS using deadlock detection, in Proceedings of

the IFIP WG6.1 Ninth International Symposium on Protocol Specification, Testing and

Verification IX, 1989, pp. 87–98.

[22] H. R. LEWIS AND C. H. PAPADIMITRIOU, Elements of the Theory of Computation,

Prentice-Hall, 2nd ed., 1998.

[23] K. PAWLIKOWSKI, Steady-state simulation of queueing processes: survey of problems and

solutions, ACM Computing Surveys, 22 (1990), pp. 123–170.

[24] A. PNUELI, A temporal logic of concurrent programs, Theoretical Computer Science, 13

(1981), pp. 45–60.

[25] J. P. QUEILLE AND J. SIFAKIS, Fairness and related properties in transition systems — a

temporal logic to deal with fairness, Acta Informatica, 19 (1983), pp. 195–220.

[26] H. SAÏDI, The invariant checker: Automated deductive verification of reactive systems, in

Proceedings of Computer Aided Verification (CAV 97), vol. 1254 of Lecture Notes In

Computer Science, Springer, 1997, pp. 436–439.

[27] S. SCHNEIDER, Concurrent and Real-time Systems: The CSP Approach, John Wiley &

Sons, 2000.

BIBLIOGRAPHY 43

[28] T. J. SCHRIBER, J. BANKS, A. F. SEILA, I. STÅHL, A. M. LAW, AND R. G. BORN, Sim-

ulation textbooks - old and new, panel, in Winter Simulation Conference, 2003, pp. 1952–

1963.

[29] W. THOMAS, Automata on infinite objects, in Handbook of Theoretical Computer Sci-

ence, J. van Leeuwen, ed., vol. B, North Holland, 1990, pp. 133–191.

[30] J. TRETMANS, Conformance testing with labelled transition systems: Implementation rela-

tions and test generation, Computer Networks and ISDN Systems, 29 (1996), pp. 49–79.

[31] M. VARDI AND P. WOLPER, An automata-theoretic approach to automatic program verifi-

cation, in Proceedings of the First Annual Symposium on Logic in Computer Science

(LICS 86), 1986, pp. 332–344.

[32] M. Y. VARDI AND P. WOLPER, Reasoning about Infinite Computations, Academic Press,

1994.

	Introduction
	Preliminaries
	Temporal Logic and Model Checking
	Labeled Transition Systems and Stable Failures
	Failure Trace Testing

	Previous Work
	An Equivalence between LTS and Kripke Structures
	From Failure Trace Tests to CTL Formulae

	CTL Is Equivalent to Failure Trace Testing
	Conclusions
	Bibliography

