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Abstract

Visibly pushdown languages are a subclass of context-free languages that is closed under all the

useful operations, namely union, intersection, complementation, renaming, concatenation, prefix,

and Kleene star. The existence of a concurrent, fully compositional process algebra based on such

languages requires that these languages be also closed under two more operations, namely shuffle,

and hiding. We prove here both of these closure properties. We also give the semantics of visibly

pushdown automata in terms of labelled transition systems.

We then propose Communicating Visibly pushdown Processes (CVP), a fully compositional

concurrent process algebra based on visibly pushdown automata. CVP is a superset of CSP, thus

combining all the good properties of finite-state algebrae with context-free features. Unlike any

other process algebra, CVP includes support for parallel composition but also for self-embedding

recursion.

We present the syntax, operational semantics, trace semantics, trace specification, and trace

verification of CVP. A CVP trace observer can extract stack and module information from the trace;

as a result one can specify and verify many software properties which cannot be specified in any

other existing process algebra. Such properties include the access control of a module, stack limits,

concurrent stack properties, internal property of a module, pre-/post-conditions of a module, etc.

CVP lays the basis of algebraic conformance testing for infinite-state processes, such as application

software.
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Chapter 1

Introduction

Pushdown automata naturally model the control flow of sequential computation in typical program-

ming languages with nested, potentially recursive invocations of program modules such as proce-

dures and methods. Many non-regular properties are therefore required for software verification;

such that inspection of the stack, or matching of calls and returns, total/partial correctness of a mod-

ule, etc. Such properties generate an infinite state space, which cannot be handled by finite-state

verification techniques such as finite statemodel checking[29], finite stateprocess algebrae[13],

etc. Most of the contemporary software use many parallel components (such as multiple threads). In

addition, many conformance-testing1 techniques (such as may/must testing [30]) use test cases that

run in parallel with the process under test. Recursive concurrency is therefore required for software

verification, but cannot be provided by context-free verification techniques (such as basic process

algebra or BPA [18]) since context-free languages are not closed under intersection [10], or by finite

state verification techniques as they cannot support recursive modules.

1.1 Concurrent Process Algebra

A process algebra represents a mathematically rigourous framework for modeling concurrent sys-

tems of interacting processes. The process-algebraic approach relies on equational and inequational

reasoning as the basis for analyzing the behavior of a system. Two separate works by Hoare [35]

1By conformance-testing we mean here any formal method that determines whether a system meets a specified
standard.
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CHAPTER 1. INTRODUCTION 2

and Milner [41] are marked as the origin of the process algebrae, which have been an active area

of research since. In particular, researchers have developed a number of different process-algebraic

theories in order to capture different aspects of system behavior; each such formalism generally

includes the following semantic approaches:

Operational semantics: The behavior of a system is modeled as an execution of an abstract ma-

chine consisting of only a set of states and a set of transitions [20, 40].

Denotational semantics:More abstract than operational semantics, system behaviors are usually

modeled by a function transforming input into output [50]. Denotational semantics can in-

troduce behavioral equivalences (e.g. refinement ordering, congruence) which relate systems

whose behaviors are indistinguishable to an external observer.

Axiomatic semantics: Emphasis is put on the axiomatic proof methods to check the correctness of

a system against a given specification [31, 34].

Different process algebrae adopt different kind of denotational and axiomatic approaches for speci-

fication and verification. For example, CCS has been studied under bisimulation and testing seman-

tics [41], CSP under trace and failure semantics (variants of testing semantics) [21, 49], and ACP

under bisimulation and branching bisimulation semantics [17]. In all cases however one needs to

establish an operational semantics first. A system often consists of several levels of subsystems.

The congruence and refinement relation provided by a processalgebra may be used to determine

whether these different subsystems conform to one another.These relations are typically substi-

tutive, meaning that related subsystems may be used interchangeably inside a larger system; this

provides the facilities for compositional system verification, since low-level subsystems may be

checked in isolation from the rest of their high-level subsystem.

Concurrent process algebrae [17, 20, 21, 33, 35, 41, 42, 49] describe a system behavior or a

process using eight major operators: event prefix, choice, recursion, parallel composition, hiding,

renaming, sequential composition, and interrupt. A prefix or suffix of a process is also a process,
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so the domain language must be closed under prefix and suffix. In addition, each operator requires

certain prerequisite closure properties of the domain language: closure under union, Kleene star,

intersection and shuffle, hiding, renaming, concatenation, prefix are required for choice, recursion,

parallel composition, hiding, renaming, sequential composition, and interrupt, respectively. Reg-

ular languages have all these required closure properties.Balanced languages (or regular hedge

languages) are not closed under prefix or suffix. Deterministic context-free languages are not closed

under union, intersection, and concatenation. Context-free languages are not closed under intersec-

tion. In all, regular languages are the only domain used for concurrent process algebrae and thus

concurrent process algebrae cannot specify non-regular properties. As a result, algebrae are not a

dominant technique in software verification.

1.2 Visibly Pushdown Languages

The formal verification arena has been enhanced by the recentintroduction of the class ofvisibly

pushdown languages (VPL)[10] which lies between balanced languages and deterministic context-

free languages. VPL have all the appealing properties that the regular languages enjoy: deterministic

acceptors are as expressive as their nondeterministic counterparts; they are closed under union,

intersection, complementation, concatenation, Kleene star, prefix, and language homomorphisms;

membership, emptiness, language inclusion, and language equivalence are all decidable. VPL are

accepted byvisibly pushdown automata (vPDA)whose stack behaviour is determined by the input.

A vPDA operates over an alphabet that is partitioned into three disjoint sets of call, return, and local

symbols. Any input symbol can change the control state but calls and returns can also change the

stack content. While reading a call a vPDA must push one symbol on the stack and while reading

a return it must pop one symbol (unless the stack is empty). Wecan model the execution of a

recursive module using a VPL by representing the invocationof a module by a call event, the return

from a module by a return event, and all the other internal actions by local events. The potential

of a VPL-based concurrent process algebra is high, as VPL have all the required closure properties

other than hiding and shuffle.
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1.3 The Problem

From a conformance testing point of view, vPDA have been mostly studied in terms of logic-based

conformance testing (namely, model checking) [2, 8, 10]. vPDA and its natural subclass visibly BPA

[51] are also studied, but to a lesser extent in terms of behavioural equivalence such as bisimulation

relations. There is to our knowledge no work on process algebra to represent complex, concurrent

vPDA systems. One reason behind this is no work established that VPL is closed under shuffle.

This being said, concurrency has been studied withmulti-stack visibly pushdown language (MPL)

[53] andvPDA with two stacks (2-vPDA)[24]. In [24] authors claim that concurrency is not possible

for vPDA although [25] claims that synchronization is possible for these automata. We note that a

good concurrent, fully compositional process algebra is the main tool in the virtually unstudied area

of vPDA algebraic-based conformance testing.

1.4 The Thesis

Our thesis is that a fully compositional concurrent vPDA-based process algebra is possible. We are

thus introducing such an algebra calledCommunicating Visibly pushdown Process (CVP). We also

present the operational semantics and the trace model of CVP.

1.5 Dissertation Summary

In Chapter 2, we present the preliminaries of the dissertation. In Section 3.1 we establish alabelled

transition system (LTS)semantics for vPDA. LTS are the underlying semantic model for all the

process algebrae, so this is one significant step. The underlying LTS of a vPDA-based process

algebra is an infinite-state machine. Every state of such an LTS is represented by the combination

of a vPDA state and the current stack content associated to that state. We end the aforementioned

confusion about vPDA concurrency [24, 25] by showing in Theorem 3.2.2 that VPL is closed under

shuffle. We also prove that VPL is closed under hiding (Theorem 3.2.1), so that we achieve all the

major prerequisite closure properties for a concurrent, compositional vPDA-based process algebra.
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In Chapter 4, we show how the operators of a concurrent process algebra along with a new

operatorabstractcan be applied in the VPL setting. We apply our technique on the operators of

CSP [20, 21, 33, 35, 49], a finite-state process algebra (a random choice, our formalism works with

all the other finite-state process algebrae). We are thus proposing a vPDA-based process algebra

called Communicating Visibly pushdown Processes (CVP) as asuperset of CSP; when all the input

symbols are locals then CVP is equivalent to CSP. In Section 4.1, we introduce the syntax and in

Section 4.2, we describe the operational semantics of CVP. In Theorem 4.3.1 we show that CVP

is indeed an algebra, being closed under all its operations.In all, we are laying the foundation of

VPL-based algebraic specification and verification by introducing a structural operational semantics

for CVP.

We then describe the CVP trace model in Chapters 5 and 6. In Chapter 5, we present the trace

semantics and in Section 6.1, we define four functions on CVP traces: abstractA, stack extract

S,module extractM, and completenessC. The abstract function hides the traces of the sub-modules

from the trace of their parent module,S extracts the stack from the trace,M extracts the trace of a

certain module from a trace, andC checks if a trace contains the complete trace of a certain module.

These functions work only on the traces in the VPL realm. Withthe help of these functions we

show in Section 6.2 that some very desirable properties for software verification—which cannot

be specified in context-free or regular process algebrae—can be specified in CVP. In Section 6.2

we present the trace proof system for CVP, that can be used to verify the properties mentioned in

Section 6.2. Chapter 7 concludes the dissertation.



Chapter 2

Preliminaries

2.1 Visibly Pushdown Automata

We denote the empty word and only the empty word byε.

A visibly pushdown automaton (vPDA) [10] is a tupleM = (Φ,Φin, Σ̃,Γ,Ω,ΦF ), whereΦ

is a finite set of states,Φin ⊆ Φ is a set of initial states,ΦF ⊆ Φ is the set of final states,Γ is

the (finite) stack alphabet that contains a special bottom-of-stack symbol⊥, andΩ is the transition

relation,Ω ⊆ (Φ × Γ∗) × Σ̃ × (Φ × Γ∗). In addition,Σ̃ = {Σl ∪ Σc ∪ Σr} is a finite set of visibly

pushdown input symbols whereΣl is the set of local symbols,Σc is the set of call symbols andΣr

is the set of return symbols.(Σl,Σc,Σr) is a partition over̃Σ (meaning that̃Σ = Σl ⊎ Σc ⊎ Σr).

Every tuple((P, γ), a, (Q, δ)) ∈ Ω (also written(P, γ)
a

−→ (Q, δ) ∈ Ω) must have the follow-

ing form: if a ∈ Σl ∪{ε} thenγ = δ = ε, else ifa ∈ Σc thenγ = ε andδ = a (wherea is the stack

symbol pushed fora), else ifa ∈ Σr then if γ = ⊥ thenγ = δ (hence visibly pushdown automata

allow unmatched return symbols) elseγ = a andδ = ε (wherea is the stack symbol popped fora).

In other words, a local symbol is not allowed to modify the stack, while a call always pushes

one symbol on the stack. Similarly, a return symbol always pops one symbol off the stack, except

when the stack is already empty. Note in particular thatε-transitions (that is, transitions that do not

consume any input) are allowed but are not permitted to modify the stack [10].

The notion of run, acceptance, and language accepted by a visibly pushdown automaton are

defined as usual: A run of a visibly pushdown automatonM on some wordw = a1a2 . . . ak is a

6
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sequence of configurations(q0, γ0)(q01, γ0) · · · (q0m0
, γ0)(q1, γ1)(q11, γ1) · · · (q1m1

, γ1)(q2, γ2) · · ·

(qk, γk)(qk1, γk) · · · (qkmk
, γk) such thatγ0 = ⊥, q0 ∈ Φin, (qj−1i, ε)

ε
−→ (qji, ε) ∈ Ω for all

1 ≤ i ≤ k, 1 ≤ j ≤ mi, and(qi−1mi−1
γ′

i−1)
ai−→ (qi, γ

′
i) ∈ Ω for every1 ≤ i ≤ k and for

some prefixesγ′
i−1 andγ′

i of γi−1 andγi, respectively. Wheneverqkmk
∈ ΦF the run is accepting;

M acceptsw iff there exists an accepting run ofM on w. The visibly pushdown languageL(M)

accepted byM contains exactly all the wordsw accepted byM .

2.2 Labelled Transition System

A labelled transition system (LTS) [22] is a tuple(Θ,Σ,∆, I), whereΘ is a set of states ,Σ is a

finite set of actions (not containing the internal actionτ ), I ∈ Θ is the initial state, and∆ is the

transition relation such that∆ ⊆ Θ× (Σ∪{τ})×Θ. If ∆ is unambiguous and understood from the

context, then we often use the following shorthands:P
a

−→ Q whenever(P, a,Q) ∈ ∆, P
a

−→

whenever there exists aQ such thatP
a

−→ Q, andP 6
a

−→ wheneverP
a

−→ does not hold. Some

times one assumes a global set of states, a global set of actions, and a global transition relation for all

the labelled transition systems; in this case, a particularlabelled transition system is identified solely

by its initial state. We therefore blur the difference between state and labelled transition systems as

long as the set of states, the set of actions, and the transition relation are all understood from the

context.

A run of a labelled transition systemM is a sequenceq0τq01τ · · · τq0m0
a1q1τq11τ · · · τq1m1

a2

q2 · · · akqkτqk1τ · · · τqkmk
such thatq0 = I, qj−1i

τ
−→ qji for all 1 ≤ i ≤ k, 1 ≤ j ≤ mi, and

qi−1mi−1

ai−→ qi for all 1 ≤ i ≤ k. The trace of this run is the sequencea1a2 · · · ak. The run

is maximal whenever there is nox such thatqkmk

x
−→ . The trace of a maximal run is called a

complete trace. The languagetraces(M) [ ctraces(M)] contains exactly all the traces [complete

traces] of all the possible runs [maximal runs] ofM .

The weakest notion of equivalence between labelled transition systems is trace equivalence: two

labelled transition systems are equivalent if their sets oftraces are identical. By contrast, the largest

(or finest) notion of equivalence between labelled transition systems is the notion ofbisimilarity
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[23]. Two bisimilar transition systems have not only the same set of traces, but their internal struc-

ture is identical: Given a global set of statesΘ, a global set of actionsΣ, and a global transition

relation→, a binary relation∼ over labelled transition systems is a bisimulation if for every pair of

statesp andq such thatp ∼ q and for every actiona ∈ Σ:

1. p
a

−→ p′ implies that there is aq′ such thatq
a

−→ q′ andp′ ∼ q′; and symmetrically

2. q
a

−→ q′ implies that there is ap′ such thatp
a

−→ p′ andp′ ∼ q′.

2.3 Communicating Sequential Processes

CSP or Communicating Sequential Processes [20, 21, 33, 35, 49] provides a basis for the study of

concurrent computation. A communicating process is regarded as an agent which may interact with

its environment (which may itself be regarded as a process) by performing certain instantaneous

atomic events drawn from an alphabetΣ. CSP provides a formal language suitable for describing

finite-state processes. The syntax of CSP is defined as follows:

S ::= x : A → S(x) |S�R |S ⊓ R |X |SA‖BR |S \ A | f(S) | f−1(S) |S;R |S△R

whereS andR range over CSP processes,x overΣ, A andB over2Σ, f over the set{f : Σ →

Σ : ∀a ∈ Σ: f−1(a) is finite ∧ f(a) = X iff a = X} of Σ-transformations. The CSP prefix

choicex : A → S(x) is a process which may engage anyx ∈ A and then its behaviour depends

on that choice.S ⊓ R denotes a process which may behave as eitherS or R, independently of

its environment. S�R denotes a process which may behave as eitherS or R, the choice being

influenced by the environment, provided that such influence is exerted on the first occurrence of

an external event of the composite process.SA‖BR denotes a process which behaves like the

alphabetized parallel composition ofS andR with the following restrictions: any external event

performed by the composition must lie inA∪B; the composition may then perform an eventa only

if a ∈ A\B andS may performa, ora ∈ B\A andR may performa, ora ∈ A∩B and bothS and

R may perform (synchronously)a. S;R denotes the sequential composition ofS followed by R
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andS \A is the process which behaves likeS except that all the occurrences ofa ∈ A are rendered

invisible to the environment. The processesf(S) andf−1(S) derive their behaviour from that ofS

in that if S may perform the eventa thenf(S) may performf(a) while f−1(S) may engage in any

eventb such thatf(b) = a. S△R denotesR interrupting the processS: R may begin execution

at any point throughout the execution ofS; the performance of the first external event ofR is the

point at which control passes fromS to R and thenS is discarded. A process nameX may be used

as a component process in a process definition. It is bound by the definitionX = S whereS is

an arbitrary process which may include process nameX. LTS is the underlying semantic model

of CSP like any other process algebra. The operational semantics of CSP presented on an LTS in

Figure 2.1. Thus the whole CSP can be viewed as a single LTS.

The CSP processesSTOP , SKIP anda → S are special instances of the prefix choice con-

struct:STOP is obtained by takingA = ∅, SKIP = x : {X} → STOP anda → S = x : {a} →

S. The special eventX denotes termination.S‖
A
R is a special form ofSA‖BR; it synchronizes only

on those visibly pushdown events appearing inA (S andR interleave for anya /∈ A). S 9 R is the

unrestricted interleaving ofS andR and is also a special case ofSA‖BR. We denoteA ∪ {X} by

AX.

2.4 Sequences

The set of traces of a process is the set of all the sequences ofactions [49] that might possibly

be recorded. Such sequences will be described by listing their elements in order between angled

brackets. The empty sequence is thus denoted by〈〉. If A is a set, thenA∗ is the set of all finite se-

quences of elements ofA. If seq1 andseq2 are both sequences, then their concatenation described

by seq1.seq2 is the sequence of elements inseq1 followed by those inseq2 . The concatenation op-

eration is associative. The notationseqn describesn copies of the finite sequenceseq concatenated

together, and soseq0 is always the empty sequence. Ifseq is not empty, then it may be written

a.seq′ wherea is the first element ofseq, andseq′ is the remainder of the sequence. In this case,

two functions onseq are defined:head(seq) = a andtail(seq) = seq′ . For seq = seq′′.b we
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P τ−→Q (x : A → P (x)) a−→P (a)

[
a ∈ A

]

P ⊓ Q τ−→P

P µ−→P ′

N µ−→P ′

[
N = P

]

P ⊓ Q τ−→Q

P a−→P ′ Q a−→Q′

PA‖BQ a−→P ′
A‖BQ′

[
a ∈ AX ∩ BX

]

P a−→P ′

P�Q a−→P ′

Q�P a−→P ′

P µ
−→P ′

PA‖BQ µ−→P ′
A‖BQ

QB‖AP µ−→QB‖AP ′

[
µ ∈ A ∪ {τ} \ B

]

P τ−→P ′

P�Q τ−→P ′�Q
Q�P τ−→Q�P ′

P µ−→P ′

P \ A µ−→P ′ \ A

[
µ /∈ A

]

P X−→P ′

P ;Q τ−→Q

P µ
−→P ′

P△Q µ
−→P ′△Q

[
µ 6= X

]

P f(a)
−→P ′

f−1(P ) a−→f−1(P ′)

P a−→P ′

P \ A τ−→P ′ \ A

[
a ∈ A

]

P X−→P ′

P△Q X−→P ′

P µ
−→P ′

f(P ) µ−→f(P ′)

[
µ ∈ {τ ∪ X}

]

Q τ−→Q′

P△Q τ−→P△Q′

P µ−→P ′

P ;Q µ−→P ′;Q

[
µ 6= X

]

P a−→P ′

f(P )f(a)
−→f(P ′)

P µ−→P ′

f−1(P ) µ
−→f−1(P ′)

[
µ ∈ {τ ∪ X}

]

Q a−→Q′

P△Q a−→Q′

Figure 2.1: Operational Semantics of CSP



CHAPTER 2. PRELIMINARIES 11

definefoot(seq) = b and init(seq) = seq′′. The length|seq| of a sequence is the number of

elements it contains. The notationa ∈ seq means that the elementa appears in the sequenceseq,

andσ(seq) is the set of all elements that appear inseq.

Various natural relationships between sequences exists: If there is some sequenceseq2 such that

seq.seq2 = seq1 , thenseq is a prefix ofseq1 , written seq ≤ seq1 . Furthermore,seq ≤n seq1

is if seq ≤ seq1 and their lengths differ by no more thann. If seq 6= seq1 thenseq is a strict

prefix of seq1 , writtenseq < seq1 . The notationseq 4 seq1 means thatseq is a (not necessarily

contiguous) subsequence ofseq1 . seq ↾ A is the subsequence of all the elements ofseq that

are in the setA. Conversely, the notationseq \ A is the subsequence ofseq whose elements are

not in A. If f is a mapping on elements, thenf(seq) is the sequence obtained by applyingf

to each element ofseq in turn. Reverseor R(seq) is a function which reverses a sequenceseq:

R(seq) = sn.sn−1.sn−2...s3.s2.s1 wheneverseq = s1.s2.s3...sn−2.sn−1.sn.

2.5 Traces

The concept of traces was briefly introduced in Section 2.2 (and alluded to in Section 2.4); we now

present this notion in more detail. Processes interact withtheir environment through performance of

events in their interface. The environment has no direct access to the internal state of the process or

to the internal events that it performs. Two processes whichare indistinguishable at their interfaces

should be equally appropriate for any particular purpose; the way they are implemented cannot have

any influence on their respective suitability. There are a number of ways in which interface behavior

can be analyzed, but they all concentrate exclusively on theexternal activity of the process. One

important aspect of process behavior concerns the occurrence of events in the right order, and that

events do not occur at inappropriate points. The kind of sequence which is acceptable will be given

by the requirements of the system. Such requirements will describe constraints on when particular

events can occur. The environment cannot know precisely which internal state the process has

reached at any particular point, since it has access only to the projection of the execution onto the

interface. To analyze process with respect to these requirements, it is necessary to consider those
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sequences of events that can be observed at the interface of the process. These observations are

called traces, and the set of all possible traces of a processP is denotedtraces(P ).

Traces are a particular class of finite sequences of events drawn from an alphabet which rep-

resents execution. Events in a process’s execution cannot occur after termination so any termi-

nation eventX occurring in a trace must appear at the end. The set of all traces is defined as:

TRACE = {tr|σ(tr) ⊆ ΣX ∧ |tr| ∈ N ∧ X /∈ σ(init(tr))}. Since all traces are sequences, they

inherit all of the sequence operators. However, sequence concatenation maps tracestr1 andtr2 to

a tracetr1.tr2 only if X /∈ σ(tr1). Thustrn will be a trace only ifX /∈ σ(tr). If a function f

mapsΣ to Σ andf(X)toX, thenf(tr) will always be a trace. The notationP
tr
⇒ P ′ means there

is a sequence of transitions whose initial process isP and whose final process isP ′ after executing

tr. The notationP
tr
⇒ is shorthand for∃P ′ : P

tr
⇒ P ′.

2.6 Trace Semantics

Operational characterization is too low level for reasoning about processes, since the level of ab-

straction remains that of process executions, with traces being one of the consequences of the ex-

ecution. Thetrace modelconsiders processes directly in terms of their traces, and lifts the entire

analysis to a more abstract level. All of the operators of thelanguage can be understood at this level:

the traces of composite process are dependent only on the traces of its components. This allows a

compositionalsemantic model, where all processes are considered only in terms of their sets of

traces, and at no stage do the underlying executions need to be considered explicitly.

In the trace model, each process is associated with a set of traces: the set of all possible se-

quences of events that may be observed during some executionof the process. Processes will be

trace equivalentwhen they have exactly the same set of possible traces. This particular form of

equality will be denoted=T , and its definition is thatP =T Q iff traces(P ) = traces(Q). Trace

equality gives rise to algebraic laws for individual operators, and also laws concerning the relation-

ships between various operators. These laws allow for the manipulation of process descriptions from

one form to another while keeping the associated set of traces unchanged. Many laws are concerned
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with general algebraic properties such as associativity and commutativity of operators (which allow

components to be composed in any order), idempotence, and the identification of units and zeros for

particular operators (which may allow process descriptions to be simplified). Other laws are con-

cerned with the relationships between different operators, which allow for example the expansion

of a parallel composition into a prefix choice process.

STOP is a process which cannot do anything:

traces(STOP) = {〈〉}

while SKIP can only performX. The only tracesSKIP exhibits are the empty trace and the

singleton trace containingX:

traces(SKIP) = {〈〉, 〈X〉}

One important process to establishing laws in axiomatic model is RUN which can do any se-

quence of events:

traces(RUN) = {tr |tr ∈ TRACE}

It can be recursively defined as:RUN = (x : Σ → RUN)�SKIP . The processRUNA is defined to

be the process with interfaceA that can always perform any event in its interface :traces(RUNA) =

{tr|tr ∈ TRACE ∧ σ(tr) ⊆ A}.

2.7 Specification with Traces

Systems are designed to satisfy particular requirements, and one of the uses of their semantics is

to enable them to be judged against a given specification. In the trace model, a specification of

a process is given in terms of the traces it may engage in. It will characterize the traces that are

acceptable and those that are not. A process meets the specification if all of its executions are

acceptable: no matter which choices are taken, any execution of the process is guaranteed not to

violate the specification. IfS(tr) is a predicate on tracetr, then processP meets (or satisfies)S(tr)

if S(tr) holds for every tracestr of P : P ⊢ S(tr) = ∀tr ∈ traces(P ) : S(tr). The specification

S(tr) is said to be aproperty-oriented specification, since the required property is captured byS(tr)
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as a restriction on traces. The predicateS may be expressed in any notation, though first order logic

and elementary set and sequence notations are generally sufficient.

If a processP fails to meet a specificationS(tr), then this must be because it has some (finite)

trace for whichS fails to hold: there is a point where the performance of a particular event takes the

execution ofP outside the specification. To meet a trace specification, it is necessary to ensure that

no violating events are performed at any stage of an execution. This kind of specification is called

a safetyspecification, which requires that nothing ‘bad’ should ever happen, and it is precisely this

kind of property that is expressed as specification on traces.

2.8 Verification with Traces

The compositional nature of the trace semantics allows a compositional proof system to be provided

for trace specifications. Specifications of processes may bededuced from the specifications of their

components, in a way which reflects the trace semantics of theoperators. The proof system is

given as a set of proof rules for all of the operators. Each rule provides a specification which holds

for a composite process starting from antecedents which describe specifications which hold for the

component processes. There are three rules whose validity is due to the nature of⊢ specification, and

which therefore hold for all processes. The first is that any process meets the vacuous specification

true(tr), which holds for all tracestr:

P ⊢ true(tr)

The second is that any specification may be weakened:

P ⊢ S(tr)

P ⊢ T (tr)

[
∀ tr : TRACE: S(tr) ⇒ T (tr)

]

The final rule states that ifS(tr) andT (tr) have been established separately, then the specification

consisting of their conjunction is also established

P ⊢ S(tr)
P ⊢ T (tr)

P ⊢ (S ∧ T )(tr)
.
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There is only one trace of the processSTOP : the empty trace. The strongest specification that

is met by processSTOP is thattr = 〈〉. This is encapsulated in the rule:

STOP ⊢ tr = 〈〉

The rule has no antecedents, corresponding to the fact thatSTOP has no component processes.

The weak rule given above can be used to show that any specification which is satisfied by any

process must be satisfied bySTOP .

The processSKIP does nothing except terminate successfuly. It has only two possible traces,

one for the situation before it has terminated successfully, and the other for the situation after. These

two traces are〈〉 and〈X〉,so the inference rule, which has no antecedents, is the following:

SKIP ⊢ tr = 〈〉 ∨ tr = 〈X〉

The processRUN is able to engage in any trace. If it is able to meet a specification, then

that specification must allow all possible traces.RUN will therefore satisfy an extremely weak

specification, since it places no restrictions on the tracesthat are acceptable. Such a specification

can only be equivalent totrue:

RUN ⊢ true(tr)
.

2.9 Previous Work

The recursive state machines(RSM) [3, 4, 5] are the first model where researchers discuss the no-

tion of a the pushdown system with entry nodes, exit nodes, and local nodes of a module. RSM can

solve major algorithmic problems for model checking including reachability, cycle detection, and

language emptiness. RSM defines context-free languages, soconcurrency is not possible. Follow-

ing this work the temporal logicCARET[8] comes out with one more constraint which states that

one node cannot be used as two or more types: if a node is used asan entry node, then it cannot

be used as an exit or local a node. Based on this, CARET partitions all the symbols in three cate-

gories: call, return, and local. This classification gives CARET the advantages of pre-post condition
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verification, stack analysis, and local properties verification. The same group defines the new class

of visibly pushdown language using the same classification of symbols in the underlying alphabet.

Due to many appealing properties, from then on the VPL realm has been a very active research area

which produced work on congruence for VPL[9], nested words[11], nested trees [7, 6, 26], visi-

bly pushdown games [39], vPDA bisimulation [51], regularity[15], membership problems for VPL

[55], minimizing variants of vPDA [28], algorithmic black box conformance testing [36], fixed point

[19, 12], first order temporal logic for VPL [2], grammaticalrepresentation of VPL[14], specifica-

tions for program analysis [27, 44, 48], XML processing [1, 37, 46], transducers [47, 52], and many

others [25, 38, 43, 45, 54]. vPDA concurrency has been studied to some degree as mentioned earlier

[24, 25]. To the best of our knowledge no work has been done on VPL-based process algebrae.



Chapter 3

Closure Properties of Visibly Pushdown
Languages

One of the possible reasons for the absence of a vPDA-based concurrent process algebra is that the

known closure properties support such a development only partially. Indeed, suppose that a fully

compositional vPDA-based concurrent process algebra (we anticipate a bit and call it CVP) exists,

and consider the operation of unrestricted interleaving9 existent in all the finite-state process al-

gebrae. Such an operation is vital, as it models that part of the execution of concurrent processes

that do not contain any communication or synchronization; obviously, at some point any two con-

current processes will contain such an execution, so our (for the time being hypothetical) CVP must

contain such an interleaving operator. Consider now two processesP1 andP2 specified using CVP,

whose traces form the languagesL1 andL2, respectively. It follows that bothL1 andL2 are visibly

pushdown languages, and since the unrestricted interleaving is an operator of CVP (an algebra), the

languageL of traces ofP1 9P2 must also be a visibly pushdown language. However,L is the shuf-

fle of L1 andL2. Therefore, a necessary condition for CVP to exist at all is that visibly pushdown

languages be closed under shuffle.

Perhaps a less critical but certainly useful operator in a process algebra is hiding. Such an

operator is used to hide the internals of a process and exposeonly its interface to the environment.

The same trace argument requires that VPL be closed under hiding for this operator to exists.

We eliminate in this chapter this last stumbling block toward a fully compositional vPDA-based

17
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process algebra, establishing the closure under shuffle andhiding of visibly pushdown languages. In

the process, we also establish a semantics for vPDA based on labelled transition systems, which will

be a building block in the subsequent development of the mentioned process algebra. These results

effectively prove the existence of a vPDA-based process algebra, and also support it by providing a

natural semantic mechanism.

3.1 Visibly Pushdown Automata and Labelled Transition Systems

We can define the semantics of vPDA in terms of LTS in a natural way, as follows:

Definition 3.1.1 Given any visibly pushdown automatonM = (Φ,Φin, Σ̃,Γ,Ω,ΦF ), the labelled

transition systemJMK is defined as follows:JMK = ((Φ∪{H, I})×Γ∗, Σ̃∪{τ},∆, (I,⊥)), where

I,H /∈ Φ . The transition relation ofJMK is ∆ ⊆ ((Φ∪{I})×Γ∗)×(Σ̃∪{τ})×((Φ∪{H})×Γ∗)

and is defined as follows:∆ = {((q, γ), a, (q′, γ′)) : ((q, γ), a, (q′, γ′)) ∈ Ω}∪{((I,⊥), τ, (q,⊥)) :

q ∈ Φin}∪{((q, γ), τ, (H, γ)) : q ∈ ΦF }∪{((q, γ), τ, (q, γ)) : q 6∈ ΦF ,∀a ∈ Σ̃∪{τ} : (q, γ) 6
a

−→

}.

A state ofJMK is labelled with a state ofM as well as the stack content associated with that state

of M in the given computation. We first include in∆ the transitions corresponding to the transition

of the visibly pushdown automaton being modelled.JMK should be capable of starting from any

stateΦin × {⊥}; to create a unique initial state we introduce a brand new state (I,⊥) and we add

to ∆ the set of transitions that gets us nondeterministically toone of the initial states of the visibly

pushdown automaton being modelled. We invent the final stateH that has no outgoing transitions

and is reachable from any final state ofM via τ transitions. Such a state is useful in the construction

of the LTS corresponding to the concatenation of two VPL. Informally, given two LTS with initial

(final) statesI ′ andI ′′ (H ′ andH ′′), respectively, the LTS corresponding to the concatenation of

the two languages will haveI ′ as initial state,H ′′ as final state, and all the transitions in the two

original LTS plus transitions of form((H ′, γ), τ, (I ′′, γ)). Such a construction will be made formal

later. Its correctness will follow from the closure of VPL under concatenation and the availability of
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τ transitions that do not change the stack content [10]. Non-final states with no outgoing transitions

gain a loop that performs an internal action (so that they cannot participate in a complete trace; the

reason will become evident in Theorem 3.1.2).

The following results establish the labelled transition systemJMK thus constructed as the se-

mantic model of the visibly pushdown automatonM . First, we establish a very strong, bisimilarity-

like equivalence:

Theorem 3.1.1 Let M = (Φ,Φin, Σ̃,Γ,Ω,ΦF ) be a visibly pushdown automaton and letJMK be

the tuple((Φ ∪ {H, I}) × Γ∗, Σ̃ ∪ {τ},∆, (I,⊥)) as constructed in Definition 3.1.1. ThenM and

JMK are bisimilar, in the sense that there exists a relation∼⊆ Φ × (Φ × Γ∗) such that for every

pair p ∼ (q, γ) and for anya ∈ Σ ∪ {ε} anda′ ∈ Σ ∪ {τ} such that eithera = a′ or a = ε and

a′ = τ :

1. Wheneverq 6= I and q′ 6= H, (p, α)
a

−→ (p′, α′) ∈ Ω implies that(q, γ)
a′

−→ (q′, γ′) such

thatγ = αδ, γ′ = α′δ for someδ ∈ Γ∗ andp′ ∼ (q′, γ′). Conversely,

2. Wheneverq 6= I, q′ 6= H, (q, γ)
a′

−→ (q′, γ′) implies that either

(a) q = q′, γ = γ′, a′ = τ , and(q, γ) 6
a′′

−→ (q′′, γ′′) for anyq′′ 6= q, γ 6= γ′′, a′′ ∈ Σ ∪ {τ},

or

(b) (p, α)
a

−→ (p′, α′) ∈ Ω with γ = αδ, γ′ = α′δ for someδ ∈ Γ∗ andp′ ∼ (q′, γ′);

3. p ∈ ΦF iff (q, γ)
τ

−→ (H, γ), andp ∈ Φin iff (I,⊥)
τ

−→ (q,⊥)

Proof. Items 1 and 3 follow immediately from the definition ofJ·K.

We consider the labelled transition system in its unfolded form, i.e., as a tree. The leaves of

the tree are either states of form(H, γ), or states(q, γ) that have no outgoing transitions except

(q, γ)
τ

−→ (q, γ) (introduced by the definition ofJMK only for those statesq that are not final states

of M and for which(q, γ) has no outgoing transitions). The latter are the only statesthat are not

unfolded.
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The proof of Item 2 then proceeds by induction over the tree structure of JMK as follows:

Bisimilarity for leaves is established by Item 3 and Item 2(a) of the definition of∼, respectively.

Consider now some non-leaf state(q, γ) with its outgoing transitions(q, γ)
a′

−→ (q′, γ′). Forq 6= I

andq′ 6= H, every such a transition comes from a transition inM of form (q, α)
a

−→ (q′, α′),

with α andα′ suitable prefixes ofγ andγ′, respectively. Such transitions must exist in the original

automaton (since it generated the (LTS) transition under scrutiny in the first place), andq′ ∼ (q′, γ′)

by induction hypothesis.

In passing, we note that from a language-theoretic point of view a more useful equivalence is in

terms of traces. Such an equivalence is readily available:

Theorem 3.1.2 For any visibly pushdown automatonM it holds thatL(M) = ctraces(JMK).

Proof. Let M = (Φ,Φin, Σ̃,Γ,Ω,ΦF ). Consider somew = a1 . . . ak ∈ L(M) and let

(q0,⊥)(q01,⊥) · · · (q0m0
,⊥)(q1, γ1)(q11, γ1) · · · (q1m1

, γ1)(q2, γ2) · · · (qk, γk)(qk1, γk) · · · (qkmk
,

γk) be an accepting run ofM onw. Then the runρ′ = (I,⊥)τ(q0,⊥)τ(q01,⊥)τ · · · τ(q0m0
,⊥)a1

(q1, γ1)τ(q11, γ1)τ · · · τ(q1m1
, γ1)a2(q2, γ2) · · · ak(qk, γk)τ(qk1, γk)τ · · · τ(qkmk

, γk)τ(H, γk) ex-

ists inJMK by definition (indeed,q0 is an initial state, hence theτ transition from(I,⊥) to (q0,⊥);

similarly, qkmk
is a final state, hence the transition from(qkmk

, γk) to (H, γk)). Moreover,ρ′ is

maximal (since no state(H, γ) has outgoing transitions) and thereforew ∈ ctraces(JMK). Thus,

L(M) ⊆ ctraces(JMK).

Consider now somew = a1 . . . ak ∈ ctraces(JMK). We then have a runρ′ =

(I,⊥)τ(q0,⊥)τ(q01,⊥)τ · · · τ(q0m0
,⊥)a1(q1, γ1)τ(q11, γ1)τ · · · τ(q1m1

, γ1)a2(q2, γ2) · · · ak(qk,

γk)τ(qk1, γk)τ · · · τ(qkmk
, γk)τ(H, γk) such thatq0 ∈ Φin and qkmk

∈ ΦF . Indeed, the

state (I,⊥) has only τ transitions outgoing toward states inΦin × {⊥}. In addition, ex-

actly all the maximal runs ofJMK end up in a state(H, γ) (every final state has aτ tran-

sition that leads to such a state, and no other state is the terminal state of a maximal run—

those non-final states with no outgoing transitions in the original visibly pushdown automaton

are given a loop inJMK in order to avoid such), so we must end any maximal run at(H, γ).
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The preceding state(qkmk
, γk) is then (a) linked to (H, γ) by a τ transition (only these are

available), and(b) has qkmk
∈ ΦF (only such states are linked directly to(H, γ)). Then

(q0,⊥)(q01,⊥) · · · (q0m0
,⊥)(q1, γ1)(q11, γ1) · · · (q1m1

, γ1)(q2, γ2) · · · (qk, γk)(qk1, γk) · · · (qkmk
,

γk) is an accepting run ofM onw and thusw ∈ L(M). Thereforectraces(JMK) ⊆ L(M).

In all, L(M) = ctraces(JMK), as desired.

3.2 Closure Properties of VPL

It is already known that VPL are closed under union, intersection, complementation, renaming,

prefix, concatenation, and Kleene star. In addition, we establish in this section the promised closure

under hiding and shuffle. We will use in what follows the givenvPDAs and also their associated LTS

constructed according to Definition 3.1.1. We will then use the relation between the two constructs

(vPDA and LTS) as given in Theorem 3.1.1 and Theorem 3.1.2.

3.2.1 Hiding

Given a languageL over an alphabetΣ and a setA ⊆ Σ, the result of hidingA in L is the setL \A

that contains exactly all the strings fromL but with all the occurrences of symbols inA erased.

Theorem 3.2.1 VPL are closed under hiding.

Proof. Consider a VPLL over Σ̃ and any setA = Ac ⊎ Ar ⊎ Al ⊆ Σ̃. Let M be a vPDA that

acceptsL. We show how the symbols inA can be hidden one by one, so that in the end all the

symbols fromA can be hidden.

Hiding local symbols as well as hiding some call (return) together with all its balanced returns

(calls) can be accomplished by simply replacing inM the respective transitions by empty transitions

that do not modify the stack (which yields a vPDA). Same goes for hiding unbalanced calls and

unbalanced returns.

Consider now that we hide a callc but we do not hide its balanced returnr. Then every trace con-

tainingc andr in JMK will be transformed fromw1cw2rw3 (with w2 well-balanced) intow1w2rw3.
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The last call unbalanced inw1 becomes however balanced withr, and the balance (inw3) of the

other unbalanced calls inw1 “shift” one symbol to the right (if there is no unbalanced call in w1 then

the return will be unmatched). This shifting is handled by a suitably modifiedJMK, in which transi-

tions are added so that the new, shifted balances are allowed: Suppose the original pathw1cw2rw3

uses the transition(P, γ)
b

−→ (Q, dγ) to handle a call fromw1 and(R, dδ)
m
−→ (S, δ) to balance

b with a returnm from w3, and suppose that a transition(P ′, γ′)
b′

−→ (Q′, d′γ′) is used to han-

dle the symbol fromw1 that is the first symbol to the left ofb in the original path that is either

balanced by a return fromw3 or is unbalanced; then, the transition(P, γ)
b

−→ (Q, d′γ) is added.

Furthermore, one previously balanced returnr′ in w3 becomes unbalanced, so whenever the transi-

tion (P, a⊥)
r′
−→ (Q,⊥) is used in the original path, we add to the original definitiona transition

(P,⊥)
r′
−→ (Q,⊥). If we perform this procedure for every possible tracew1cw2rw3, then we ob-

tain an LTS from whichc has been eliminated (that is, hidden). Since we have added only transitions

of the proper form, the resulting LTS clearly corresponds toa vPDA.

The introduction of the transition(P, γ)
b

−→ (Q, d′γ) causes the introduction of the supple-

mentary transition(P, ε)
b

−→ (Q, d′) in M . This transition may be (inadvertently) used on other

paths thanw1cw2rw3, thus modifying the original language in an unacceptable manner. To prevent

this, we fix a brand new stateP ′′ and we inspect all the paths inJMK other thanw1cw2rw3 for

use of a transition(P, δ)
b

−→ (Q, eδ). If such a path is found, we then renameP to P ′′ on that

path (in the preceding transition that will now lead toP ′′ instead ofP and in the current transition

which will now start fromP ′′ instead ofP ). We perform a similar process for the newly introduced

transition(P, a⊥)
r′
−→ (Q,⊥). After all of this is complete, no path other thanw1cw2rw3 will

contain references toP , and thus no other path will be changed by the introduction ofthese new

vPDA transitions.

We perform a similar procedure (“shift” balance, this time to the left) whenever we hide a return

r but not its balanced callc; a callc′ previously balanced is now unbalanced, but this situation does

not need any new transition added to the original LTS, it being handled automatically (since vPDA

accept by final state only).
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Note that this is not an algorithmic procedure (e.g., we can have an infinite number of paths

w1cw2rw3), but does show closure under hiding which serves our purpose.

3.2.2 Shuffle

The shuffle of two languagesL1 and L2 over an alphabetΣ is defined asL1 9 L2 =

{w1v1w2v2 · · ·wmvm : w1w2 · · ·wm ∈ L1, v1v2 · · · vm ∈ L2 for all wi, vi ∈ Σ∗}.

Theorem 3.2.2 VPL are closed under shuffle.

Proof. Consider two vPDAM ′ = (Φ′,Φ′
in, Σ̃,Γ′,Ω′,Φ′

F ) andM ′′ = (Φ′′,Φ′′
in, Σ̃,Γ′′,Ω′′,Φ′′

F ).

We will construct the vPDAM = (Φ,Φin, Σ̃,Γ,Ω,ΦF ) that accepts the shuffle ofL(M ′) and

L(M ′′). The construction performs an alternative simulation ofM ′ andM ′′ and is constructed as

follows:

We need to keep track of the states of bothM ′ andM ′′ during any run ofM , so we putΦ =

Φ′ × Φ′′. M starts any of its runs from the start of bothM ′ andM ′′, so we putΦin = Φ′
in × Φ′′

in.

Similarly, at the end of the runM accepts the input iff bothM andM ′ accept their corresponding

inputs and thusΦF = Φ′
F × Φ′′

F . The stack alphabet ofM is Γ = Γ′ ∪ Γ′′. The transition relation

Ω is constructed as follows:

• We can shuffle any symbol with a local in an immediate fashion.If one of the symbols is a

local, then it can arbitrarily appear earlier or later than the other symbol in the shuffle. That

is, for every

– pair of symbolsx′ andx′′ such that eitherx′ ∈ Σl or x′′ ∈ Σl, and

– set of rules

(P ′, α′)
x′

−→ (Q′, β′) ∈ Ω′

(P ′′, α′′)
x′′

−→ (Q′′, β′′)) ∈ Ω′′

with suitable values forα′, β′, α′′ andβ′′,
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we add the following sets of rules:{((P ′,X), α′)
x′

−→ ((Q′,X), β′) : X ∈ {P ′′, Q′′}} and

{((X,P ′′), α′′)
x′′

−→ ((X,Q′′), β′′) : X ∈ {P ′, Q′}}.

• Let us shuffle any two call–return pairs in the two languages as if they were alone in the in-

put. In the process the original matchings/balance will change; indeed, if the original match-

ings/balance arec′ and r′ in M ′, andc′′ and r′′ in M ′′,“cross-matchings/balance” will be

allowed inM betweenc′ andr′′ and betweenc′′ andr′ (for otherwise a shuffle is not possi-

ble). Formally, for every

– matching callc′ and returnr′ in M ′,

– matching callc′′ and returnr′′ in M ′′, and

– set of rules

((P ′,⊥)
c′

−→ (Q′, a)), ((R′, a)
r′
−→ (S′,⊥)) ∈ Ω′

((P ′′,⊥)
c′′
−→ (Q′′, b)), ((R′′, b)

r′′
−→ (S′′,⊥)) ∈ Ω′′

we add the following rules: {((P ′,X),⊥)
c′

−→ ((Q′,X), a) : X ∈ {P ′′, Q′′}},

{((X,P ′′),⊥)
c′′
−→ ((X,Q′′), b) : X ∈ {P ′, Q′}}, {((R′,X), α)

r′
−→ ((S′,X),⊥) : X ∈

{R′′, S′′}, α ∈ {a, b}}, and{((X,R′′), α)
r′′
−→ ((X,S′′),⊥) : X ∈ {R′, S′}, α ∈ {a, b}}.

In effect, we allow the shuffling of the two pair of symbols in any combination: Whenever

M is ready to acceptc′ it is also ready to acceptc′′. If one of these two (e.g.,c′) was already

accepted, thenM is ready to accept the other symbol (e.g.,c′′), as well as the matching return

of the already accepted input (e.g.,r′). Whenever both calls have been accepted, either return

is acceptable first. That matching call–return pairs do not exist in isolation but can be mingled

with local symbols is taken care of by the previous case.

• We handle an unbalanced callc as follows: Suppose we had a balanced return forc; if this

were the case, we would be covered by the previous case. We do not have such a return,

but we can however invent one (call itr) in the original vPDA (M ′ or M ′′) that contains the
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unbalanced call. We then proceed with the construction outlined in the previous case. Once

this is done, we hide{r} in the resulting language (accepted byM ). The callc becomes once

more unbalanced. Given Theorem 3.2.1,M continues to be a vPDA.

An unbalanced return is handled similarly: we invent a balance call for it in the original

vPDA, we use the previous case to create the vPDAM and then we hide the just invented

call.

• Nothing else is included inΩ, for indeed the cases above cover all the possibilities thatcan

appear in a shuffle.

The correctness of the construction follows quite easily from the considerations expressed in each

case of the construction (plus Theorem 3.2.1 since the construction uses hiding).



Chapter 4

Communicating Visibly pushdown
Processes

Starting from the late seventies much attention has been devoted to the research of concurrent finite-

state process algebrae such as CSP, CCS, ACP etc. The behavioral semantics of these process

algebrae has been modelled by labelled transition systems.Many classes of behavioral equivalence

of these process algebrae are now well-established. There are many automatic verification tools for

their analysis which incorporate equivalence checking [16, 32]. VPL have all the required closure

properties for all the major operators of a concurrent process algebra. As a result, one can pick

any concurrent finite-state process algebra and apply its constructions on VPL rather than regular

languages to achieve a vPDA-based process algebra. This newprocess algebra should be more

powerful than that finite-state process algebra as VPL is more expressive than regular languages. In

this dissertation we choose CSP, a random well-establishedprocess algebra to verify our claim.

4.1 Communicating Visibly pushdown Processes

A communicating visibly pushdown (or CVP) process is an agent which interacts with its environ-

ment (itself regarded as a process) by performing certain events drawn from a visibly pushdown

alphabet̃Σ = Σl ⊎ Σc ⊎ Σr. The underlying semantics of CVP consists in labelled transition sys-

tems where states represent CVP processes. The syntax of CVPwill be based on the following

26
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description:

S ::= x : A → S(x) |S�R |S ⊓ R |X |SA‖BR |S \ A |S | f(S) | f−1(S) |S;R |S△R

whereS andR range over CVP processes (to be substantiated later),x over Σ̃, A andB over2eΣ,

f over the set{f : Σ̃ → Σ̃ : ∀a ∈ Σ̃: f(a), f−1(a) ∈ Σc [Σl, Σr] iff a ∈ Σc [Σl, Σr] ∧ f−1(a)

is finite ∧ f(a) = X iff a = X ∧ f(a) = ⊥ iff a = ⊥} of Σ̃-transformations. All the common

operators of CVP and CSP have the similar construction in LTS. · is a new operator (“abstract”)

which hides the sub-modules of a module (further substantiated later).

The discussion in Section 3.1 shows that we can represent an LTS state corresponding to a CVP

process asPγ , whereP is the current vPDA state andγ is the current stack content in the vPDA.

We refine the CVP syntax as follows:

Pγ ::= x : A → P (x)γ |Pγ�Qδ |Pγ ⊓ Qδ |Nγ |PγA‖BQδ |Pγ \ A |Pγ | f(Pγ) |

f−1(Pγ) |Pγ ;Qδ |Pγ△Qδ

where P, Q, N range over vPDA states andγ andδ represent some (necessarily finite) prefix of the

current stack content. In settling the form ofγ andδ we note that the transitions of a vPDA (and the

associated LTS) depend at most on the top of the stack. Therefore, we sometimes need to mention

syntactically the top of the stack only, while other times (before and after a local transition, before

a call transition, and after a return transition on a non-empty stack) we do not need to mention any

part of the stack. We thus reach the final syntax of CVP: witha andb ranging overΓ ∪ {ε},

Pa ::= x : A → P (x)a |Pa�Qb |Pa ⊓ Qa |Na |PaA‖BQb |Pa \ A |Pa | f(Pa) |

f−1(Pa) |Pa;Qb |Pa△Qb

4.2 The Operational Semantics of CVP

We often use the subscriptsl, c andr to denote the sets of local, call and return events, respectively.

Any A ∈ 2
eΣ will then be the union of three disjoint setsAl, Ac, Ar. A CVP operation is allowed
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(x : A → P (x))γ
a−→P (a)γ

[
a ∈ Al

]
(x : A → P (x))γ

a−→P (a)aγ

[
a ∈ Ac

]

(x : A → P (x))aγ
a−→P (a)γ

[
a ∈ Ar

]
(x : A → P (x))⊥

a−→P (a)⊥

[
a ∈ Ar

]

Figure 4.1: Prefix choice

between two CVP processes only when their partitions do not overlap1 (else the main restriction

of VPL over context-free language is violated). For anya ∈ Σl, a ∈ A ∩ B [a ∈ A \ B] is

equivalent ofa ∈ Al ∩ Bl [a ∈ Al \ Bl] and so on (for calls and returns).Matchedcall-returns

are defined by the specification, whilebalancedcall-returns are determined at run-time: A return

balances a call if it is labelled as a matching return of that call in the specification and also happens

to match that call at run-time. The mapping between the set ofcalls and the set of stack symbols is

always one to one; this helps to extract the stack from a traceand we do not loose generality. In this

dissertation, we use the simplest one to one relation that iswe will push the call event into the stack

as its own corresponding stack symbol. Indeed, the matchingcalls of a return event are determined

at specification time by specifying which stack symbols can be popped by the given return (e.g.,

if it is specified that{a, b} ⊆ Σc andc ∈ Σr which will pop eithera or b, thenc is the matching

return of botha andb). Due to the existence of the call and return events in CVP, wecan model the

CVP processes as recursive modules. The process between a call and its corresponding return can

represent as a (sub-) module. So the top level process is model of the main module. A call event is

used for calling a module, a return event is used for returning from a module, and a local event is

used for other actions. In CVP one call event cannot be used tocall two different modules but more

than one call event can call the same module; a similar restriction holds for return events. The stack

grows to the left, hence the bottom-of-stack⊥ gets the rightmost place.
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(a)
Pγ

τ−→Qγ
(b)

Pγ ⊓ Qδ
τ−→Pγ Pγ ⊓ Qδ

τ−→Qγ

Figure 4.2: Internal transition(a), internal choice(b)

4.2.1 Prefix Choice

The semantics of prefix choice is shown in Figure 4.1. The event prefix can be introduced by

eight kinds of syntactic rules:P = a → P ′, P = b → P ′
b, Pc = c → P ′, P⊥ = d → P ′

⊥,

Pe = STOP , Pe = SKIP , P = STOP , andP = SKIP . From the semantics of prefix choice

we then recognize thata is local,b is a call,c is a balanced return, andd is an unbalanced return.

Pe = STOP [Pe = SKIP ] requires that the process enter theSTOP [SKIP ] state only when

the vPDA state isP and the top of the stack ise. On the other hand,P = STOP [P = SKIP ]

does not impose any constraints on the top of the stack.

In general, we can specify any system with as well as without an explicit partitioning of its

events. However, if we do not provide an explicit partition,then we can write a process as a sequence

of events (like in CSP) only when all the events are locals. Onthe other hand, we can write any

finite process (including processes with calls and returns)as a sequence (desirable in a large system),

provided that we specify a partition on its events. For example, P⊥ is a process without an explicit

partition: P = a → Pa, P = b → P1, P1 = e → P2e, P2 = d → P3, P3e = f → P4,

P4a = c → P4, P4⊥ = STOP . The process can be written with an explicit partition asAl =

{b, d}, Ac = {a, e}, Ar = {c, f}; P = a → Pa, P = b → e → d → P3e, P3e = c → P4,

P4a = c → P4, P4⊥ = STOP or P = ac → Pa, P = b → ec → d → P3e, P3e = cr → P4,

P4a = cr → P4, P4⊥ = STOP .

4.2.2 Internal Event

A CVP process can perform the internal eventτ (not noticeable to the environment), which is able

to change the current vPDA state but is unable to affect the vPDA stack. The behaviour of theτ

1Meaning thatΣ′

x ∩ Σ′′

y = ∅ for all x 6= y for two partitionseΣ′ = {Σ′

c, Σ
′

r, Σ
′

l} andeΣ′′ = {Σ′′

c , Σ′′

r , Σ′′

l }.
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Pγ
τ−→P ′

γ

Pγ�Qδ
τ−→P ′

γ�Qδ

Qδ�Pγ
τ−→Qδ�P ′

γ

Pγ
a−→P ′

γ

Pγ�Qδ
a−→P ′

γ

Qδ�Pγ
a−→P ′

γ

Pγ
a−→P ′

aγ

Pγ�Qδ
a−→P ′

aγ

Qδ�Pγ
a−→P ′

aγ

Paγ
a−→P ′

γ

Paγ�Qaδ
a−→P ′

γ

Qaδ�Paγ
a−→P ′

γ

P⊥
a−→P ′

⊥

P⊥�Q⊥
a−→P ′

⊥

Q⊥�P⊥
a−→P ′

⊥

Pγ
X−→P ′

γ

Pγ�Qδ
X−→P ′

γ

Qδ�Pγ
X−→P ′

γ

Figure 4.3: External choice

Pγ
τ−→P ′

γ

Nγ
τ−→P ′

γ

[
N = P

] Pγ
a−→P ′

γ

Nγ
a−→P ′

γ

[
N = P

]

Pγ
a−→P ′

aγ

Nγ
a−→P ′

aγ

[
N = P

] Paγ
a−→P ′

γ

Naγ
a−→P ′

γ

[
N = P

]

P⊥
a−→P ′

⊥

N⊥
a−→P ′

⊥

[
N = P

] Pγ
X−→P ′

γ

Nγ
X−→P ′

γ

[
N = P

]

Figure 4.4: Recursion

transition is described in Figure 4.2(a).

4.2.3 Choice

The semantics of internal and external choice are shown in Figures 4.2(b) and 4.3. Choice can-

not change the matched call-returns; the stack of the composite process is similar to the stacks of

component processes. A process that chooses (once!) between ‘]’ and ‘〉’ as balanced return for

‘ [’ can be defined as follows:P = [→ P[, P = P1�P2, P1[ =] → P1, P2[ =〉 → P2, P1⊥ =

STOP,P2⊥ = STOP . Note that ‘]’ and ‘〉’ are both matching returns of ‘[’ but only one is used

as balanced return, depending on the environment.

4.2.4 Recursion

A CSP recursive process creates a loop among LTS states whileCVP recursive processes create

loops among vPDA states only. During each recursive loop a CVP process will change the stack
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by the same amount, as in each loop it will visit the same vPDA states and will execute the same

visible actions. If the amount of change is zero, then the recursive process can be represented by a

finite state machine; it also creates a loop among LTS states.The condition for a CVP processPγ

to be called recursive is that the process definition contains the vPDA stateP .

The semantics of recursion is shown in Figure 4.4. Like CSP, CVP supports right- and left-

embedding recursion, but it also supports self-embedding recursion such as balanced brackets:P =

(→ P(, P( =) → P,P⊥ = STOP . P⊥ can produce an infinite number of LTS states and infinitely

many possible traces (see Figure 4.5) although we only have one vPDA stateP . Consider now the

processQ = (→ Q1(, Q1( =) → Q,Q⊥ = STOP . It may have infinitely long traces and can

be written as follows:Q = (→) → Q,Q⊥ = STOP . One can argue that the events “(” and “)”

are behaving like locals inQ⊥, asQ⊥ can be represented by a finite state machine. However, in

P⊥ above the event “(” mustbe a call and the event “)” mustbe a return. Any CVP composition

betweenQ⊥ andP⊥ is possible only if(∈ Σc and) ∈ Σr, for otherwise the partitions ofP⊥ andQ⊥

will not coincide. It is therefore recommended that the partitioning be made in a process-dependent

way, and not in order to simplify the process definition.

A recursive process can produce an unbounded stack and causethe system to crash. Stack height

of a non-recursive process is bounded by the total number of the call events occurring in the process

definition. A right-embedding (or left-embedding) recursion cannot produce an unbounded stack if

the number of returns is greater than or equal to the number ofcalls in the process definition (e.g. in

Q = (→ Q1(, Q1( =) → Q,Q⊥ = STOP ); otherwise (e.g. inQ = (→ Q,Q⊥ = STOP ) it can

produce an unbounded stack. A self-embedding recursive process (e.g. balanced brackets) features

an iteratively increasing part followed by an iteratively decreasing part. The increasing part may

run ad infinitum and produce an unbounded stack. A stack inspection interrupt process (interrupt

will be defined later) should therefore be used with left- or right-embedding recursive processes that

have more call event than return event occurrences in their process definition, as well as with any

self-embedding recursive process.
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P P( P(( P(((

( ( (

) ) )

Figure 4.5: Balanced brackets

4.2.5 Parallel Composition

Figure 4.6 shows the semantics of parallel composition. Anycommon event of the component

processes must synchronize during execution. Synchronization is symmetric and instantaneous,

so the composite process performs only one event and pushes [pops] only one stack symbol onto

[off] the composite stack. The form of the semantics shown inFigure 4.7(a) explains this in detail

for synchronized call and return transitions (using explicitly the composite stack). The component

processes perform independently the events which are not common between them. Thus every

interleaved call [return] event pushes [pops] one stack symbol to the composite stack. Figure 4.7(b)

shows the detailed semantics (using the composite stack explicitly) for unsynchronized call and

return transitions.

In parallel composition if one process performs an unsynchronized call and then the other wants

to perform an unsynchronized return, the second process will pop its own stack and then the com-

posite process will pop the top of its stack (pushed by the first process). Hence in the composite

process balanced call-returns depend not only on its components, but also on the sequence of ex-

ecution of the components. Unsynchronized execution can change the balanced call-returns in the

composite process. To illustrate this, considerP = [→ P1[, P1 = 〈→ P2〈, P2〈 =〉 → P3, P3[ =

] → STOP andQ = [→ Q1[, Q1 = ⌊→ Q2⌊, Q2⌊ =⌋ → Q3, Q3[ =] → STOP . The process

P⊥{[, 〈, 〉, ]}‖{[, ⌊, ⌋, ]}Q⊥ is shown in Figure 4.8. InP⊥{[, 〈, 〉, ]}‖{[, ⌊, ⌋, ]}Q⊥ the matching return of

‘〈’ and ‘⌊’ are ‘〉’ and ‘⌋’. In the runsA–B–C–E–I–M–STOP andA–B–D–G–K–O–STOP ,

‘〉’ is the balanced return of ‘⌊’ for P⊥{[, 〈, 〉, ]}‖{[, ⌊, ⌋, ]}Q⊥, even if ‘〉’ is the sole matched return of

‘〈’ in P . Parallel composition of balanced processes can also create unbalanced process.
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Pγ
a−→P ′

γ Qδ
a−→Q′

δ

PγA‖BQδ
a−→P ′

γA‖BQ′
δ

[
a ∈ A ∩ B

] Pγ
a−→P ′

aγ Qδ
a−→Q′

aδ

PγA‖BQδ
a−→P ′

aγA‖BQ′
aδ

[
a ∈ A ∩ B

]

Paγ
a−→P ′

γ Qbδ
a−→Q′

δ

PaγA‖BQbδ
a−→P ′

γA‖BQ′
δ

[
a ∈ A ∩ B

] P⊥
a−→P ′

⊥ Q⊥
a−→Q′

⊥

P⊥A‖BQ⊥
a−→P ′

⊥A‖BQ′
⊥

[
a ∈ A ∩ B

]

Paγ
a−→P ′

γ Q⊥
a−→Q′

⊥

PaγA‖BQ⊥
a−→P ′

γA‖BQ′
⊥

Q⊥B‖APaγ
a−→Q⊥B‖AP ′

γ

[
a ∈ A ∩ B

] Pγ
a−→P ′

γ

PγA‖BQδ
a−→P ′

γA‖BQδ

QδB‖APγ
a−→QδB‖AP ′

γ

[
a ∈ A \ B

]

Pγ
a−→P ′

aγ

PγA‖BQδ
a−→P ′

aγA‖BQδ

QδB‖APγ
a−→QδB‖AP ′

aγ

[
a ∈ A \ B

] Paγ
a−→P ′

γ

PaγA‖BQδ
a−→P ′

γA‖BQδ

QδB‖APaγ
a−→QδB‖AP ′

γ

[
a ∈ A \ B

]

P⊥
a−→P ′

⊥

P⊥A‖BQδ
a−→P ′

⊥A‖BQδ

QδB‖AP⊥
a−→QδB‖AP ′

⊥

[
a ∈ A \ B

] Pγ
τ−→P ′

γ

PγA‖BQδ
τ−→P ′

γA‖BQδ

QδB‖APγ
τ−→QδB‖AP ′

γ

Pγ
X−→P ′

γ Qδ
X−→Q′

δ

PγA‖BQδ
X−→P ′

γA‖BQ′
δ

Figure 4.6: Alphabetized parallel

4.2.6 Hiding

Figure 4.9 shows the semantics of hiding. The stack of the process does not change when a hidden

call or return is performed; part of Figure 4.9 could be written in the possibly clearer but more

elaborate form from Figure 4.10. If we hide ‘)’ in the processP⊥ of balanced brackets used earlier,

then the traces of the resulting process will form the language(∗. Hiding transforms here a balanced

process into an unbalanced one. Hiding can change unbalanced [balanced] processes into balanced

[unbalanced] ones; it can also change the matched call-returns.

4.2.7 Abstract

The operator introduced over any other process algebra is abstract, which hides all the sub-modules

of a module. This operator is motivated by the abstract path in CARET and NWTL [2, 8]. One
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Pγ
a−→P ′

aγ Qδ
a−→Q′

aδ

(PγA‖BQδ)φ
a−→(P ′

aγA‖BQ′
aδ)aφ

[
a ∈

A ∩ B

]
Paγ

a−→P ′
γ Qbδ

a−→Q′
δ

(PaγA‖BQbδ)cφ
a−→(P ′

γA‖BQ′
δ)φ

(PaγA‖BQbδ)⊥
a−→(P ′

γA‖BQ′
δ)⊥

[
a ∈

A ∩ B

]

(a)

Pγ
a−→P ′

aγ

(PγA‖BQδ)φ
a−→(P ′

aγA‖BQδ)aφ

(QδB‖APγ)φ
a−→(QδB‖AP ′

aγ)aφ

[
a ∈

A \ B

]
Paγ

a−→P ′
γ

(PaγA‖BQδ)cφ
a−→(P ′

γA‖BQδ)φ
(QδB‖APaγ)cφ

a−→(QδB‖AP ′
γ)φ

(PaγA‖BQδ)⊥
a−→(P ′

γA‖BQδ)⊥
(QδB‖APaγ)⊥

a−→(QδB‖AP ′
γ)⊥

[
a ∈

A \ B

]

(b)

Figure 4.7: Alternate semantics of parallel composition
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Figure 4.8: Example of parallel composition

can now hide the sub-modules from the environment. This cannot be accomplished using the hide

operator if an event is present both in the module and its sub-module. Abstract produces the local

trace of a module, so that one can specify internal properties of a recursive module. The semantics

of abstract is presented in Figure 4.11. During the execution of a call, abstract pushes the corre-

sponding stack symbol with two special markers:·̃ for the internal call of the main module and·

for the internal call of a sub-module. If the top of the stack contains any special marker then every

local event will be hidden; calls and returns are pushed to/popped off the stack but are otherwise

hidden as well (except for top-level calls and returns in themodule). If a return occurs when the top

of the stack is not marked, the process will get out of abstract.

Let B (with call b and returnf ), andC (with call d and returne) be two modules. The top-level

processP calls B andB calls C: P = a → Q, Q = b → Rb, R = c → S, S = d → Td,
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Pγ
t−→P ′

γ

Pγ \ A t−→P ′
γ \ A

[
t ∈ {τ,X}

] Pγ
a−→P ′

γ

Pγ \ A τ−→P ′
γ \ A

[
a ∈ A

]

Pγ
a−→P ′

aγ

Pγ \ A τ−→P ′
aγ \ A

[
a ∈ A

] Paγ
a−→P ′

γ

Paγ \ A τ−→P ′
γ \ A

[
a ∈ A

]

P⊥
a−→P ′

⊥

P⊥ \ A τ−→P ′
⊥ \ A

[
a ∈ A

] Pγ
a−→P ′

γ

Pγ \ A a−→P ′
γ \ A

[
a /∈ A

]

Pγ
a−→P ′

aγ

Pγ \ A a−→P ′
aγ \ A

[
a /∈ A

] Paγ
a−→P ′

γ

Paγ \ A a−→P ′
γ \ A

[
a /∈ A

]

P⊥
a−→P ′

⊥

P⊥ \ A a−→P ′
⊥ \ A

[
a /∈ A

]

Figure 4.9: Hiding

Pγ
a−→P ′

aγ

(Pγ \ A)φ
τ−→(P ′

aγ \ A)φ

[
a ∈ A

] Paγ
a−→P ′

γ

(Paγ \ A)φ
τ−→(P ′

γ \ A)φ

[
a ∈ A

]

Figure 4.10: Altenrate semantics of hiding

T = c → U , Ud = e → V , Vb = f → W , andW = c → STOP . We can hide the sub-modules

of B by using abstract:P = a → Q, Q = b → Rb, R = c → S, S = d → Td, T = c → U ,

Ud = e → V , Vb = f → W , andW = c → STOP . We actually hide sub-moduleC in this

particular example.

4.2.8 Renaming

The semantics of forward and backward renaming is depicted in Figures 4.12 and 4.13. Renaming

functions cannot change the VPL partition. Renaming can modify the matched call-returns of a

process but cannot change a balanced [unbalanced] process into an unbalanced [balanced] one.

There might be no “reverse” renaming that retrieves the original process or set of matched call-

returns: If we apply a renamingf(〉) =] on our previous example (illustrating choice), we get a
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Pbγ
a−→P ′

abγ

Pbγ
a−→P ′

ãbγ

Pb̃γ
τ−→P ′

ab̃γ

Pbγ
τ−→P ′

abγ

Paγ
a−→P ′

aγ

Paγ
a−→P ′

aγ

Pãγ
τ−→P ′

ãγ

Paγ
τ−→P ′

aγ

Paγ
a−→P ′

γ

Paγ
a−→P ′

γ

Pãγ
a−→P ′

γ

Paγ
τ−→P ′

γ

Pγ
τ−→P ′

γ

Pγ
τ−→P ′

γ

Pγ
X−→P ′

γ

Pγ
X−→P ′

γ

P⊥
a−→P ′

⊥

P⊥
a−→P ′

⊥

[
a ∈ Ar

]

Figure 4.11: Abstract

Pγ
τ−→P ′

γ

f(P )γ
τ−→f(P ′)γ

Pγ
a−→P ′

γ

f(P )γ f(a)
−→f(P ′)γ

Pγ
a−→P ′

aγ

f(P )γ f(a)
−→f(P ′)f(a)γ

Paγ
a−→P ′

γ

f(P )f(a)γ
f(a)
−→f(P ′)γ

P⊥
a−→P ′

⊥

f(P )⊥ f(a)
−→f(P ′)⊥

Pγ
X−→P ′

γ

f(P )γ X−→f(P ′)γ

Figure 4.12: Forward renaming

process whose traces define the language[n]n; no renaming can give back the original.

4.2.9 Sequential Composition and Interrupt

Figures 4.14 and 4.15 show the semantics of sequential composition and interrupt. These operators

can change the matched call-returns.

Pγ
τ−→P ′

γ

f−1(P )γ
τ−→f−1(P ′)γ

Pγ
f(a)
−→P ′

γ

f−1(P )γ
a−→f−1(P ′)γ

Pγ
f(a)
−→P ′

f(a)γ

f−1(P )γ
a−→f−1(P ′)aγ

Pf(a)γ
f(a)
−→P ′

γ

f−1(P )aγ
a−→f−1(P ′)γ

P⊥
f(a)
−→P ′

⊥

f−1(P )⊥
a−→f−1(P ′)⊥

Pγ
X−→P ′

γ

f−1(P )γ X−→f−1(P ′)γ

Figure 4.13: Backward renaming
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Pγ
τ−→P ′

γ

Pγ ;Qδ
τ−→P ′

γ ;Qδ

Pγ
a−→P ′

γ

Pγ ;Qδ
a−→P ′

γ ;Qδ

Pγ
a−→P ′

aγ

Pγ ;Qδ
a−→P ′

aγ ;Qδ

Paγ
a−→P ′

γ

Paγ ;Qδ
a−→P ′

γ ;Qδ

P⊥
a−→P ′

⊥

P⊥;Qδ
a−→P ′

⊥;Qδ

Pγ
X−→P ′

γ

Pγ ;Qδ
τ−→Qδ

Figure 4.14: Sequential composition
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γ

Pγ△Qδ
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Pγ
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γ

Pγ△Qδ
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γ△Qδ

Pγ
a−→P ′

aγ

Pγ△Qδ
a−→P ′

aγ△Qδ

Paγ
a−→P ′

γ

Paγ△Qδ
a−→P ′

γ△Qδ

P⊥
a−→P ′

⊥

P⊥△Qδ
a−→P ′

⊥△Qδ

Pγ
X−→P ′

γ

Pγ△Qδ
X−→P ′

γ

Qδ
τ−→Q′

δ

Pγ△Qδ
τ−→Pγ△Q′

δ

Qδ
a−→Q′

aδ

Pγ△Qδ
a−→Q′

aδ

Qδ
a−→Q′

δ

Pγ△Qδ
a−→Q′

δ

Qaδ
a−→Q′

δ

Pγ△Qaδ
a−→Q′

δ

Q⊥
a−→Q′

⊥

Pγ△Q⊥
a−→Q′

⊥

Figure 4.15: Interrupt

4.3 CVP Is a Process Algebra

Theorem 4.3.1 CVP is an algebra; that is, CVP is closed under all its operators. The underlying

semantics of any CVP process is a vPDA (or an equivalent LTS).

Proof. We proceed by structural induction.STOP , SKIP are obviously CVP processes. It

is also easy to see that CVP is closed under: prefix choice (which just follows the definition of a

transition in the associated vPDA), external choice (whichis a prefix choice with more than one

alternative; many transitions out of one state are clearly allowed), internal choice (we connect two

LTS to a common start state viaτ transitions that does not change the stack), recursion (which

generates a loop from some vPDA stateP back intoP ; this does not introduce infinite vPDA states,

and manipulates the stack according to the vPDA semantics introduced by the other transitions),
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renaming (unchanged VPL partition), and abstract (we replace whole portions of the LTS withτ

transitions).

Hiding is straightforward except when we hide a callc but we do not hide its balanced returnr

(or the other way around). Then every path containingc andr will be transformed fromw1cw2rw3

(with w2 balanced) intow1w2rw3. The last call unbalanced inw1 becomes however balanced with

r, and the matching (inw3) of the other unbalanced calls inw1 “shift” one symbol to the right.

This shifting is handled by adding rules so that the new, shifted matchings are allowed: Suppose the

original pathw1cw2rw3 uses the rulesP = b → Qd to handle a call fromw1 andRd = m → S

to matchb with a returnm from w3, and suppose that a ruleP ′ = b′ → Q′
d′ is used to handle the

symbol fromw1 that is the first symbols to the left ofb in the original path that is either balanced by

a return fromw3 or is unbalanced; then, the ruleP = b → Qd′ is added. One previously balanced

returnr′ in w3 becomes unbalanced, so whenever the rulePa = r′ → Q is used in the original path,

we add a ruleP⊥ = r′ → Q (we change the original LTS, but it is easier to describe the process in

terms of adding rules).

We introduce a supplementary transition(P, ε)
b

−→ (Q, d′), which may be (inadvertently) used

on other paths thanw1cw2rw3, thus modifying the LTS in an unacceptable manner. We then fix

a brand new stateP ′′ and we inspect all the paths in the LTS other thanw1cw2rw3 for use of

(P, δ)
b

−→ (Q, eδ). If such a path is found, we then renameP to P ′′ on that path (in the preceding

transition that will now lead toP ′′ instead ofP and in the current transition which will now start

from P ′′ instead ofP ). We do the same for the newly introduced ruleP⊥ = r′ → Q. Then no

path other thanw1cw2rw3 will contain references toP , so no other path will be changed by the

introduction of the new transitions.

We perform this procedure for every possible pathw1cw2rw3 and we obtain a CVP process

from which r has been eliminated (that is, hidden). Hiding a return but not its balanced call is

similar.

Consider two LTSL′ andL′′ with initial [final] vPDA statesI ′ andI ′′ [H ′ andH ′′]. We assume

without loss of generality that the stack alphabets ofL′ andL′′ are disjoint. The LTS corresponding



CHAPTER 4. COMMUNICATING VISIBLY PUSHDOWN PROCESSES 39

to the sequential composition ofL′ andL′′ will have I ′ as initial vPDA state andH ′′ as final vPDA

state. For all the statesH ′
δ⊥ in L′ we make a copy ofL′′ with identical transitions and with a state

Pγδ⊥ for every statePγ⊥ of L′′. The copy works the same as the original, but unbalanced returns

(introduced by rules of formP⊥ = r → Q⊥) may now want to match with symbols fromδ (which

they won’t succeed); for every ruleP⊥ = r → Q⊥ we add{Pa = r → Q : a ∈ δ} to take care of

such a case. We link the copy thus described toH ′
δ⊥ using aτ transition. Closure under interrupt

proceeds with the same construction but we copyL′′ for every stateQδ⊥ of L′.

The parallel compositionL of L′ andL′′ will be constructed as follows. The set of vPDA states

of L will be the Cartesian product of the vPDA states ofL′ andL′′. The stack alphabet ofL will

beΓ′ ∪ Γ′′ ∪ Γ′ × Γ′′ (with Γ′, Γ′′ the stack alphabets ofL′ andL′′). The transition relation ofL is

built as follows:

• Balanced callc and returnr are synchronized (similar for synchronized local symbols): For

everyP ′ = c → Q′
a andP ′′ = c → Q′′

b in L′ andL′′, respectively, we add(P ′, P ′′) = c →

(Q′, Q′′)(a,b). Similarly, for everyP ′
a = r → Q′ andP ′′

b = r → Q′′ in L′ andL′′, we add

(P ′, P ′′)(a,b) = c → (Q′, Q′′).

• Balanced callc′ and returnr′ in L′ and balanced callc′′ and returnr′′ in L′′ are unsynchro-

nized (similar for unsynchronized local symbols): For every set of rulesP ′ = c′ → Q′
a,

P ′′ = c′′ → Q′′
b , R′

a = r′ → S′, and R′′
b = r′′ → S′′ we add the following rules:

(P ′,X) = c′ → (Q′,X)a for all X ∈ {P ′′, Q′′}, (X,P ′′) = c′′ → (X,Q′′)b for all

X ∈ {P ′, Q′}, (R′,X)α = r′ → (S′,X) for all X ∈ {R′′, S′′} and α ∈ {a, b}, and

(X,R′′)a = r′′ → (X,S′′) for all X ∈ {R′, S′} andα ∈ {a, b}.

• Call c′ is synchronized, balanced returnsr′ in L′ andr′′ in L′′ are unsynchronized: We keep

c′ in L′, we renamec′ to c′′ in L′′, and we proceed withc′, c′′, r′, andr′′ as in the above case.

We then hidec′′ (as described above).

• Callsc′ in L′ andc′′ in L′′ are unsynchronized, balanced returnr′ is synchronized: As above,

but we renamer′ to r′′ in L′′ and then we hider′′.
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It is immediate that the resulting process implements parallel composition.



Chapter 5

CVP Trace Semantics

CVP trace semantics produces the set of traces of a CVP process: Pγ is CVP process then

traces(Pγ) is the set of traces it can produce.STOP , SKIP , andRUN are same in CSP and

CVP. In both casesRUNcan perform any sequence of event any time but the CVPRUNoperates on

a visible alphabet.

5.1 Prefix Choice

An observation of the process((x : A → P (x))γ has two possibilities: Either no event has yet oc-

curred, or else an eventa ∈ A has occurred, and the subsequent behavior is that of the corresponding

processP (a)γ′ . If a ∈ Al thenγ′ = γ:

traces((x : A → P (x))γ) = {〈〉} ∪ {〈a〉.tr |a ∈ Al ∧ tr ∈ traces(P (a)γ)}

If a ∈ Ac thenγ′ = aγ:

traces((x : A → P (x))γ) = {〈〉} ∪ {〈a〉.tr |a ∈ Ac ∧ tr ∈ traces(P (a)aγ)}

If a ∈ Ar & γ 6= ⊥ thenaγ′ = γ:

traces((x : A → P (x))aγ) = {〈〉} ∪ {〈a〉.tr |a ∈ Ar ∧ tr ∈ traces(P (a)γ)}

If a ∈ Ar & γ = ⊥ thenγ′ = γ:

traces((x : A → P (x))⊥) = {〈〉} ∪ {〈a〉.tr |a ∈ Ar ∧ tr ∈ traces(P (a)⊥)}

41
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(x : A → P (x)γ′) = (((x : A → P (x))γ), means after execution of the eventx ∈ A the stack will

beγ′. So the above four rules can be written together as a single rule::

traces(x : A → P (x)γ′) = {〈〉} ∪ {〈a〉.tr |a ∈ A ∧ tr ∈ traces(P (a)γ′)}

Let Paa⊥ andPa⊥ are two CVP processes with same process definition:Pa = a → P , P⊥ =

STOP . traces(Paa⊥) = {〈〉, 〈a〉, 〈a, a〉} andtraces(Pa⊥) = {〈〉, 〈a〉}. So they are not equivalent

processes astraces(Paa⊥) 6= traces(Pa⊥).

5.2 External Choice

An observer of the choice constructPγ�Qδ might observe an execution ofPγ or Qδ; there is no

other possibility. The choice operator splits a process in alternative processes so these alternative

processes have same stack.

traces(Pγ�Qδ) = traces(Pγ) ∪ traces(Qδ)

Figure 5.1 presents the laws of external choice. The first three laws are inherited from the properties

of the union operator. Law� − unit states that external choice gives any processPγ precedence

overSTOP , which can never resolve a choice in its favor. Law�−zero states that external choice

allows any processPγ to be masked byRUN: in a choice withRUN, if the choice does happen to

be resolved in favor ofPγ , then any trace corresponding to such an execution ofPγ is also possible

for RUN. In algebraic terms,STOP is a unit of external choice, andRUN is a zero. Law� − step

shows that an external choice of two menu choices may be rewritten as a single menu choice.

5.3 Internal Choice

The internal choicePγ ⊓Qδ behaves either asPγ or asQδ, and its environment exercises no control

over the decision.

traces(Pγ ⊓ Qδ) = traces(Pγ) ∪ traces(Qδ)

Figure 5.2 presents the laws of internal choice. The first three laws are inherited from the union
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Pγ�Pγ = Pγ � − idem

Pγ�(Qδ�Rβ) = (Pγ�Qδ)�Rβ � − assoc

Pγ�Qδ = Qδ�Pγ � − sym

Pγ�STOP = Pγ � − unit

Pγ�RUN = RUN � − zero

(x : A → P (x))γ�(y : B → Q(y))δ = (x : A → P (x)γ′)�(y : B → Q(y)δ′)
= z : A ∪ B → R(z)γ′∪δ′

whereR(c)γ′∪δ′

= P (c)γ′ if c ∈ A \ B
= Q(c)δ′ if c ∈ B \ A
= P (c)γ′ ⊓ Q(c)δ′ if c ∈ A ∩ B � − step

Figure 5.1: Laws for external choice

operator. This form of choice has different executions thanthe external choicePγ�Qδ, since the

choice is first resolved by aτ transition before the real choice begins its execution. However, this

internal transition is not recorded in any trace, and a traceobserver is not concerned with identifying

where responsibility lies for particular choices, but onlywith the possible sequences of events.

Under these circumstances, the internal and external choice construct are not distinguished.

Pγ ⊓ Pγ = Pγ ⊓ − idem

Pγ ⊓ (Qδ ⊓ Rβ) = (Pγ ⊓ Qδ) ⊓ Rβ ⊓ − assoc

Pγ ⊓ Qδ = Qδ ⊓ Pγ ⊓ − sym

Pγ�Qδ = Pγ ⊓ Qδ choice − equiv

Figure 5.2: Laws for internal choice
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5.4 Parallel Composition

A parallel compositionPγA‖BQδ consists ofPγ performing events inA, andQδ performing events

in B. The processesPγ andQδ synchronize on events inA ∩ B, and perform their other events

independently. SincePγ is involved in the performance of all events fromA, any execution of

the parallel composition projected ontoA must be an execution ofPγ . Similiarly, any execution

projected ontoB must be an execution ofQδ. The traces ofPγA‖BQδ are those sequences of events

which are consistent withPγ andQδ. Only events inA or B, or termination, can be performed, so

the set of events in the trace must be contained in(A ∪ B)X.

traces(PγA‖BQδ) = {tr ∈ TRACE | tr ↾ AX ∈ traces(Pγ) ∧ tr ↾ BX ∈ traces(Qδ)

∧σ(tr) ⊆ (A ∪ B)X}

Figure 5.3 presents the laws of alphabetized parallel. Law‖ − idem is a form of idempotence:

if the interfaceA provided forPγ allows all of its possible eventsσ(Pγ) ⊆ A then the traces of

Pγ are the same as the traces of two copies ofPγ running together. Any execution ofPγ can

be performed by both copies ofPγ executing together and synchronizing on every event. The

intermediate interfaces in Law‖ − assoc depend on the order in which components are composed

together, but the resulting process is the same in each case.Law ‖ − unit provides a unit for

the parallel operator: the processRUN(A∩B)X , which is always prepared to perform any event in

the common interface, and hence places no restriction onPγ ’s performance of those events. Law

‖− step shows how to reduce a parallel composition of prefix choices to a single prefix choice. The

events that are initially possible are those that either side can perform without the co-operation of

the other, together with those that both are initially readyto perform. The events that are blocked

are those that only one side is ready to perform but where the co-operation of both is required.

Laws‖ − term 1 and‖− term 2 are concerned with termination of a parallel composition. If both

components are ready to terminate, then termination occurs.
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PγA‖APγ = Pγ if σ(Pγ) ⊆ A ‖ − idem

PγA‖B ∪ C(QδB‖CRα) = (PγA‖BQδ)A ∪ B‖CRα ‖ − assoc

PγA‖BQδ = QδB‖APγ ‖ − sym

C ⊆ A ∧ D ⊆ B ⇒ (x : C → P (x))γA‖B(y : D → Q(y))δ
= (x : C → P (x)γ′)A‖B(y : D → Q(y)δ′)
= (z : ((C \ B) ∪ (D \ A) ∪ (C ∩ D)) → R(z))α
= z : ((C \ B) ∪ (D \ A) ∪ (C ∩ D)) → R(z)α′

whereR(c)α′

= P (c)γ′A‖B(y : D → Q(y)δ′) if c ∈ C \ B
= (x : C → P (x)γ′)A‖BQ(c)δ′ if c ∈ D \ A
= P (c)γ′A‖BQ(c)δ′ if c ∈ C ∩ D ‖ − step

SKIPA‖BSKIP = SKIP ‖ − term 1

(x : C → P (x))γA‖BSKIP = (x : C → P (x)γ′)A‖BSKIP
= x : C ∩ (A \ B) → (P (x)γ′A‖BSKIP ) ‖ − term 2

Pγ eΣ‖eΣRUN = Pγ ‖ − unit

PγA‖eΣSTOP = STOP ‖ − zero

Figure 5.3: Laws for alphabetized parallel

5.5 Hiding

The processPγ \ A for A ⊆ Σ̃ has the same execution asPγ , except that at any point wherePγ

performs an external event fromA, the processPγ \ A performs the same event internally; as a

result that event does not appear in the trace.

traces(Pγ \ A) = {tr \ A|tr ∈ traces(Pγ)}

Figure 5.4 shows the laws of Hiding. The first law states that hiding successive sets of events

obtains the same process as hiding all the sets of events at once. Second law states that if there is no

event then we there is noting to hide. The third and fourth laws are special instances of hiding over

a prefix choice. In the first case none of the choice events is hidden, resulting in the same choice of
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(Pγ \ A) \ B = Pγ \ (A ∪ B) hide − combine

STOP \ A = STOP hide − STOP

(x : C → P (x))γ \ A = (x : C → P (x)γ′) \ A
= (x : C → (P (x)γ′ \ A)) if A ∩ C = ∅ hide − step 1

(x : C → P (x))γ \ A = (x : C → P (x)γ′) \ A
= ⊓x∈C(P (x)γ′ \ A) if C ⊆ A hide − step 2

SKIP \ A = SKIP hide − term

Figure 5.4: Laws for hiding

events being offered. In the second case all of the choice events are hidden, resulting in the choice

between the subsequent processes. The last law states that hiding does not affect termination.

5.6 Renaming

A forward renamed processf(P )γ behaves the same way asPγ but performsf(a) wheneverPγ

would have performeda. Its traces are the traces ofPγ with every event mapped throughf .

traces(f(Pγ)) = {f(tr)|tr ∈ traces(Pγ)}

The backward renaming operatorf−1(Pγ) also behaves in a similar fashion toPγ , but any eventa

that is performed byf−1(Pγ) corresponds to an eventf(a) performed byPγ . Hence a tracetr of

f−1(Pγ), when mapped through the functionf , must yield a tracef(tr) of Pγ .

traces(f−1(Pγ)) = {tr |f(tr) ∈ traces(Pγ)}

Figure 5.5 represents the laws of renaming. The first law states that if the mappingf is one-to-one,

then renaming withf has a straightforward interaction with prefix choice. A choice of events from

C becomes a choice of events fromf(C) = {f(c)|c ∈ C}. The fact thatf is injective means

that the eventy chosen corresponds to exactly one eventx(= f−1(y)) from the original choice of
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f(x : C → P (x))γ = f(x : C → P (x)γ′) =
y : f(C) → f(P (f−1(y)))γ′ if f is 1-1 f(.) − step 1

f(x : C → P (x))γ = f(x : C → P (x)γ′)
= y : f(C) → ⊓x|f(x)=yf(P (x))γ′ f(.) − step 2

f(SKIP ) = SKIP f(.) − term

f−1(x : C → P (x))γ = f−1(x : C → P (x)γ′)
= y : f−1(C) → f−1(P (f(y)))γ′ f−1(.) − step

f−1(SKIP ) = SKIP f−1(.) − term

Figure 5.5: Laws for Renaming

events fromC, so the subsequent behavior is that ofP (x)γ transformed throughf . The second law

states that if a process initially is prepared to perform anyevent fromC, then the initial choice for

its renamed process is the set of eventsf(C). However, the result of choosingy could be any of

the processes which follow an event mapping toy: if a andb both appear inC, andf maps them

both to the same eventc, then the renamed process is in effect offeringc in two different ways,

once resulting froma and once resulting fromb. All of the term laws state that the various sorts of

renaming cannot affect a process ability to terminate. The interaction between backward renaming

and prefix choice is straightforward.

5.7 Sequential Composition

The sequential compositionPγ ;Qδ behaves asPγ until Pγ terminates successfully, at which point

it passes control toQδ. Since the termination ofPγ does not denote termination of the entire

construct,Pγ ’s X event is made internal. The traces ofPγ ;Qδ fall into two categories: trace ofPγ

before termination, and terminating traces ofPγ followed by traces ofQδ.

traces(Pγ ;Qδ) = { tr |tr ∈ traces(Pγ) ∧ X /∈ σ(tr)} ∪ {tr1.tr2|tr1〈X〉
∈ traces(Pγ) ∧ tr2 ∈ traces(Qδ)}

There are a number of laws appropriate to sequential composition. These are given in Figure 5.6.
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Pγ ; (Qδ;Rβ) = (Pγ ;Qδ);Rβ ;−assoc

SKIP ;Pδ = Pδ ;−unit − l

Pγ ;SKIP = Pγ ;−unit − r

(x : C → P (x))γ ;Qδ = (x : C → P (x)γ′);Qδ

= x : C → (P (x)γ′ ;Qδ) ;−step

STOP ;Pδ = STOP ;−zero − l

Figure 5.6: Laws for sequential composition

Law ;−assoc simply states that sequential composition is associative.The unit laws state that

SKIP is a left and right unit of sequential composition. Law;−step states that a prefix choice in

a sequential composition is equivalent to a prefix choice of sequentially composed processes. Law

;−zero − l is a special case of Law;−step, in which no events are initially offered—this yields a

left zero for sequential composition.

5.8 Interrupt

The processPγ△Qδ executes asPγ , but at any stage before termination it can begin executing as

Qδ. There are therefore two possibilities for any given trace:it is either a trace ofPγ , or else it is a

not necessarily terminating trace ofPγ followed by a trace ofQδ.

traces(Pγ△Qδ) = traces(Pγ) ∪ {tr1.tr2|tr1 ∈ traces(Pγ) ∧ X /∈ σ(tr1) ∧ tr2 ∈ traces(Qδ)}

Interrupt satisfies a number of laws, given in Figure 5.7, concerning its interaction with choice and

with termination. Law△ − assoc states that the interrupt operator is associative. Law△ − step

shows how a prefix choice interrupted byQδ unwinds: either it behaves asQδ immediately, or else

one of the events of the prefix choice occurs, resulting in thesubsequent process which may still be

interrupted. Law△− unit − l is a special case of△− step in which a process that does nothing

may be interrupted byPδ. Law △ − unit − r states that the processSTOP is ineffective as an
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Pγ△(Qδ△Rβ) = (Pγ△Qδ)△Rβ △− assoc

STOP△Pδ = Pδ △− unit − l

Pγ△STOP = Pγ △− unit − r

(x : C → P (x))γ△Qdelta = (x : C → P (x)γ′)△Qδ

= Qδ�(x : C → (P (x)γ′△Qδ)) △− step

SKIP△Pγ = SKIP�Pγ △− term

Figure 5.7: Laws for interrupt

interrupting process, since there are no events it can perform to interrupt another process. Finally,

△− term states that if termination occurs, then the interrupting process is discarded.

5.9 Recursion

In finite-state process algebrae a recursive process creates a loop from one state back to the same

state, so it is defined by a relation of formP = F (P ). If we follow the same line of thoughts, a

CVP recursive process will be defined by the relationPγ = F (Pγ). This would however restrict

the recursion to regular recursion. In the general case (that includes self-embedding recursion),

the relation that defines a CVP recursive process remainsP = F (P )! Indeed, a recursive process

defines a loop from onevPDA stateback to the same vPDA state; the stack needs not be the same in

the two occurrences of the same state, and its behaviour is governed by the processing taking place

according toF .

Once this is established we can introduce the stack. We then consider the recursive definition

P = F (P ) within its proper place (as a CVP process), i.e.,(P = F (P ))γ , or equivalentlyPγ =

F (P )γ ; γ is the stack content of the process under scrutiny. Note thatwe are in effect saying that the

vPDA stateP with stackγ behaves the same as the vPDA stateF (P ) with the same stack content.

We then have thattraces(Pγ) = traces(F (P )γ). The recursive definition defines anequation

which must be satisfied by the settraces(Pγ). In fact, traces(Pγ) is afixed pointof the function
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on trace sets represented by the CVP expressionF ; when that function is applied totrace(Pγ) to

obtaintrace(F (P )γ), then the result is againtraces(Pγ).

Every process contains the empty trace as one of its possibletraces, so〈〉 ∈ traces(Pγ); that is,

traces(STOPγ) ⊆ traces(Pγ) ⇒ traces(F (STOP )γ) ⊆ traces(F (P )γ) = traces(Pγ). This

is justified because all of the CVP operators aremonotonicwith respect to⊆: if traces(Pγ) ⊆

traces(Qγ), then traces(F (P )γ) ⊆ traces(F (Q)γ) for any function F constructed out of

CVP operators and terms. From standard induction we get for any n traces(Fn(STOP )γ) ⊆

traces(F (P )γ) = traces(Pγ) which corresponds to the fact that all of the traces obtainedby un-

winding the definition(P = F (P ))γ n times are still traces of recursive processPγ . All of the

Fn(STOP )γ processes correspond to the finite unwindings of the recursive definition, so between

them they cover all of the possible traces of(P = F (P ))γ . Hence

traces((P = F (P ))γ) =
⋃

n∈N

traces(Fn(STOP )γ)

.

5.10 Abstract

A process can contain several modules. Abstract extracts only the internal trace of the first module

of a process then it follows the rest of the original trace of the process. A complete sub-module

is a sub-module which returns to its parent module. Therefore all the complete traces of every

complete sub-module are balanced and so no unbalanced call-return can appear in a complete sub-

module trace. An incomplete sub-module can appear only at the end of the trace but the incomplete

sub-module cannot have any unbalanced return. After the endof the execution of the first module

abstract stops working, so the remaining trace of the process remains unchanged.

traces(Pγ) = {A(tr)|tr ∈ traces(Pγ)}

whereA(tr) is a function which extracts the tracetr′ wheretr′ is the trace ofPγ , andtr is the trace

of Pγ . A is defined at the beginning of Subsection 6.1.1 on page 50.
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CVP Trace Specification and Verification

The CVP trace observer knows the visible partition of the events. As a result, the trace observer

can detect when the system (vPDA) performs push and pop. Thisfeature facilitates the definition

of four significant functions: abstract function, stack extract, module extract, and completeness.

These functions can be used to specify some important properties for software verification: abstract

function to specify local properties of a module; stack extract to specify stack limits, access control,

and concurrent stack properties; module extract to specifyany property specific to a module; and

completeness to specify partial and total correctness.

6.1 CVP Trace Functions

6.1.1 Abstract Function

Theabstract functionor A(tr) extracts the tracetr′ wheretr′ is the trace ofPγ , andtr is the trace

of Pγ . The abstract function is defined as follows:A(tr) = {l0.c1.r1.l1.c2.r2.l2...ck.rk.lk.w|tr =

l0.t1.t2...tk.w ∧ l0 ∈ Σ∗
l ∧ ∀x : 1 ≤ x ≤ k ∧ tx ∈ {cx.sx.rx.lx, 〈〉} ∧ (sx = 〈〉 ∨ ∀s′ < sx : (s′ =

〈〉 ∨ |s′|Σc ≥ |s′|Ar) ∧ |sx|Σc = |sx|Σr) ∧ cx ∈ Σc ∧ rx ∈ Σr ∧ lx ∈ Σ∗
l ∧ (w = 〈〉 ∨ head(w) ∈

ΣX
r ∨ ∀w′ < w : (w′ = 〈〉 ∨ |w′|Σc ≥ |w′|Σr))}. The use of abstract function will be illustrated in

Subsection 6.2.4.

51
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6.1.2 Stack Extract

In a CVP trace the number of call events is equal to the number of stack symbols pushed onto the

stack and the number of balanced return events is equal to thenumber of stack symbols popped off

the stack. We can define a new functionstack extractorS(tr) which will extract the stackγ from the

CVP tracetr. S(tr) is defined as follows:S(tr) = {ci+j .ci+j−1...ci+2.ci+1⊥|tr′ = tr\Σ̃X

l ∧sq =

R(tr′).⊥∧ sq = si+j+1.ci+j .si+j.ci+j−1...si+2.ci+1.si+1.ri.si.ri−1...s3.r2.s2.r1.s1.⊥∧∀x : 1 ≤

x ≤ i ∧ rx ∈ {Σ̃r ∪ 〈〉} ∧ ∀y : 1 ≤ y ≤ j ∧ ci+y ∈ {Σ̃c ∪ 〈〉} ∧ ∀z : 1 ≤ z ≤ i + j + 1 ∧ sz ∈

S∗ ∧ S = {s|∀s′ < s : (s′ = 〈〉 ∨ |s′|eΣr
≥ |s′|eΣc

) ∧ |s|eΣr
= |s|eΣc

}}. The use of the abstract

function will be illustrated in Subsections 6.2.1 and 6.2.2.

6.1.3 Module Extract

Module extractor M(tr, a) extracts from the tracetr the tracetr′ of the first module which starts

with the call eventa. M(tr) extracts the tracetr′ of the first module from the tracetr: M(tr) =

{tr′|tr = tr′.tr′′ ∧ ∀t < tr′ : (t = 〈〉 ∨ |t|eΣc
≥ |t|eΣr

) ∧ (tr′′ = 〈〉 ∨ tr′′ = 〈X〉 ∨ (head(tr′′) ∈

Σ̃r ∧ |tr′|eΣc
= |tr′|eΣr

))} andM(tr, a) = {tr′|tr = tr′′.a.tr′′′ ∧ |tr′′|a = 0 ∧ tr′ = M(tr′′′)}. The

use of abstract function will be more clrear in Subsection 6.2.4 and in Subscetion 6.2.5.

6.1.4 Completeness

Completenessor C(tr, a) is a function which verifies whether a tracetr contains the complete

trace of a sub-module (invoked by call eventa) including the calla and its balanced return. Iftr

contains the desired trace it will return that trace otherwise it will return the empty trace:C(tr, a) =

{tr′|(tr = tr′′.tr′.tr′′′∧head(tr′) = a∧foot(tr′) ∈ Σ̃r∧t < tr′ : (t = 〈〉∨|t|eΣc
≥ |t|eΣr

)∧|tr′|eΣc
=

|tr′|eΣr
∧|tr′′|a = 0)∨ tr′ = 〈〉}. The use of abstract function will be illustrated in Subsection 6.2.5.

6.2 CVP Trace Specification

CVP behaves as CSP when all the events are locals so CVP can specify any property CSP can. CVP

can also specify many important properties for software verification which a regular or a context-free
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process algebra cannot specify. The most important among such properties are described below:

6.2.1 Access Control

CVP can specify the access control properties of a module: a module can be invoked if a certain

property holds. For example, a procedureA (called by a call eventa) can be invoked only if

another procedureB (called by a call eventb) is in the stack. This property can be expressed by

S(tr) = |S(tr)|b 6= 0 ⇒ |S(tr)|a 6= 0.

6.2.2 Stack Limit

Whenever the stack size is bounded by a given constant, a property holds. For example, if stack

size is less than7, then there will be no no occurrence of an eventa in the trace. This predicate is

expressed asS(tr) = |S(tr)| < 7 ⇒ |tr|a = 0.

6.2.3 Concurrent Stack Properties

A concurrent stack property is defined as one stack property holding in a process and another stack

property holding in a concurrent process. This property cannot be specified in any context free or

regular process algebra. From the trace ofPγA‖BQδ one can specify that if one stack propertyp

holds inPγ , then another stack propertyq holds inQδ. If tr is the trace ofPγA‖BQδ, thentr ↾ AX

is the trace ofPγ andtr ↾ AX is the trace ofQδ. Indeed, one can use the fact thatS(tr ↾ AX) is the

stack ofPγ andS(tr ↾ BX) is the stack ofQδ. For example, if stack size is less than7 in process

Pγ , then there will be no invocation for moduleA (called by a call eventa) in Qδ. This predicate is

expressed asS(tr) = |S(tr ↾ AX)| < 7 ⇒ |S(tr ↾ BX)|a = 0, wheretr is the trace ofPγA‖BQδ.

6.2.4 Internal Properties of a Module

From a CVP trace one can extract the internal trace of a (recursive) module and then specify any

trace properties on that internal trace. Consider a recursive moduleA (which is called by call event

a) in processPγ . We can then extract the trace of moduleA usingM(tr, a), wheretr is the trace

of Pγ . Using the abstract function we can further extract the internal trace: A(M(tr, a)) is the
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internal trace of moduleA. For instance, that the number ofb events is always larger or equal than

the number ofc events in the local execution ofA can be expressed byS(tr) = |A(M(tr, a))|b ≥

|A(M(tr, a))|c.

6.2.5 Pre- and Post-Conditions

One can specify pre-/post-conditions of a module. As a result partial and total correctness can be

specified in CVP. Partial correctness of a procedureA specifies that if the pre-conditionp holds

when the procedure is invoked, then if the procedure terminates, the post-conditionq is satisfied

upon return. Let moduleA be invoked bya. During the invocation ofA, if some eventb always

precedes another eventc, then if A returns then the number ofb events will be smaller than the

number ofc events in module A. The property specified as:S(tr) = (tr = tr1.a.tr2) ∧ (tr1 ↾

b = 〈〉 ⇒ tr1 ↾ c = 〈〉) ⇒ C(a.tr2, a) = 〈〉 ∨ (C(a.tr2, a) 6= 〈〉 ∧ |M(tr2)|b < |M(tr2)|c).

Total correctness of a procedure specifies that if the pre-condition p holds when the procedure is

invoked, then the procedure must terminate and the post-condition q must be satisfied upon return.

For instance, during the invocation ofA, if some eventb always precede another eventc, thenA

returns and the number ofb events will be smaller than the number ofc events in module A. The

property can be specified as:S(tr) = (tr = tr1.a.tr2) ∧ (tr1 ↾ b = 〈〉 ⇒ tr1 ↾ c = 〈〉) ⇒

C(a.tr2, a) = 〈〉 ∧ (C(a.tr2, a) 6= 〈〉 ∧ |M(tr2)|b < |M(tr2)|c). However, total correctness cannot

be specified in the trace model because in the trace model if a trace satisfies a property then any

prefix of it must also satisfy that property.

6.3 CVP Trace Verification

We can verify many non-regular specification properties in CVP, including the properties stated in

Section 6.2. Although the rules of CVP verification look verysimilar to the rules of CSP, the main

difference between CVP and CSP verification rules is that theCVP verification rules are applied

on a visible alphabet whereas the CSP verification rules are applied on a local alphabet. The CVP

verification rules can handle the visible alphabet due to theavailability of the stack.
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6.3.1 Prefix Choice

The prefix choice operator contains a number of component processes: It contains a number of

component processes, and the first event that is performed can be any one of the menu of events

offered. The antecedent to the rule assumes a family of specificationsSa(tr), one for each of the

componentsP (a)γ′ where(x : A → P (x))γ = x : A → P (x)γ′ . The proof rule is:

∀a ∈ A : P (a)γ′ ⊢ Sa(tr)

(x : A → P (x))γ ⊢ tr = 〈〉 ∨ ∃a ∈ A : head(tr) = a ∧ Sa(tail(tr))

6.3.2 Choice

The choice processPγ�Qδ or Pγ⊓Qδ behaves either asPγ or asQδ. If Pγ ⊢ S(tr) andQδ ⊢ T (tr),

then the choice processPγ�Qδ or Pγ ⊓ Qδ satifies the disjunction of these two specifications:

Pγ ⊢ S(tr)
Qδ ⊢ T (tr)

Pγ�Qδ ⊢ S(tr) ∨ T (tr)

and
Pγ ⊢ S(tr)
Qδ ⊢ T (tr)

Pγ ⊓ Qδ ⊢ S(tr) ∨ T (tr)
.

Let P⊥ andQ⊥ be two CVP processes.A is a module which can perform only eventd, invoked

by c and returned byd. B is a module which after performing an eventb executes its sub-moduleA.

C is another module which first executes its sub-moduleA then performs an eventh. ProcessP⊥

invokes moduleB and ends its execution whenB returns, whileQ⊥ invokes moduleC and ends

its execution whenC returns:P = a → P1a, P1 = b → P2, P2 = c → P3c, P3 = d → P4,

P4c = e → P5, P5a = f → P6, P6 = STOP , andQ = g → Q1g, Q1 = c → Q2c,

Q2 = d → Q3, Q3c = e → Q4, Q4 = h → Q5, Q5g = i → Q6, Q6 = STOP . So

traces(P⊥) = {〈〉, 〈a〉, 〈a, b〉, 〈a, b, c〉, 〈a, b, c, d〉, 〈a, b, c, d, e〉, 〈a, b, c, d, e, f〉}, traces(Q⊥) =

{〈〉, 〈g〉, 〈g, c〉, 〈g, c, d〉, 〈g, c, d, e〉, 〈g, c, d, e, h〉, 〈g, c, d, e, h, i〉}, and traces(P⊥�Q⊥) =

traces(P⊥⊓Q⊥) = {〈〉, 〈a〉, 〈g〉, 〈a, b〉, 〈g, c〉, 〈a, b, c〉, 〈g, c, d〉, 〈a, b, c, d〉, 〈g, c, d, e〉, 〈a, b, c, d, e〉,

〈g, c, d, e, h〉, 〈a, b, c, d, e, f〉, 〈g, c, d, e, h, i〉}. P⊥ satisfies the following non-regular property:
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moduleA can be invoked only ifa is on the stack, whileQ⊥ satisfies another non-regular property:

moduleA can be invoked only ifg is on the stack:

P⊥ ⊢ S(tr) = (|S(tr)|a = 0 ⇒ |S(tr)|c = 0)

Q⊥ ⊢ T (tr) = (|S(tr)|g = 0 ⇒ |S(tr)|c = 0)

ThenP⊥�Q⊥ or P⊥ ⊓ Q⊥ meets the specification

(|S(tr)|a = 0 ⇒ |S(tr)|c = 0) ∨ (|S(tr)|g = 0 ⇒ |S(tr)|c = 0)

6.3.3 Parallel Composition

A tracetr of the processPγA‖BQδ includes a contribution fromPγ and a contribution fromQδ,

contained within the alphabetsAX andBX, respectively. Therefore ifPγ ⊢ S(tr), thenS(tr) ↾ AX

must hold. Similiarly, ifQδ ⊢ T (tr), thenT (tr) ↾ BX must hold. Finally, only events inAX or BX

are possible for the parallel com, so it follows thatσ(tr) ⊆ (A ∪ B)X. This leads to the following

proof rule:
Pγ ⊢ S(tr)
Qδ ⊢ T (tr)

PγA‖BQδ ⊢ S(tr ↾ AX) ∧ T (tr ↾ BX) ∧ σ(tr) ⊆ (A ∪ B)X
.

This rule demonstrates the way in which parallel composition corresponds to conjunction: the con-

straintsS andT both hold, on their respective alphabets.

The parallel compositionP⊥{a, b, c, d, e, f}‖{g, c, d, e, h, i}Q⊥ between the two processesP⊥ and

Q⊥ of the Subsection 6.3.2 will satisfy

S(tr ↾ {a, b, c, d, e, f}X) ∧ T (tr ↾ {g, c, d, e, h, i}X) ∧ σ(tr) ⊆ {a, b, c, d, e, f, g, h, i}X

which reduces to

|S(tr)|a ∧ |S(tr)|g = 0 ⇒ |S(tr)|c = 0 ∧ σ(tr) ⊆ {a, b, c, d, e, f, g, h, i}X
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6.3.4 Hiding

A trace of the processPγ \A arises from a trace ofPγ simply by removing all the events inA from

the trace. Hence for any trace ofPγ \ A there is a corresponding trace ofPγ . The inference rule

thus takes the following form:

Pγ ⊢ S(tr)

Pγ \ A ⊢ ∃tr1 : tr1 \ A = tr ∧ S(tr1)
.

The processP⊥ of Subsection 6.3.2 meets the non-regular specification that there will be no

occurrence of eventd in the internal trace of the module which is invoked by call eventa

P⊥ ⊢ S(tr) = (tr = tr′.a.tr′′ ⇒ |A(tr′′)|d = 0)

So for the processP⊥ \ {c} meets the following specification:

S′(tr) = (∃tr1 : tr1 \ {c} = tr ∧ (tr1 = tr′.a.tr′′ ⇒ |A(tr′′)|d = 0))

6.3.5 Abstract

A trace of the processPγ is constructed from the trace ofPγ by removing all the traces of the

sub-modules of the top level module. This leads to the following inference rule:

Pγ ⊢ S(tr)

Pγ ⊢ ∃tr1 : A(tr1) = tr ∧ S(tr1)

.

The processP⊥ of Subsection 6.3.2 satisfies the partial correctness property that if b is in the

trace when a module is invoked then if the module returns thenthere will be ad in the trace:

P⊥ ⊢ S(tr) = ((tr = tr′.a.tr′′ ∧ |tr′|b 6= 0∧ a ∈ Σ̃c) ⇒ (C(a.tr′′, a) = 〈〉 ∨ tr1.|M(tr′′)|d 6= 0))

soP⊥ will satisfy

S′(tr) = ∃tr1 : A(tr1) = tr ∧ ( (tr = tr′.a.tr′′ ∧ |tr′|b 6= 0 ∧ a ∈ Σ̃c)
⇒ (C(a.tr′′, a) = 〈〉 ∨ tr1.|M(tr′′)|d 6= 0) )
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6.3.6 Renaming

A trace tr of a renamed processf(Pγ) will be a renamed tracef(tr1) for sometr1 of Pγ . The

inference rule for translating specifications through a forward renaming is then the following:

Pγ ⊢ S(tr)

f(Pγ) ⊢ ∃tr1 : S(tr1) ∧ f(tr1) = tr

A particular specificationS can be translated throughf to a specificationR. This will be valid

providedR(tr) can be shown to translateS correctly: ∀tr : (S(tr) ⇒ R(f(tr))). If tr is a trace

of f−1(Pγ), thenf(tr) is a trace ofPγ , so it must satisfy whatever specificationPγ is known to

satisfy. The inference rule is as follows:

Pγ ⊢ S(tr)

f−1(Pγ) ⊢ S(f(tr))

6.3.7 Sequential Composition

The processPγ ;Qδ behaves entirely asPγ until Pγ terminates, after which it behaves asQδ. Any

given trace ofPγ ;Qδ admits one of the two possibilities: either it is a trace ofPγ which has not yet

reached termination, or else it is a trace ofPγ followed by a trace ofQδ. The proof rule is following:

Pγ ⊢ S(tr)
Qδ ⊢ T (tr)

Pγ ;Qδ ⊢ ¬term(tr) ∧ S(tr) ∨ ∃tr1, tr2 : tr = tr1tr2 ∧ S(tr1〈X〉) ∧ T (tr2)

whereterm(tr) = X ∈ σ(tr) denotes that the trace corresponds to a terminating execution.

6.3.8 Interrupt

A trace of the interrupt processPγ△Qδ is either a trace ofPγ , or else a non-terminated trace ofPγ

followed by a trace ofQδ. The inference rule is as follows:

Pγ ⊢ S(tr)
Qδ ⊢ T (tr)

Pγ△Qδ ⊢ S(tr) ∨ ∃tr1, tr2 : tr = tr1tr2 ∧ ¬term(tr1) ∧ S(tr1) ∧ T (tr2)
.
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6.3.9 Recursion

If processNγ is recursively defined by the equation(N = P )γ or equivalently(N = F (N))γ , then

a rule which is sufficient to establish thatNγ ⊢ S(tr) is the following:

∀Yγ : (Yγ ⊢ S(tr) ⇒ F (Y )γ ⊢ S(tr))

Nγ ⊢ S(tr)

[
S(〈〉)

]

This rule is sound because it provides all the ingredients for establishing by induction thatNγ

⊢ S(tr). The traces ofNγ are those of
⋃

i∈N
traces((F i(STOP ))γ), all the finite unwindings

of (F (Y ))γ starting from the processSTOP . The inductive hypothesis is that(F i(STOP ))γ ⊢

S(tr). The side conditionsS(〈〉) provides the base case, since it is equivalent toSTOP ⊢ S(tr),

which is same as(F 0(STOP ))γ ⊢ S(tr).
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Conclusions

We showed that VPL are closed under shuffle and hiding. Together with the already known clo-

sure under union, intersection, complementation, renaming, prefix, concatenation, and Kleene star,

we showed in effect that VPL have all the necessary closure properties in order for a VPL-based

process algebra for infinite-state systems to be possible. We also offered in the process support for

the development of the algebra by establishing an LTS semantics for vPDA. Indeed, LTS are the

underlying semantic model for all the process algebrae, so this is one significant step.

Finite-state process algebrae have proven useful for the specification and verification of hard-

ware, communication protocols, and drivers. The more complex application software cannot be

readily modelled using finite-state mechanisms, as they contain a huge, impractical number of dis-

tinct finite states. We therefore believe that an infinite-state process algebra can dramatically open

the domain of application software to specification and verification using formal methods (and more

specifically algebraic methods such as model-based testing). We thus offered CVP, the first fully

compositional visibly pushdown process algebra, as a superset of CSP. The semantics of a vPDA

in terms of labelled transition systems establishes the relation between VPL and CVP. Using this

vPDA semantics we presented operational and trace semantics for CVP. We proved that CVP is

indeed a process algebra, being closed under all its operators.

We then defined some functions on CVP traces which are useful to extract important stack and

module information from traces. Using this stack and moduleinformation, we showed that unlike

60
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any other existing process algebra one can specify and verify many significant software verification

properties in CVP such as the access control of a module, stack limits, concurrent stack properties,

internal properties of a module, and pre-/post-conditionsof a module. We thus laid the basis of a

near future where most of the concurrent process algebraic tools and theories will be based on vPDA

instead of finite automata, so that application software will become amenable to formal verification.

7.1 Advantages of CVP over Other Process Algebrae

First, CVP is based on a formalism that goes beyond regular languages and into the context-free

realm. For instance, CVP represents recursive modules (or functions), which is not possible in

finite-state process algebrae. In addition, CVP can also represent multi-threaded modules; this is

possible in the finite state realm, but not in the context-free domain. CVP is at a fortunate crossroad

where representing recursive, multi-threaded modules is possible.

One of the major advantages of CVP over context free process algebrae is that by analyzing the

trace of a CVP process an observer can determine the content of the stack of that process. This

is possible because of the visible nature of CVP; in a CVP trace the call events are in a one-to-

one relation with the symbols pushed onto the stack, and the number of balanced return events is

equal to the number of stack symbols popped off the stack. Given the one-to-one relation between

the set of call events and the set of stack symbols one can reconstruct the current stack from the

trace. Stack inspection properties (e.g. a moduleA should be invoked only within the context of a

moduleB, with no interleaving call to an overriding moduleC [8]) can thus be specified at trace

level. Concurrent processes are possible in CVP, so concurrent stack properties can be specified and

verified in CVP.

In CVP, the environment can notice when a module starts (by a call event) and terminates (by a

return event). As a result, one is able to specify and verify pre-/post-conditions; pre-conditions of

that module can be checked at the starting point, and post-conditions at the end point.

Using the abstract operator the designer can hide the sub-modules from the environment. One

can go further and easily create one’s own variant of abstract operator, for instance a variant that
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only hides a desired sub-module, or hides sub-modules alongwith their top-level call and return

events, or terminate the process just after the end of a module.

By using the module extract function one can easily extract the trace of a module. By using

the module extract and abstract functions together one can also extract the local (internal) trace of

a module. Unlike context free and regular process algebrae,CVP is thus able to specify and verify

the internal properties of a module (e.g., everya should be followed byb in the same module).

7.2 Future

A more concrete operational semantics of CVP (e.g., in termsof vPDA) is appealing. Some ground-

work on the matter is presented in our proof of closure, though the process outlined there is not algo-

rithmic (especially as far as the hiding operator is concerned—indeed, there might be infinite paths

that need to be considered). We believe that concretizing such a semantics (based on automata) is

possible.

This dissertation is only the first milestone on the road to vPDA-based axiomatic verification.

We have established a proof system based on the trace model, as the most preliminary proof system

for any process algebra. This work opens the whole realm of vPDA-base failures, divergences and

infinite (FDI) traces model, pre-order relations, equivalence testing, and so on. The features of CVP

presented in Section 7.1 are very powerful so it is our beliefthat in the near future vPDA-based

process algebrae will dominate over context free and regular process algebrae.
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