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Abstract

Visibly pushdown languages are a subclass of context-firguages that is closed under all the
useful operations, namely union, intersection, compldaigm, renaming, concatenation, prefix,
and Kleene star. The existence of a concurrent, fully coftipoal process algebra based on such
languages requires that these languages be also closedtwod®ore operations, namely shuffle,
and hiding. We prove here both of these closure propertiesalb give the semantics of visibly
pushdown automata in terms of labelled transition systems.

We then propose Communicating Visibly pushdown Process®#], a fully compositional
concurrent process algebra based on visibly pushdown atonCVP is a superset of CSP, thus
combining all the good properties of finite-state algebrath wontext-free features. Unlike any
other process algebra, CVP includes support for parallelposition but also for self-embedding
recursion.

We present the syntax, operational semantics, trace sesattace specification, and trace
verification of CVP. A CVP trace observer can extract stackrmodule information from the trace;
as a result one can specify and verify many software pragsertihich cannot be specified in any
other existing process algebra. Such properties inclugladhess control of a module, stack limits,
concurrent stack properties, internal property of a mqduotte-/post-conditions of a module, etc.
CVP lays the basis of algebraic conformance testing foritefistate processes, such as application

software.
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Chapter 1

Introduction

Pushdown automata naturally model the control flow of setiglesomputation in typical program-
ming languages with nested, potentially recursive inMooat of program modules such as proce-
dures and methods. Many non-regular properties are thereéguired for software verification;
such that inspection of the stack, or matching of calls ahdme, total/partial correctness of a mod-
ule, etc. Such properties generate an infinite state spadehwannot be handled by finite-state
verification technigues such as finite statedel checking29], finite stateprocess algebra§l 3],

etc. Most of the contemporary software use many parallejpmvants (such as multiple threads). In
addition, many conformance-testingechniques (such as may/must testing [30]) use test cases th
run in parallel with the process under test. Recursive coanuy is therefore required for software
verification, but cannot be provided by context-free vestfien techniques (such as basic process
algebra or BPA [18]) since context-free languages are wsecl under intersection [10], or by finite

state verification techniques as they cannot support reeursodules.

1.1 Concurrent Process Algebra

A process algebra represents a mathematically rigouransefivork for modeling concurrent sys-
tems of interacting processes. The process-algebraioagiprelies on equational and inequational

reasoning as the basis for analyzing the behavior of a systemo separate works by Hoare [35]

1By conformance-testing we mean here any formal method tetrohines whether a system meets a specified
standard.
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and Milner [41] are marked as the origin of the process algbwhich have been an active area
of research since. In particular, researchers have desglamumber of different process-algebraic
theories in order to capture different aspects of systenawieh each such formalism generally

includes the following semantic approaches:

Operational semantics: The behavior of a system is modeled as an execution of araabstia-

chine consisting of only a set of states and a set of transitj20, 40].

Denotational semantics: More abstract than operational semantics, system belsaaterusually
modeled by a function transforming input into output [50]eridtational semantics can in-
troduce behavioral equivalences (e.g. refinement ordecimegruence) which relate systems

whose behaviors are indistinguishable to an external geser

Axiomatic semantics: Emphasis is put on the axiomatic proof methods to check threcimess of

a system against a given specification [31, 34].

Different process algebrae adopt different kind of dematial and axiomatic approaches for speci-
fication and verification. For example, CCS has been studiddnbisimulation and testing seman-
tics [41], CSP under trace and failure semantics (variahtesting semantics) [21, 49], and ACP
under bisimulation and branching bisimulation semanticd.[ In all cases however one needs to
establish an operational semantics first. A system oftesistsnof several levels of subsystems.
The congruence and refinement relation provided by a pratdgebra may be used to determine
whether these different subsystems conform to one anofffegse relations are typically substi-
tutive, meaning that related subsystems may be used iatggelably inside a larger system; this
provides the facilities for compositional system verifioat since low-level subsystems may be
checked in isolation from the rest of their high-level sugten.

Concurrent process algebrae [17, 20, 21, 33, 35, 41, 42, &8rithe a system behavior or a
process using eight major operators: event prefix, cho@mjrsion, parallel composition, hiding,

renaming, sequential composition, and interrupt. A prefisudfix of a process is also a process,
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so the domain language must be closed under prefix and suffaddition, each operator requires
certain prerequisite closure properties of the domainudagg: closure under union, Kleene star,
intersection and shuffle, hiding, renaming, concatenatioefix are required for choice, recursion,
parallel composition, hiding, renaming, sequential cosipan, and interrupt, respectively. Reg-
ular languages have all these required closure properBas¢anced languages (or regular hedge
languages) are not closed under prefix or suffix. Deterniérisintext-free languages are not closed
under union, intersection, and concatenation. Conted-{anguages are not closed under intersec-
tion. In all, regular languages are the only domain used doicarrent process algebrae and thus
concurrent process algebrae cannot specify non-regubgiepies. As a result, algebrae are not a

dominant technique in software verification.

1.2 Visibly Pushdown Languages

The formal verification arena has been enhanced by the ratesduction of the class ofisibly
pushdown languages (VP[)0] which lies between balanced languages and deteriigigishtext-
free languages. VPL have all the appealing propertiestieatgular languages enjoy: deterministic
acceptors are as expressive as their nondeterministictarpaints; they are closed under union,
intersection, complementation, concatenation, Kleeag ptefix, and language homomorphisms;
membership, emptiness, language inclusion, and languageatence are all decidable. VPL are
accepted byisibly pushdown automata (vPDhose stack behaviour is determined by the input.
A vPDA operates over an alphabet that is partitioned intedtisjoint sets of call, return, and local
symbols. Any input symbol can change the control state big aad returns can also change the
stack content. While reading a call a vPDA must push one syorbthe stack and while reading
a return it must pop one symbol (unless the stack is empty).cé@iemodel the execution of a
recursive module using a VPL by representing the invocatfamodule by a call event, the return
from a module by a return event, and all the other interndabastby local events. The potential
of a VPL-based concurrent process algebra is high, as VP& &lhthe required closure properties

other than hiding and shuffle.
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1.3 The Problem

From a conformance testing point of view, vPDA have been ipssitidied in terms of logic-based
conformance testing (namely, model checking) [2, 8, 10PARNd its natural subclass visibly BPA
[51] are also studied, but to a lesser extent in terms of hebheal equivalence such as bisimulation
relations. There is to our knowledge no work on process adgtbrepresent complex, concurrent
VvPDA systems. One reason behind this is no work establidnetd\PL is closed under shuffle.
This being said, concurrency has been studied wititi-stack visibly pushdown language (MPL)
[53] andvPDA with two stacks (2-vPDA24]. In [24] authors claim that concurrency is not possible
for vPDA although [25] claims that synchronization is pbssifor these automata. We note that a
good concurrent, fully compositional process algebraegiain tool in the virtually unstudied area

of vPDA algebraic-based conformance testing.

1.4 The Thesis

Our thesis is that a fully compositional concurrent vPDAdxhprocess algebra is possible. We are
thus introducing such an algebra call@édmmunicating Visibly pushdown Process (CVRg also

present the operational semantics and the trace model of CVP

1.5 Dissertation Summary

In Chapter 2, we present the preliminaries of the dissertatn Section 3.1 we establisHabelled
transition system (LTSemantics for vPDA. LTS are the underlying semantic modekfbthe
process algebrae, so this is one significant step. The ymgd TS of a vPDA-based process
algebra is an infinite-state machine. Every state of suchT&hi& represented by the combination
of a vPDA state and the current stack content associatecgtsthite. We end the aforementioned
confusion about vPDA concurrency [24, 25] by showing in Tieen 3.2.2 that VPL is closed under
shuffle. We also prove that VPL is closed under hiding (TheoBe2.1), so that we achieve all the

major prerequisite closure properties for a concurremymusitional vPDA-based process algebra.
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In Chapter 4, we show how the operators of a concurrent psoalgebra along with a new
operatorabstractcan be applied in the VPL setting. We apply our technique endiierators of
CSP [20, 21, 33, 35, 49], a finite-state process algebra (borarchoice, our formalism works with
all the other finite-state process algebrae). We are thysopiog a vPDA-based process algebra
called Communicating Visibly pushdown Processes (CVP)agarset of CSP; when all the input
symbols are locals then CVP is equivalent to CSP. In Sectibnwle introduce the syntax and in
Section 4.2, we describe the operational semantics of GVPheorem 4.3.1 we show that CVP
is indeed an algebra, being closed under all its operatibmall, we are laying the foundation of
VPL-based algebraic specification and verification by imhicing a structural operational semantics
for CVP.

We then describe the CVP trace model in Chapters 5 and 6. Ipt&h&, we present the trace
semantics and in Section 6.1, we define four functions on QH¥&es: abstracll, stack extract
&, module extract, and completenes& The abstract function hides the traces of the sub-modules
from the trace of their parent modul®, extracts the stack from the trac®i extracts the trace of a
certain module from a trace, addchecks if a trace contains the complete trace of a certairutaod
These functions work only on the traces in the VPL realm. Wl help of these functions we
show in Section 6.2 that some very desirable propertiesdfiware verification—which cannot
be specified in context-free or regular process algebrae-beaspecified in CVP. In Section 6.2
we present the trace proof system for CVP, that can be useerify the properties mentioned in

Section 6.2. Chapter 7 concludes the dissertation.



Chapter 2

Preliminaries

2.1 Visibly Pushdown Automata

We denote the empty word and only the empty word by

A visibly pushdown automaton (vPDA) [10] is a tupld = (9, ®;,, 3, T, 0, o), whered
is a finite set of statesp;,, C @ is a set of initial statespr C & is the set of final stateq, is
the (finite) stack alphabet that contains a special bottbstark symboll, and(? is the transition
relation,Q C (® x ['*) x ¥ x (& x I'*). In addition,> = {; UX. U X, } is a finite set of visibly
pushdown input symbols whebg is the set of local symbols;. is the set of call symbols arnd,
is the set of return symbol$X;, ¥, ¥,) is a partition oved (meaning thab = DIACHIMCTHIN )

Every tuple((P,v), a, (Q,d)) € Q (also written(P, v) — (Q, ) € Q) must have the follow-
ing form: if a € ¥;U{e} theny = § = ¢, else ifa € £, theny = ¢ andd = a (wherea is the stack
symbol pushed fou), else ifa € ¥, then ify = L theny = § (hence visibly pushdown automata
allow unmatched return symbols) else= a andé = ¢ (wherea is the stack symbol popped fay}.

In other words, a local symbol is not allowed to modify thecktavhile a call always pushes
one symbol on the stack. Similarly, a return symbol alwaysspane symbol off the stack, except
when the stack is already empty. Note in particular thlxaansitions (that is, transitions that do not
consume any input) are allowed but are not permitted to npaldd stack [10].

The notion of run, acceptance, and language accepted bybéyvimishdown automaton are

defined as usual: A run of a visibly pushdown automatéron some wordv = aqas ... a IS a
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sequence of configurationigo, v0)(qo1,70) - - (qomo>70)(q1,71)(q11,71) - - - (q1my > 1) (92,72) - -
(@ V) (qr1, V) - - (Qomye» V) SUCh thatyy = L, qo € Pin, (gj-15,6) — (gji,€) € Q for all
1<i<k1<37<mand(g1m_ V1) — (¢,7)) € Qforeveryl < i < k and for
some prefixes;_, and~; of v;_; and~;, respectively. Whenevey,,,,, € ®r the run is accepting;
M acceptsw iff there exists an accepting run éf onw. The visibly pushdown language( M)

accepted by contains exactly all the words accepted byl/.

2.2 Labelled Transition System

A labelled transition system (LTS) [22] is a tupl®, X, A, I), where® is a set of states?. is a
finite set of actions (not containing the internal action I € O is the initial state, and\ is the
transition relation such that C © x (X U{7}) x O. If A is unambiguous and understood from the
context, then we often use the following shorthanffs:=*- Q whenever(P,a,Q) € A, P -
whenever there exists@ such thatP — Q, andP /- wheneverP —— does not hold. Some
times one assumes a global set of states, a global set aigctiod a global transition relation for all
the labelled transition systems; in this case, a partidalzelled transition system is identified solely
by its initial state. We therefore blur the difference bedwetate and labelled transition systems as
long as the set of states, the set of actions, and the tiamsi#lation are all understood from the
context.

A run of a labelled transition systei is a SeqUENC&Tqo1T - - - TqomA1q1TGILT * * * Tq1m, A2
Q2 QRQKTQRIT -+ TQrm, SUCh thatgy = T, gj_1; — giforall1 <i <k, 1 < j < m;, and
Qi1m;_, i, giforalll < i < k. The trace of this run is the sequenegi, - - - a;. The run
is maximal whenever there is nosuch thatg,, X, . The trace of a maximal run is called a
complete trace. The languagmceg M) [ ctracegM )] contains exactly all the traces [complete
traces] of all the possible runs [maximal runs]df.

The weakest notion of equivalence between labelled tiansystems is trace equivalence: two
labelled transition systems are equivalent if their setsamfes are identical. By contrast, the largest

(or finest) notion of equivalence between labelled tramsiystems is the notion dfisimilarity
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[23]. Two bisimilar transition systems have not only the sasat of traces, but their internal struc-
ture is identical: Given a global set of stai®s a global set of action, and a global transition
relation—, a binary relation~ over labelled transition systems is a bisimulation if foevpair of

stategp andgq such thap ~ ¢ and for every actiom € 3:
1. p —% p/ implies that there is & such thay — ¢’ andp’ ~ ¢’; and symmetrically

2. ¢ - ¢ implies that there is @’ such thap —— p’ andp’ ~ ¢'.
2.3 Communicating Sequential Processes

CSP or Communicating Sequential Processes [20, 21, 3393prdvides a basis for the study of
concurrent computation. A communicating process is raghes an agent which may interact with
its environment (which may itself be regarded as a procegg)ebforming certain instantaneous
atomic events drawn from an alphal¥et CSP provides a formal language suitable for describing

finite-state processes. The syntax of CSP is defined as fallow
S = x:A— S(m)|SDR|S|‘|R|X|SAHBR|S\A|f(S)|f‘1(S)|S;R|SAR

where S and R range over CSP processaspver Y, A and B over2*, f over the sef{f : ¥ —

Y :Va € X f~Y(a) is finite A f(a) = v iff a = v} of E-transformations. The CSP prefix
choicex : A — S(x) is a process which may engage any A and then its behaviour depends
on that choice.S M R denotes a process which may behave as either R, independently of
its environment. SCIR denotes a process which may behave as either R, the choice being
influenced by the environment, provided that such influescexerted on the first occurrence of
an external event of the composite process,||zpR denotes a process which behaves like the
alphabetized parallel composition §fand R with the following restrictions: any external event
performed by the composition must lie iU B; the composition may then perform an evermnly

if « € A\ B andS may performa, ora € B\ A andR may perfornu, ora € AN B and bothS and

R may perform (synchronously). S; R denotes the sequential compositionfollowed by R
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andsS'\ A is the process which behaves liKkeexcept that all the occurrencesoE A are rendered
invisible to the environment. The procesgds) and f~1(.S) derive their behaviour from that ¢f
in that if S may perform the event then f(.S) may performf (a) while f~1(S) may engage in any
eventb such thatf (b) = a. SAR denotesR interrupting the procesS: R may begin execution
at any point throughout the execution 8f the performance of the first external eventffs the
point at which control passes frofito R and thenS is discarded. A process nam&may be used
as a component process in a process definition. It is bountidogefinition X = S whereS is
an arbitrary process which may include process namelTS is the underlying semantic model
of CSP like any other process algebra. The operational gsraf CSP presented on an LTS in
Figure 2.1. Thus the whole CSP can be viewed as a single LTS.

The CSP processesI’'OP, SKIP anda — S are special instances of the prefix choice con-
struct: STOP is obtained by takingd = 0, SKIP =z : {v'} - STOPanda — S =z : {a} —
S. The special event denotes terminationSuR is a special form o 4 || gR; it synchronizes only
on those visibly pushdown events appearinglifiS and R interleave for any: ¢ A). S ||| R is the
unrestricted interleaving & and R and is also a special case f|| 5 R. We denoted U {v'} by

AV
2.4 Sequences

The set of traces of a process is the set of all the sequencastiohs [49] that might possibly

be recorded. Such sequences will be described by listing élEments in order between angled
brackets. The empty sequence is thus denoted.bly A is a set, them* is the set of all finite se-
guences of elements df. If seql andseq2 are both sequences, then their concatenation described
by seql.seq2 is the sequence of elementssity1 followed by those inseq2 . The concatenation op-
eration is associative. The notatieey™ describes: copies of the finite sequenseq concatenated
together, and seeq” is always the empty sequence. sl is not empty, then it may be written
a.seq’ wherea is the first element ofeq, andseq’ is the remainder of the sequence. In this case,

two functions onseq are definedhead(seq) = a andtail(seq) = seq’ . Forseq = seq”.b we
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define foot(seq) = b andinit(seq) = seq”. The length|seq| of a sequence is the number of
elements it contains. The notatianc seq means that the elemeatappears in the sequensey,
ando(seq) is the set of all elements that appeasif.

Various natural relationships between sequences existere is some sequengeg?2 such that
seq.seq2 = seql , thenseq is a prefix ofseql , written seq < seql . Furthermoregseq <,, seql
is if seq < seql and their lengths differ by no more than If seq # seql thenseq is a strict
prefix of seql , written seq < seql . The notationseq < seql means thateq is a (not necessarily
contiguous) subsequence &fql . seq | A is the subsequence of all the elementssaf that
are in the setd. Conversely, the notatiogeq \ A is the subsequence eéq whose elements are
not in A. If f is a mapping on elements, theftseq) is the sequence obtained by applyifig
to each element ofeq in turn. Reverseor fR(seq) is a function which reverses a sequenesg:

R(seq) = Sn-Sn—1-Spn—2...83.82.51 Wheneverseq = s1.59.53...8,-2.5,—1-Sn.
2.5 Traces

The concept of traces was briefly introduced in Section 2@ @luded to in Section 2.4); we now
present this notion in more detail. Processes interacttivitin environment through performance of
events in their interface. The environment has no dire@sto the internal state of the process or
to the internal events that it performs. Two processes wéielindistinguishable at their interfaces
should be equally appropriate for any particular purpdseway they are implemented cannot have
any influence on their respective suitability. There areralper of ways in which interface behavior
can be analyzed, but they all concentrate exclusively oretiernal activity of the process. One
important aspect of process behavior concerns the ocagm@events in the right order, and that
events do not occur at inappropriate points. The kind of seg@ which is acceptable will be given
by the requirements of the system. Such requirements vétiritee constraints on when particular
events can occur. The environment cannot know preciselgtwimiternal state the process has
reached at any particular point, since it has access onlyetpitojection of the execution onto the

interface. To analyze process with respect to these regaints, it is necessary to consider those
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sequences of events that can be observed at the interfabe pfdcess. These observations are
called traces, and the set of all possible traces of a praéésslenotedraces(P).

Traces are a particular class of finite sequences of eveatendirom an alphabet which rep-
resents execution. Events in a process’s execution cammoor @fter termination so any termi-
nation eventy” occurring in a trace must appear at the end. The set of akgracdefined as:
TRACE = {trlo(tr) C ¥ A|tr] € NAV ¢ o(init(tr))}. Since all traces are sequences, they
inherit all of the sequence operators. However, sequenoeatenation maps tracesl andir2 to
atracetrl.er2 only if v ¢ o(trl). Thustr™ will be a trace only ifv" ¢ o(tr). If a function f
mapsX to ¥ and f(v')tov', then f(¢r) will always be a trace. The notatiaf X P’ means there
is a sequence of transitions whose initial proces3 &énd whose final process 12 after executing

tr. The notationP 2 is shorthand foB P’ : P 25 P’

2.6 Trace Semantics

Operational characterization is too low level for reasgr@out processes, since the level of ab-
straction remains that of process executions, with traegsglone of the consequences of the ex-
ecution. Thetrace modelconsiders processes directly in terms of their traces, iftisdhe entire
analysis to a more abstract level. All of the operators ofdhguage can be understood at this level:
the traces of composite process are dependent only on thestod its components. This allows a
compositionalsemantic model, where all processes are considered ongrrimstof their sets of
traces, and at no stage do the underlying executions needldorisidered explicitly.

In the trace model, each process is associated with a sedadstr the set of all possible se-
guences of events that may be observed during some exeaittbe process. Processes will be
trace equivalenwhen they have exactly the same set of possible traces. @hisyar form of
equality will be denoted=7, and its definition is thaP =r Q iff traces(P) = traces(Q). Trace
equality gives rise to algebraic laws for individual operaf and also laws concerning the relation-
ships between various operators. These laws allow for thngoulation of process descriptions from

one form to another while keeping the associated set ofg¢naigehanged. Many laws are concerned
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with general algebraic properties such as associativitycammutativity of operators (which allow
components to be composed in any order), idempotence, andehtification of units and zeros for
particular operators (which may allow process descrigtiimbe simplified). Other laws are con-
cerned with the relationships between different operatwtsch allow for example the expansion
of a parallel composition into a prefix choice process.

STOP is a process which cannot do anything:
traceSTOPR = {()}

while SKIP can only performv’. The only tracesSK I P exhibits are the empty trace and the
singleton trace containing :

traceqSKIP) = {(), (v)}

One important process to establishing laws in axiomaticeh@RUN which can do any se-

guence of events:

trace§RUN) = {tr|tr € TRACE

It can be recursively defined aBUN = (x : ¥ — RUN)OSKIP. The procesRUN, is defined to
be the process with interfackthat can always perform any event in its interfa¢edces(RUNy ) =

{tr|tr e TRACE N o(tr) C A}.
2.7 Specification with Traces

Systems are designed to satisfy particular requirementspae of the uses of their semantics is
to enable them to be judged against a given specificationhdrtrace model, a specification of
a process is given in terms of the traces it may engage in. llichéracterize the traces that are
acceptable and those that are not. A process meets the cgigifiif all of its executions are
acceptable: no matter which choices are taken, any execafithe process is guaranteed not to
violate the specification. I§(¢r) is a predicate on trace, then proces$ meets (or satisfiesj(¢r)

if S(tr) holds for every traces" of P: P+ S(tr) = Vir € traces(P) : S(tr). The specification

S(tr) is said to be groperty-oriented specificatiosince the required property is capturedtiyr)
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as a restriction on traces. The predic8tmay be expressed in any notation, though first order logic
and elementary set and sequence notations are generdityesif

If a processP fails to meet a specificatiofi(¢r), then this must be because it has some (finite)
trace for whichS fails to hold: there is a point where the performance of ai@adr event takes the
execution ofP outside the specification. To meet a trace specification,riecessary to ensure that
no violating events are performed at any stage of an execulibis kind of specification is called
a safetyspecification, which requires that nothing ‘bad’ shouldrehappen, and it is precisely this

kind of property that is expressed as specification on traces

2.8 \Verification with Traces

The compositional nature of the trace semantics allows gositional proof system to be provided
for trace specifications. Specifications of processes malgbaced from the specifications of their
components, in a way which reflects the trace semantics obpleeators. The proof system is
given as a set of proof rules for all of the operators. Eadh pubvides a specification which holds
for a composite process starting from antecedents whiatridesspecifications which hold for the
component processes. There are three rules whose vadiditieito the nature 6fspecification, and
which therefore hold for all processes. The first is that anog@ss meets the vacuous specification

true(tr), which holds for all tracesr:

P + true(tr)
The second is that any specification may be weakened:

P S(tr)

——— |Vtr : TRACE: S(tr) = T'(tr
P+ T(tr) [ (tr) ( )]
The final rule states that §(¢r) and7'(tr) have been established separately, then the specification

consisting of their conjunction is also established
P = S(tr)
P+ T(tr)

PE (SAT)(tr)
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There is only one trace of the procesgO P: the empty trace. The strongest specification that

is met by procesSTOP is thattr = (). This is encapsulated in the rule:

STOPF tr = ()

The rule has no antecedents, corresponding to the factSthétP has no component processes.
The weak rule given above can be used to show that any spéofficahich is satisfied by any
process must be satisfied 5O P.

The process$ K I P does nothing except terminate successfuly. It has only o#siple traces,
one for the situation before it has terminated successfatigt the other for the situation after. These

two traces aré) and(v'),so the inference rule, which has no antecedents, is trefioig:

SKIP - tr = () Vtr = (V)
The procesRUN is able to engage in any trace. If it is able to meet a spedifitathen
that specification must allow all possible tracd2UN will therefore satisfy an extremely weak
specification, since it places no restrictions on the traélsasare acceptable. Such a specification

can only be equivalent to-ue:

RUN F true(tr) -

2.9 Previous Work

Therecursive state machindRSM) [3, 4, 5] are the first model where researchers distwesgd-
tion of a the pushdown system with entry nodes, exit nodas$)aral nodes of a module. RSM can
solve major algorithmic problems for model checking inahgdreachability, cycle detection, and
language emptiness. RSM defines context-free languagesnsarrency is not possible. Follow-
ing this work the temporal logiCARET[8] comes out with one more constraint which states that
one node cannot be used as two or more types: if a node is usedeadry node, then it cannot
be used as an exit or local a node. Based on this, CARET pasitll the symbols in three cate-

gories: call, return, and local. This classification givesRET the advantages of pre-post condition
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verification, stack analysis, and local properties vetiiftce The same group defines the new class
of visibly pushdown language using the same classificatf@ymbols in the underlying alphabet.
Due to many appealing properties, from then on the VPL reasideen a very active research area
which produced work on congruence for VPL[9], nested wdrilg[ nested trees [7, 6, 26], visi-
bly pushdown games [39], vPDA bisimulation [51], requigit], membership problems for VPL
[55], minimizing variants of vPDA [28], algorithmic blaclols conformance testing [36], fixed point
[19, 12], first order temporal logic for VPL [2], grammatic&presentation of VPL[14], specifica-
tions for program analysis [27, 44, 48], XML processing [1, 86], transducers [47, 52], and many
others [25, 38, 43, 45, 54]. vPDA concurrency has been dditdisome degree as mentioned earlier

[24, 25]. To the best of our knowledge no work has been doneRla-hased process algebrae.



Chapter 3

Closure Properties of Visibly Pushdown
Languages

One of the possible reasons for the absence of a vPDA-basedrtent process algebra is that the
known closure properties support such a development ontjafha Indeed, suppose that a fully
compositional vPDA-based concurrent process algebra (iei@ate a bit and call it CVP) exists,
and consider the operation of unrestricted interleayjingxistent in all the finite-state process al-
gebrae. Such an operation is vital, as it models that patietkecution of concurrent processes
that do not contain any communication or synchronizatidsviausly, at some point any two con-
current processes will contain such an execution, so outh{otime being hypothetical) CVP must
contain such an interleaving operator. Consider now twegsses”; and P, specified using CVP,
whose traces form the languagkesand Lo, respectively. It follows that botlh; and L, are visibly
pushdown languages, and since the unrestricted intemigévian operator of CVP (an algebra), the
languagel of traces ofP; ||| P, must also be a visibly pushdown language. Howelas, the shuf-
fle of L; and Ly. Therefore, a necessary condition for CVP to exist at athdd visibly pushdown
languages be closed under shuffle.

Perhaps a less critical but certainly useful operator inaxgss algebra is hiding. Such an
operator is used to hide the internals of a process and exbgds interface to the environment.
The same trace argument requires that VPL be closed undagtiat this operator to exists.

We eliminate in this chapter this last stumbling block tasvarfully compositional vPDA-based

17
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process algebra, establishing the closure under shufflbidimd) of visibly pushdown languages. In
the process, we also establish a semantics for vPDA baseatbeldd transition systems, which will
be a building block in the subsequent development of the ioveed process algebra. These results
effectively prove the existence of a vPDA-based processbaty and also support it by providing a

natural semantic mechanism.

3.1 Visibly Pushdown Automata and Labelled Transition Sys¢ms
We can define the semantics of vPDA in terms of LTS in a natuesi as follows:

Definition 3.1.1 Given any visibly pushdown automatdd = (®, ®;,, iF, 2, ®r), the labelled
transition systeni) is defined as follows[M] = ((®U{H,I1}) xT*,SU{r}, A, (I, 1)), where
I,H ¢ & . The transition relation gfM] is A C (®U{I}) xT*) x (SU{r}) x (®U{H}) xT'*)
and is defined as followA = {((¢,7),a, (¢',7)) : ((¢,7),a,(¢,7")) € QYU{((I, L), 7, (¢, L)) :

q € P} U{((¢,7),7, (H,7)) : ¢ € p}U{((¢.7), 7 (¢,7)) : a & P, Va € SU{r} : (q,7) />
1. m

A state of[ M] is labelled with a state a¥/ as well as the stack content associated with that state
of M in the given computation. We first include 4a the transitions corresponding to the transition
of the visibly pushdown automaton being modelldd/] should be capable of starting from any
state®;,, x {_L}; to create a unique initial state we introduce a brand nete §fa_L ) and we add
to A the set of transitions that gets us nondeterministicallgrie of the initial states of the visibly
pushdown automaton being modelled. We invent the final gfatkat has no outgoing transitions
and is reachable from any final stateMfvia = transitions. Such a state is useful in the construction
of the LTS corresponding to the concatenation of two VPLodnfally, given two LTS with initial
(final) statesl’ andI” (H' and H"), respectively, the LTS corresponding to the concatenatio
the two languages will hav& as initial state,i” as final state, and all the transitions in the two
original LTS plus transitions of form( H',~), 7, (I”,~)). Such a construction will be made formal

later. Its correctness will follow from the closure of VPLder concatenation and the availability of
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T transitions that do not change the stack content [10]. Nued-fitates with no outgoing transitions
gain a loop that performs an internal action (so that theyohparticipate in a complete trace; the
reason will become evident in Theorem 3.1.2).

The following results establish the labelled transitiostsyn [A/] thus constructed as the se-
mantic model of the visibly pushdown automatbh First, we establish a very strong, bisimilarity-

like equivalence:

Theorem 3.1.1Let M = (®, ®;,, i,l“, Q, @) be a visibly pushdown automaton and [éf] be
the tuple((® U {H,1}) x I'*, S U {7}, A, (I, L)) as constructed in Definition 3.1.1. Than and
[M] are bisimilar, in the sense that there exists a relatiosit & x (& x I'*) such that for every
pair p ~ (g,~) and for anya € ¥ U {¢} anda’ € ¥ U {7} such that either, = o’ or « = ¢ and

a =T

1. Whenevey # I andq # H, (p,a) — (p',a’) € Q implies that(q, 7) <, (¢’,~") such

thaty = ad, v/ = /¢ for somes € T* andp’ ~ (¢',~'). Conversely,

2. Whenevey # 1, ¢ # H, (¢,7) LN (¢',~") implies that either

1

@ qg=d,v=7",d =71,and(q,7) £ (¢",") foranyq” # q,v #~",a" € SU {7},

or

(b) (p,a) - (p', /) € Qwithy = ad, v = o/§ for somed € T* andp’ ~ (¢',~');

3. pe Opiff (¢,7) — (H,v), andp € &, iff (I, L) — (¢, L)

Proof. Items 1 and 3 follow immediately from the definition [pf.

We consider the labelled transition system in its unfoldewanf i.e., as a tree. The leaves of
the tree are either states of forf#/, ), or states(q, ) that have no outgoing transitions except
(q,7) — (q,7) (introduced by the definition dfd/] only for those stategthat are not final states
of M and for which(q,~) has no outgoing transitions). The latter are the only stiduaisare not

unfolded.
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The proof of Item 2 then proceeds by induction over the treecsire of [A/] as follows:
Bisimilarity for leaves is established by Item 3 and Item)2fathe definition of~, respectively.
Consider now some non-leaf stdte~) with its outgoing transitiongg, ) N (¢',v"). Forq £ 1
andq # H, every such a transition comes from a transitionMinof form (¢,a) — (¢, /),
with o anda’ suitable prefixes off and+/, respectively. Such transitions must exist in the original
automaton (since it generated the (LTS) transition undettisy in the first place), ang’ ~ (¢',+')
by induction hypothesis. [ |

In passing, we note that from a language-theoretic pointavfa more useful equivalence is in

terms of traces. Such an equivalence is readily available:

Theorem 3.1.2 For any visibly pushdown automatd it holds thatL(M) = ctraceg[M]).

Proof. Let M = (®,®;,,%,T,Q,®r). Consider somev = a;...a; € L(M) and let
(90, L)(qo15 L) -+ (domo, L) (g1 71) (@11, 71) -+ (qumy s Y1) (G2, 72) = (G Vi) (k1 Vo) =+ (b
v«) be an accepting run gf/ onw. Then the runy’ = (I, L)7(qo, L)7(go1, L)7 - - 7(qome, L)a1
(q1,7)7(qu1, )7 -+ - T(qums » 11)a2(q2,72) - - - @k (qrs V)T (Qr1s Vo) T - -+ T ( Qoo Y1) T(H, vE) €%
ists in[M] by definition (indeedg is an initial state, hence thetransition from(Z, L) to (go, L);
similarly, gxm, is a final state, hence the transition frdm,,,, , vx) to (H,vx)). Moreover,p’ is
maximal (since no stateH, v) has outgoing transitions) and therefarec ctraceg[M]). Thus,
L(M) C ctraceg[M]).

Consider now somew = aj...a; € ctraceg[M]). We then have a runpy’ =
(I, L)7(q0, L)7(qo1, L)T - - - 7(qome» L)a1(q1, v1)7(q11,71)7 - - 7(qumy s 11)a2(q2,7v2) - - - ar (g,
Yie)T (@1 V)T -+ T(Qkomy, &) 7 (H, ) such thatgy € @, and g, € ®r. Indeed, the
state (7, L) has only 7 transitions outgoing toward states i;,, x {L}. In addition, ex-
actly all the maximal runs of M] end up in a statd H,~) (every final state has a tran-
sition that leads to such a state, and no other state is thanr state of a maximal run—
those non-final states with no outgoing transitions in thigimal visibly pushdown automaton

are given a loop inMM] in order to avoid such), so we must end any maximal rutifaty).
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The preceding statégy,, ,vx) is then (a) linked to (H,v) by a 7 transition (only these are
available), and(b) has g;,, € ®r (only such states are linked directly {@7,~)). Then
(g0, L)(qo1, L) - (qomo> L) (g1, v1)(qu1,71) - -+ (Qumy > Y1) (@25 72) = = (@i Vi) (@1 V) -+ (T s
v,) IS an accepting run af/ onw and thusw € L(M). Therefore ctraceg[M]) C L(M).

Inall, L(M) = ctraceg[M]), as desired. [ |

3.2 Closure Properties of VPL

It is already known that VPL are closed under union, intdise¢c complementation, renaming,

prefix, concatenation, and Kleene star. In addition, webdistain this section the promised closure
under hiding and shuffle. We will use in what follows the giwetDAs and also their associated LTS
constructed according to Definition 3.1.1. We will then dserelation between the two constructs

(vPDA and LTS) as given in Theorem 3.1.1 and Theorem 3.1.2.

3.2.1 Hiding

Given a languagé. over an alphabeX and a sed C ¥, the result of hiding4 in L is the setl. \ A

that contains exactly all the strings frambut with all the occurrences of symbols iherased.

Theorem 3.2.1 VPL are closed under hiding.

Proof. Consider a VPLL overX and any sed = A. W A, W A4, C 3. Let M be a vPDA that
acceptsL. We show how the symbols id can be hidden one by one, so that in the end all the
symbols fromA can be hidden.

Hiding local symbols as well as hiding some call (return)etibgr with all its balanced returns
(calls) can be accomplished by simply replacinddrthe respective transitions by empty transitions
that do not modify the stack (which yields a vPDA). Same gaeshfding unbalanced calls and
unbalanced returns.

Consider now that we hide a calbut we do not hide its balanced returnThen every trace con-

tainingc andr in [M] will be transformed fromu; cwsrws (With wy well-balanced) intav; werws.
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The last call unbalanced i, becomes however balanced withand the balance (it3) of the
other unbalanced calls in; “shift” one symbol to the right (if there is no unbalanced @ako, then
the return will be unmatched). This shifting is handled byigedbly modified[ /], in which transi-
tions are added so that the new, shifted balances are atid®Sugapose the original path; cwsrws
uses the transitioqP, ) b, (Q,d) to handle a call fromw; and(R, ds) — (S, ) to balance
b with a returnm from w3, and suppose that a transitio®’, ') LR (Q',d'~") is used to han-
dle the symbol fromw; that is the first symbol to the left d@f in the original path that is either
balanced by a return fromws or is unbalanced; then, the transitioR, ) LN (Q,d'v) is added.
Furthermore, one previously balanced returim w3 becomes unbalanced, so whenever the transi-
tion (P,al) -, (Q, L) is used in the original path, we add to the original definiotransition
(P, L) -, (@, L). If we perform this procedure for every possible tragewsrws, then we ob-
tain an LTS from which: has been eliminated (that is, hidden). Since we have addgdransitions
of the proper form, the resulting LTS clearly corresponda @ DA.

The introduction of the transitiofiP, ) -, (Q,d'~) causes the introduction of the supple-
mentary transition( P, ¢) LN (Q,d") in M. This transition may be (inadvertently) used on other
paths thanv; cwsrws, thus modifying the original language in an unacceptablamaa To prevent
this, we fix a brand new state” and we inspect all the paths /] other thanw;cwyrws for
use of a transition( P, ¢) LN (Q,ed). If such a path is found, we then renarffeto P” on that
path (in the preceding transition that will now leadR6 instead ofP and in the current transition
which will now start fromP” instead ofP). We perform a similar process for the newly introduced
transition (P, a_l) -, (Q,L). After all of this is complete, no path other than cwyrws will
contain references t&, and thus no other path will be changed by the introductiothe$e new
VvPDA transitions.

We perform a similar procedure (“shift” balance, this tirodhe left) whenever we hide a return
r but not its balanced catt a callc’ previously balanced is now unbalanced, but this situatmesd
not need any new transition added to the original LTS, it pdiandled automatically (since vPDA

accept by final state only). [ |
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Note that this is not an algorithmic procedure (e.g., we carelan infinite number of paths

wi cwarws), but does show closure under hiding which serves our perpos
3.2.2 Shuffle

The shuffle of two languaged; and L, over an alphabe® is defined asL; ||| Ly =

{wiv1wovg + -+ Wi Uy + WiW3e -+ - Wy, € Ly, 0109+ - - vy, € Lo for all wy, v; € 3%},

Theorem 3.2.2 VPL are closed under shuffle.

Proof. Consider two VPDAM' = (&, &/ . T",Q/, &) andM” = (8" & ¥ T Q" L)
We will construct the VPDAM = (®,®;,,%,T,Q, @) that accepts the shuffle df(M’) and
L(M"). The construction performs an alternative simulatiodfand A" and is constructed as
follows:

We need to keep track of the states of bt and A" during any run of)M, so we putd =
@’ x ®”. M starts any of its runs from the start of batt’ and A/, so we putd;, = @ x d .
Similarly, at the end of the run/ accepts the input iff botidl/ and M’ accept their corresponding
inputs and thu®r = @/, x ®/%. The stack alphabet g/ isT" = I'" UT". The transition relation

Q) is constructed as follows:

e We can shuffle any symbol with a local in an immediate fashibone of the symboils is a
local, then it can arbitrarily appear earlier or later thlae other symbol in the shuffle. That
is, for every

— pair of symbolst’ andz” such that eithex’ € ¥; orz” € 3;, and
— set of rules

(Pa) 25 (@, 8) € o

:E”

(P//,O[//) LN (Q//yﬁ//)) c Q//

with suitable values for/, 3', o/’ and3”,
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we add the following sets of rulegi((P', X), /) - (@', X), ) : X € {P",Q"}} and
(X, P"),a") 25 ((X,Q"),8") : X € (P, Q}).

e Let us shuffle any two call-return pairs in the two languages they were alone in the in-
put. In the process the original matchings/balance wilhgfeg indeed, if the original match-
ings/balance are’ andr’ in M’, andc¢” andr” in M”,“cross-matchings/balance” will be
allowed in M between? andr” and betweer” andr’ (for otherwise a shuffle is not possi-

ble). Formally, for every

— matching calk’ and return’ in M7,
— matching cal” and return” in M”, and

— set of rules

(P, L) <5 (@), (Ra) = (5, 1) € @

(P", 1) <5 (Q",1)), (R",b) 25 (", 1)) € @

we add the following rules: {(P',X), 1) -% (@, X),a) : X € {P".Q"}},

(X, P"), L) 5 ((X,Q"),b) : X € {P",Q}} {((R, X),0) = ((§,X),1): X €
(R". 8"}, o € {a,b}}, and{((X, R"),a) *= ((X,S8"), L) : X € {R', 8"}, € {a,b}}.

In effect, we allow the shuffling of the two pair of symbols inyacombination: Whenever

M is ready to accept it is also ready to accept'. If one of these two (e.gc) was already
accepted, the is ready to accept the other symbol (ed), as well as the matching return

of the already accepted input (e.d). Whenever both calls have been accepted, either return
is acceptable first. That matching call-return pairs do rist @ isolation but can be mingled

with local symbols is taken care of by the previous case.

e We handle an unbalanced calhs follows: Suppose we had a balanced return:faf this
were the case, we would be covered by the previous case. Wetdwave such a return,

but we can however invent one (callrit in the original vPDA (/' or M") that contains the
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unbalanced call. We then proceed with the constructiorinmatlin the previous case. Once
this is done, we hid¢r} in the resulting language (accepted ). The callc becomes once

more unbalanced. Given Theorem 3.2\1 continues to be a vPDA.

An unbalanced return is handled similarly: we invent a begaoall for it in the original
VPDA, we use the previous case to create the vEBDAand then we hide the just invented

call.

e Nothing else is included if, for indeed the cases above cover all the possibilitiesdhat

appear in a shuffle.

The correctness of the construction follows quite easiynfthe considerations expressed in each

case of the construction (plus Theorem 3.2.1 since the mmtisn uses hiding). [ |



Chapter 4

Communicating Visibly pushdown
Processes

Starting from the late seventies much attention has beerteto the research of concurrent finite-
state process algebrae such as CSP, CCS, ACP etc. The ahae@mantics of these process
algebrae has been modelled by labelled transition systetasy classes of behavioral equivalence
of these process algebrae are now well-established. Theraany automatic verification tools for
their analysis which incorporate equivalence checking 8. VPL have all the required closure
properties for all the major operators of a concurrent eadgebra. As a result, one can pick
any concurrent finite-state process algebra and apply iitstagctions on VPL rather than regular
languages to achieve a vPDA-based process algebra. Thipmeess algebra should be more
powerful than that finite-state process algebra as VPL israrpressive than regular languages. In

this dissertation we choose CSP, a random well-establigtwmbss algebra to verify our claim.

4.1 Communicating Visibly pushdown Processes

A communicating visibly pushdown (or CVP) process is an agdrch interacts with its environ-
ment (itself regarded as a process) by performing certagmtevdrawn from a visibly pushdown
alphabeti‘, = ¥, WX, W X,. The underlying semantics of CVP consists in labelled itmmssys-

tems where states represent CVP processes. The syntax ofvd@Mie based on the following

26
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description:
S = ac:A—>S(x)]SDR[SI‘IR\X\SA\\BR]S\A\§\f(S)]f‘l(S)]S;R]SAR

whereS and R range over CVP processes (to be substantiated Iai@\)erf‘,, AandB over2§,
foverthese{f: % — X :Vae 3 fa), fHa) € Sc [Z1, 5,10 a € B[S, S A f1(a)
is finite A f(a) = v iff a = v A f(a) = Liff a = L} of S-transformations. All the common
operators of CVP and CSP have the similar construction in. CTS a new operator (“abstract”)
which hides the sub-modules of a module (further substaatikater).

The discussion in Section 3.1 shows that we can represerni@state corresponding to a CVP
process as’,, whereP is the current vPDA state angdis the current stack content in the vPDA.

We refine the CVP syntax as follows:

Py, = ‘T:A_>P(x)’Y‘P’YDQC”P’YI_IQ(S‘N’Y’P’YA”BQ(S‘P’Y\A‘F’Y’]C(P’Y)‘
FHPY) | Py Qs | P AQs
where P, Q, N range over vPDA states andndJ represent some (necessarily finite) prefix of the
current stack content. In settling the formpéndd we note that the transitions of a vPDA (and the
associated LTS) depend at most on the top of the stack. Tnerefe sometimes need to mention
syntactically the top of the stack only, while other timesf(ise and after a local transition, before

a call transition, and after a return transition on a non4grstack) we do not need to mention any

part of the stack. We thus reach the final syntax of CVP: wittndb ranging overl” U {¢},

P, w= 2:A— P(@)e|P.0Qu | PaT1Qa | Na| PuyllgQe| Pu \ A| Po| f(Ps) ]

FHPa) | Pas Qo | PaOQy
4.2 The Operational Semantics of CVP

We often use the subscriptsc andr to denote the sets of local, call and return events, resedgti

Any A € 9% will then be the union of three disjoint sets, A., A,.. A CVP operation is allowed
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[a € A/ [a € A

(x:A— P(x))y,—%P(a)y (x:A— P(x)y—P(a)ey

[a € AT] [a € AT]

(x:A— P(x))ey—P(a)y (x:A— P(z));-%P(a),

Figure 4.1: Prefix choice

between two CVP processes only when their partitions do wetlap" (else the main restriction
of VPL over context-free language is violated). For anye ¥;, a € ANB[a € A\ B]is
equivalent ofa € A4, N B; [a € A; \ B;] and so on (for calls and returnsMatchedcall-returns
are defined by the specification, whitalancedcall-returns are determined at run-time: A return
balances a call if it is labelled as a matching return of tiaditin the specification and also happens
to match that call at run-time. The mapping between the sedltf and the set of stack symbols is
always one to one; this helps to extract the stack from a tiadeve do not loose generality. In this
dissertation, we use the simplest one to one relation thveg iwill push the call event into the stack
as its own corresponding stack symbol. Indeed, the matatahig of a return event are determined
at specification time by specifying which stack symbols carpbpped by the given return (e.g.,
if it is specified that{a,b} C X. andc € X, which will pop eithera or b, thenc is the matching
return of botha andb). Due to the existence of the call and return events in CVR;avemodel the
CVP processes as recursive modules. The process betwebraadciis corresponding return can
represent as a (sub-) module. So the top level process isl miithe main module. A call event is
used for calling a module, a return event is used for retgrfiom a module, and a local event is
used for other actions. In CVP one call event cannot be usedlittwo different modules but more
than one call event can call the same module; a similar céstmiholds for return events. The stack

grows to the left, hence the bottom-of-statlgets the rightmost place.
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a _—— b
(@) P, Q. ®) P, Qs;—>P, P, N Qs—Q,
Figure 4.2: Internal transitiofu), internal choiceb)

421 Prefix Choice

The semantics of prefix choice is shown in Figure 4.1. The tepesfix can be introduced by
eight kinds of syntactic rulesP = o — P, P =b — P/, P. = ¢ — P, P, =d — P/,
P, =STOP,P, = SKIP, P = STOP,andP = SKIP. From the semantics of prefix choice
we then recognize thatis local, b is a call,c is a balanced return, antlis an unbalanced return.
P, = STOP [P, = SKIP] requires that the process enter € O P [S K I P] state only when
the VPDA state is” and the top of the stack is On the other handP = STOP [P = SKIP]
does not impose any constraints on the top of the stack.

In general, we can specify any system with as well as withouéxplicit partitioning of its
events. However, if we do not provide an explicit partititren we can write a process as a sequence
of events (like in CSP) only when all the events are locals. ttignother hand, we can write any
finite process (including processes with calls and retuaas) sequence (desirable in a large system),
provided that we specify a partition on its events. For edamp, is a process without an explicit
partiton: P =a — P,, P=b — P1,Pl = e — P2, P2 =d — P3, P3. = f — P4,
P4, = ¢ — P4, P4, = STOP. The process can be written with an explicit partitiongs=
{b,d}, A. = {a,e}, A, ={¢,f}; P=a — P,,P=b— e — d— P3., P3. =c— P4,
P4, =c— P4, P4, = STOPorP =a., — P,,P=0b— ¢e. —d— P3., P3, = ¢, — P4,
P4, =c¢, — P4, P4, = STOP.

4.2.2 Internal Event

A CVP process can perform the internal ever{hot noticeable to the environment), which is able

to change the current vPDA state but is unable to affect th@AvBtack. The behaviour of the

Meaning that=,, N 1/ = () for all = # y for two partitionsy’ = {X, X, %/} and¥” = {27, 27, 5/}
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PP/ PP/ PP
P,0Qs——P,0Qs P,0Qs—-P, P,0Qs—-P.,
Qs0P,~Qs0P! QsOP,~P! QsOP,—P.

Py~ P! P %P P, L,P
Py 0Qus—F] P OQ. —%P] P,0Qs (P,
QusOIPsy—2 P! Q0P -%P) Qs0P, <P

Figure 4.3: External choice

P,-T5P! B P, P! B
N,—P] [V ="P] N,—%P/ [V =P]
PPl B Pay—%P, B
NPl [V =P] Noy 2P N =7]
P, %P - Py L,P) _
N, -%P| [V =P] N,-L.P, [V =P]

Figure 4.4: Recursion

transition is described in Figure 4.

4.2.3 Choice

The semantics of internal and external choice are shownguoré$ 4.2b) and 4.3. Choice can-
not change the matched call-returns; the stack of the coepm®cess is similar to the stacks of
component processes. A process that chooses (once!) Imetivaed ‘)’ as balanced return for
‘[ can be defined as followsP = [~ P, P = P10P2,P1l; =] — P1,P2 =) — P2,P1, =
STOP, P2, = STOP. Note that |" and ‘)’ are both matching returns of ‘but only one is used

as balanced return, depending on the environment.

4.2.4 Recursion

A CSP recursive process creates a loop among LTS states GMiRerecursive processes create

loops among vPDA states only. During each recursive loop & @kocess will change the stack
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by the same amount, as in each loop it will visit the same vPiafes and will execute the same
visible actions. If the amount of change is zero, then thargdee process can be represented by a
finite state machine; it also creates a loop among LTS states.condition for a CVP process,

to be called recursive is that the process definition costtia vVPDA state’.

The semantics of recursion is shown in Figure 4.4. Like CSHP Gupports right- and left-
embedding recursion, but it also supports self-embeddingrsion such as balanced brackdts=
(— P, P =) — P,P. = STOP. P, can produce an infinite number of LTS states and infinitely
many possible traces (see Figure 4.5) although we only haeesBDA stateP. Consider now the
processk = (— Q1,Q1l =) — Q,Q1 = STOP. It may have infinitely long traces and can
be written as follows(Q = (—) — @,Q,. = STOP. One can argue that the event$ and “)”
are behaving like locals iY |, as@ can be represented by a finite state machine. However, in
P, above the event(" mustbe a call and the even)™ mustbe a return. Any CVP composition
between), andP, is possible only if € ¥, and) € X, for otherwise the partitions d?, and@ |
will not coincide. It is therefore recommended that theiparting be made in a process-dependent
way, and not in order to simplify the process definition.

A recursive process can produce an unbounded stack andtbausestem to crash. Stack height
of a non-recursive process is bounded by the total numbéeafdll events occurring in the process
definition. A right-embedding (or left-embedding) recarscannot produce an unbounded stack if
the number of returns is greater than or equal to the numhelisfin the process definition (e.g. in
Q=(—Q1,Q1 =) — Q,QL = STOP); otherwise (e.g. i) = (— Q,Q1 = STOP)itcan
produce an unbounded stack. A self-embedding recursiveepsoe.g. balanced brackets) features
an iteratively increasing part followed by an iterativelgcdeasing part. The increasing part may
run ad infinitum and produce an unbounded stack. A stack atigpeinterrupt process (interrupt
will be defined later) should therefore be used with leftight-embedding recursive processes that
have more call event than return event occurrences in theteps definition, as well as with any

self-embedding recursive process.
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( ( (
P Pu Pa1 P
) ) )

Figure 4.5: Balanced brackets

4.2.5 Parallel Composition

Figure 4.6 shows the semantics of parallel composition. Aoymon event of the component
processes must synchronize during execution. Synchioomze symmetric and instantaneous,
so the composite process performs only one event and pusbges] [only one stack symbol onto
[off] the composite stack. The form of the semantics showRigure 4.7a) explains this in detail
for synchronized call and return transitions (using exthyithe composite stack). The component
processes perform independently the events which are momom between them. Thus every
interleaved call [return] event pushes [pops] one stack®yto the composite stack. Figure &Y
shows the detailed semantics (using the composite stadlciélyp for unsynchronized call and
return transitions.

In parallel composition if one process performs an unsyoalzed call and then the other wants
to perform an unsynchronized return, the second proces$peylits own stack and then the com-
posite process will pop the top of its stack (pushed by the firscess). Hence in the composite
process balanced call-returns depend not only on its coemsnbut also on the sequence of ex-
ecution of the components. Unsynchronized execution cangahthe balanced call-returns in the
composite process. To illustrate this, consitfe= [— P1j, P1 = (— P2, P2 =) — P3, P3| =
] = STOP andQ = [— Q1,Q1 = |— @Q2,Q2 =| — Q3,Q3; =| — STOP. The process
Pr oyl 1, 13@L is shown in Figure 4.8. 10P ¢y 1ylly, |, |,13@ L the matching return of
‘("and ‘|’ are ‘)’ and ‘|’. In the runsA—-B—C—E—-I-M-STOP and A-B—-D-G-K-O-STOP,

‘) is the balanced return of * for Py <7>7]}||{[7 L], y@L, evenif %" is the sole matched return of

‘("in P. Parallel composition of balanced processes can alscecunealanced process.
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Pl G0 ieanp  Dotn GG e ynp
Py 4l Qs -2 P 4l pQ5 Py 4l pQs—" Py all pQus
Py =20 Qup Q5 [a € AN B L Sndifh QL@ [a € AN B]
Pury 4l gQus—2 P 4|l Q5 Pyl pRL—P] 41| Q'
Py =oPy  Qu=2Q) (o g PP, ac A\ B]
PaVAHBQJ_LPvA”BQ/J; PvAHBQéi’PyAHBch
Q1 gl aPary—=Q1pl AP Qs gl APy —=Qs ll 4P
P,-a.P! Py, 0P
N a€A\B L a€ A\ B
Pyal Qo =P Al 505 | L R Ty Tl }
Qs gl APy Qs ll AP0 Qs gl APy —Q5 gl AP
P, -2 P P, TP
L [a€ A\ B] E——

PrallpQs—=P 4l Qs

Py ol pQs—=P5 4ll Qs

33

QspllaPL—Qspll 4P QspllaPy Qs gl 4Py

P, P Qs—5Qj
Py 4l pQs—5 Py 4ll pQs

Figure 4.6: Alphabetized parallel

4.2.6 Hiding

Figure 4.9 shows the semantics of hiding. The stack of thega®does not change when a hidden
call or return is performed; part of Figure 4.9 could be writin the possibly clearer but more
elaborate form from Figure 4.10. If we hidg in the processP, of balanced brackets used earlier,
then the traces of the resulting process will form the lageu& Hiding transforms here a balanced
process into an unbalanced one. Hiding can change unbdlfivalanced] processes into balanced

[unbalanced] ones; it can also change the matched cathetu
4.2.7 Abstract

The operator introduced over any other process algebraisaah which hides all the sub-modules

of a module. This operator is motivated by the abstract patBARET and NWTL [2, 8]. One
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PP Qs [ a G] Poy =P, Qus—-Q [ a G}
(Pyall BQs)o—(Poy all pQus)ag  [ANB (Pay all pQb8) o= (P54l pQs)e  [ANB
“ (Pary all BQbs5) L =2 (P 41l Q%) 1
a
PP [ a e} Py —P] [ a E]
(P All pQs)o—=(Piy 4l BQs)ap  |A\ B Py 4l pQs)es—2=(Py 4l pQs)¢ A\ B

(Qsgll aPy)—(Qs gll A2y )as Qs gll APy )eo = (Qspll AP

a

(

( )

(Pay All BQs) L =2 (P, 4l pQs5) L
( ) ( )

Qs ll aPay) L —2(Qs gl aP5) L
(b)

Figure 4.7: Alternate semantics of parallel composition

L j ]
Cyy Bl lq—M{—STOP

T 1 ] ]
[ )UNF I, N | STOP
A G, R B
Ll A Kiw o TOP

( ) I
Dy, = H, Ly, =R —~STOP

Figure 4.8: Example of parallel composition

can now hide the sub-modules from the environment. Thisatamm accomplished using the hide

operator if an event is present both in the module and itsnsoiule. Abstract produces the local

trace of a module, so that one can specify internal propecdfie@ recursive module. The semantics

of abstract is presented in Figure 4.11. During the executioa call, abstract pushes the corre-

sponding stack symbol with two special marketsfor the internal call of the main module and

for the internal call of a sub-module. If the top of the stackitains any special marker then every

local event will be hidden; calls and returns are pushedfmgpd off the stack but are otherwise

hidden as well (except for top-level calls and returns inrtteelule). If a return occurs when the top
of the stack is not marked, the process will get out of abstrac
Let B (with call b and returnf), andC (with call d and returre) be two modules. The top-level

processP callsBandBcallsC: P=a — Q,Q =b — R, R=¢c— 5,5 =d — 1y,
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P, \ijﬁ el P, \iig 4 leeA
P, \iiié: A LAl P ]\Dﬁig A el
Py \sz% A lec4 2 \iiﬁy VLA
T e ¢4
Pl\PZi%\A o ¢ 4]
Figure 4.9: Hiding
L oc A el ae A

(Py\ A)p—=(Fay \ A)g (Pay \ A)p==(P5\ A

Figure 4.10: Altenrate semantics of hiding

T=c—->U,Uj=e—-V,Vy=f—W,andW = ¢ — STOP. We can hide the sub-modules
of Bbyusing abstractP = a — Q,Q =b— R, R=c— S, 5S=d - T;,T =c — U,
Uj=e—-V, V= f— W,andW = ¢ — STOP. We actually hide sub-modul€' in this

particular example.
4.2.8 Renaming

The semantics of forward and backward renaming is depict&dgures 4.12 and 4.13. Renaming
functions cannot change the VPL partition. Renaming caniipdlde matched call-returns of a
process but cannot change a balanced [unbalanced] prodesan unbalanced [balanced] one.
There might be no “reverse” renaming that retrieves theimalgorocess or set of matched call-

returns: If we apply a renamingi()) =] on our previous example (illustrating choice), we get a
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Py ~%Pl, Py %Pl Y
Py Pab,y PP, PLW—>P:
@ =k ;bv Fiy T}P;‘fv ?7—)5
P TP Pay =P, o
by aby
PP P, Y,P a,pr
_H=h S BB )
P, TP/ P,L.P) P %P
Figure 4.11: Abstract
P, TP J R PPl
f(P)’YL)f(P/)’Y f(P)vmf(Pl)v f(P)“/Mf(Pl)f( )Y
Py %Py P, %P P, P/
F(P) f(a)y L9 F(P'), f(P) LI (P, fF(P)y = f(P)y

Figure 4.12: Forward renaming

process whose traces define the langyége no renaming can give back the original.

4.2.9 Sequential Composition and Interrupt

36

Figures 4.14 and 4.15 show the semantics of sequential ctigroand interrupt. These operators

can change the matched call-returns.

P, P! Pt p! PP
f_l(P)v—’f HP')y FHP) = fH (P, f‘l(P)v—>f (P’)
Py, 1P p fap] P, P
f_l(P)avL)f_l(P/)v f_l(P)J_Lf_l(P/)J_ f_l(P)vL’f_l(P/)v

Figure 4.13: Backward renaming
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PP/ P,-% P! PP

Py Qs—=P; Qs Py; Qs—=P; Qs Py Qs—P,.; Qs
Py P PP P, L.P,

Poy; Qs =P Qs P15 Qs P15 Qs Py Qs—=Qs

Figure 4.14: Sequential composition

P, L>Pfy P, LPfY P, #Péy
PVAQgLPf/AQg P,YAQ5L>P:/AQ5 PFYAQ(gLP;A/AQ(;
P,WL>PIY P, %P PVL»Pé
PMAQ(;LP;AQ(; P AQs—%P| AQs P,YAQ(;LP;
Qs Q% Qs—Qs Qs Q%

P,YAQ(SL»PVAQ:; PVAQ(;LQZM P,YAQ(SL»Q:;
Qas Q% Q1-%Q

PVAQaJL’Qg PVAQLL’Q/J_

Figure 4.15: Interrupt
4.3 CVP Is aProcess Algebra

Theorem 4.3.1 CVP is an algebra; that is, CVP is closed under all its operatdlrhe underlying

semantics of any CVP process is a VPDA (or an equivalent LTS).

Proof. We proceed by structural inductionSTOP, SKIP are obviously CVP processes. It
is also easy to see that CVP is closed under: prefix choiceckwht follows the definition of a

transition in the associated vPDA), external choice (whgch prefix choice with more than one
alternative; many transitions out of one state are cledibyvad), internal choice (we connect two
LTS to a common start state viatransitions that does not change the stack), recursioncfwhi
generates a loop from some vPDA st&back intoP; this does not introduce infinite vVPDA states,

and manipulates the stack according to the vPDA semanticsdinced by the other transitions),
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renaming (unchanged VPL partition), and abstract (we oeplahole portions of the LTS with
transitions).

Hiding is straightforward except when we hide a edtiut we do not hide its balanced return
(or the other way around). Then every path containimgdr will be transformed fromw; cwarws
(with wo balanced) intav; worws. The last call unbalanced in; becomes however balanced with
r, and the matching (inv3) of the other unbalanced calls i “shift” one symbol to the right.
This shifting is handled by adding rules so that the newjathifnatchings are allowed: Suppose the
original pathw;cwsrws uses the rule® = b — Q4 to handle a call fromv; andRy = m — S
to matchb with a returnm from w3, and suppose that a rul¢ = o' — Q7 is used to handle the
symbol fromw; that is the first symbols to the left 6fin the original path that is either balanced by
a return fromws or is unbalanced; then, the rule= b — @), is added. One previously balanced
returns’ in w3 becomes unbalanced, so whenever the Ryle- v’ — @ is used in the original path,
we add a ruleP;, = ' — @ (we change the original LTS, but it is easier to describe toegss in
terms of adding rules).

We introduce a supplementary transitigh, ) o, (Q, "), which may be (inadvertently) used
on other paths than, cw,rws, thus modifying the LTS in an unacceptable manner. We then fix
a brand new staté” and we inspect all the paths in the LTS other thayrw,rws for use of
(P,9) LN (Q,¢d). If such a path is found, we then renam@o P” on that path (in the preceding
transition that will now lead td”” instead of P and in the current transition which will now start
from P” instead ofP). We do the same for the newly introduced rite = ' — Q. Then no
path other thanu; cwsrws will contain references td, so no other path will be changed by the
introduction of the new transitions.

We perform this procedure for every possible pattvws,rws and we obtain a CVP process
from which r has been eliminated (that is, hidden). Hiding a return butitsobalanced call is
similar.

Consider two LTS and L” with initial [final] vPDA statesl’ and” [H' and H"]. We assume

without loss of generality that the stack alphabets/aind L” are disjoint. The LTS corresponding
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to the sequential composition é&f and L” will have I’ as initial vPDA state andi{” as final vPDA
state. For all the state§, in L’ we make a copy of” with identical transitions and with a state
P,s, for every stateP, | of L”. The copy works the same as the original, but unbalancedsetu
(introduced by rules of fornP, = r — @) may now want to match with symbols frofn(which
they won't succeed); for every rule, = r — @, we add{P, =r — @ : a € ¢} to take care of
such a case. We link the copy thus describedfq using ar transition. Closure under interrupt
proceeds with the same construction but we cbfyfor every state)s, of L'.

The parallel compositiod, of L' and L” will be constructed as follows. The set of vPDA states
of L will be the Cartesian product of the vPDA statesléfand L”. The stack alphabet af will
bel" UT” UT’ x I (with TV, T'” the stack alphabets @ andL”). The transition relation of. is

built as follows:

e Balanced calt and returnr are synchronized (similar for synchronized local symbdigyr
everyP' = ¢ — Q. andP” = ¢ — Q} in L' andL", respectively, we addP’, P") = ¢ —
(Q',Q")(a,6)- Similarly, for everyP, = r — Q" andP/ = — Q" in L' andL", we add
(P, P")(ap) = ¢ — (Q,Q").

e Balanced calt’ and return’ in L' and balanced call” and return” in L” are unsynchro-
nized (similar for unsynchronized local symbols): For gvset of rulesP’ = ¢ — @/,
P" = — @), R, =71 — S, andR] = r" — 5" we add the following rules:
(P, X) =d - (Q,X), forall X € {P",Q"}, (X,P") = — (X,Q"), for all
X e {P,Q'}, (R, X))o =1 — (9, X) foral X € {R",S"} anda € {a,b}, and
(X,R")q =1" — (X,8") forall X € {R',$'} anda € {a, b}.

e Call ¢ is synchronized, balanced returrisn L’ andr” in L” are unsynchronized: We keep
cin L', we rename’ to ¢’ in L”, and we proceed with, ¢, v/, andr” as in the above case.

We then hide”” (as described above).

e Callsc in L’ andc” in L” are unsynchronized, balanced retutiis synchronized: As above,

but we rename’ to " in L" and then we hide”.
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It is immediate that the resulting process implements fsr@mposition.

40



Chapter 5

CVP Trace Semantics

CVP trace semantics produces the set of traces of a CVP grodesis CVP process then
traces(P,) is the set of traces it can produc&I’OP, SKIP, andRUN are same in CSP and
CVP. In both caseRUN can perform any sequence of event any time but the BUR operates on

a visible alphabet.

5.1 Prefix Choice

An observation of the procegse : A — P(z)),, has two possibilities: Either no event has yet oc-
curred, or else an eveate A has occurred, and the subsequent behavior is that of thespmmding

processP(a).. If a € A, theny’ = ~:

traces(x : A — P(z)),) = {()} U{(a)tr|a € A, Atr € traceg P(a),)}
If a € A, theny = ay:

traces((z : A — P(x)),) = {()} U {(a)trla € A Atr € tracesP(a)ar)}
IfacA &y+# Lthenay = :

traceg(z : A — P(2))s,) = {()} U{{a).trla € 4, Atr € traces P(a), )}
IfacA &y=Ltheny =:

traceg(z : A — P(z))1) = {()} U{(a).trla € A, Atr € tracegP(a),)}

41
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(x:A— P(x)y) = (((x : A— P(x)),), means after execution of the evant A the stack will

be~’. So the above four rules can be written together as a sintgle ru
tracesz : A — P(x)y) = {()} U{(a).trla € ANtr € tracegP(a),)}

Let P,,, andP,, are two CVP processes with same process definitign=a — P, P, =
STOP. traces(Pyq,1 ) = {(), (a), (a,a)} andtraces(P,, ) = {(), (a) }. So they are not equivalent

processes asaces(Pyq, ) # traces(P,) ).

5.2 External Choice

An observer of the choice construt Qs might observe an execution &f, or Qs; there is no
other possibility. The choice operator splits a procesdtarraative processes so these alternative

processes have same stack.
traceg P,0Q;) = traceg P,) U tracegQ5)

Figure 5.1 presents the laws of external choice. The fireetlaws are inherited from the properties
of the union operator. Lawl — unit states that external choice gives any procgsprecedence
over ST OP, which can never resolve a choice in its favor. Liaw- zero states that external choice
allows any proces#’, to be masked bRUN: in a choice withRUN, if the choice does happen to
be resolved in favor oP,, then any trace corresponding to such an executiaf,a$ also possible
for RUN. In algebraic terms$T'OP is a unit of external choice, arRUNis a zero. Law ] — step

shows that an external choice of two menu choices may bettewas a single menu choice.

5.3 Internal Choice

The internal choicé?, 1 Qs behaves either aB, or asQ)s, and its environment exercises no control
over the decision.

traceg P, M Qs) = traceg P,) U tracegQs)

Figure 5.2 presents the laws of internal choice. The firgghaws are inherited from the union



CHAPTER 5. CVP TRACE SEMANTICS 43

P,OP, =P, O — idem
P,O(Qs;0Rp) = (P,0Q5)0Rg O — assoc
P,0Qs = QsUP, Ll — sym
P,O0STOP = P, O — unit
P,[IRUN = RUN U — zero

(z:A— P),0(:B—=Q)s = (x:A— Px)y)dy: B—Qy)s)
=2:AUB — R(2)yus
whereR(c).us

= P(c)y if ceA\B
= Q(c)s if ceB\A
=P(c)y NQc)y if c€ ANB O — step

Figure 5.1: Laws for external choice

operator. This form of choice has different executions ttrenexternal choice”,[JQs, since the
choice is first resolved by atransition before the real choice begins its execution. &lms, this
internal transition is not recorded in any trace, and a todserver is not concerned with identifying
where responsibility lies for particular choices, but omhith the possible sequences of events.

Under these circumstances, the internal and external €looigstruct are not distinguished.

P, NP, =P, M —idem
P, (Qs M Rg) = (P, M Qs5) N Rg M — assoc
P,NQs=QsNP, N — sym
P,OQs = P, M Qs choice — equiv

Figure 5.2: Laws for internal choice
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5.4 Parallel Composition

A parallel compositionP, 4|| Qs consists of?, performing events i, and@;s performing events

in B. The processe®, and()s synchronize on events id N B, and perform their other events
independently. Sincé”, is involved in the performance of all events fraf) any execution of
the parallel composition projected ontomust be an execution d?,. Similiarly, any execution
projected ontd3 must be an execution 6js. The traces of, 4 || 55 are those sequences of events
which are consistent witl’, and@;. Only events inA or B, or termination, can be performed, so

the set of events in the trace must be containedtiny B)" .

traceg P, 4|| 5Qs) = {tr ¢ TRACE | tr | AV ¢ tracegP,) Atr | BY € tracegQs)

Ao(tr) C (AUB)Y'}

Figure 5.3 presents the laws of alphabetized parallel. [Lawidem is a form of idempotence:
if the interfaceA provided for P, allows all of its possible events(P,) C A then the traces of
P, are the same as the traces of two copiesPpfrunning together. Any execution d?, can
be performed by both copies @, executing together and synchronizing on every event. The
intermediate interfaces in Lalv— assoc depend on the order in which components are composed
together, but the resulting process is the same in each dam&.| — unit provides a unit for
the parallel operator: the proceB&N, 45+, Which is always prepared to perform any event in
the common interface, and hence places no restrictiof,performance of those events. Law
|| — step shows how to reduce a parallel composition of prefix choioesdingle prefix choice. The
events that are initially possible are those that eithez siwh perform without the co-operation of
the other, together with those that both are initially resmyperform. The events that are blocked
are those that only one side is ready to perform but where dh@peration of both is required.
Laws|| — term 1 and|| — term 2 are concerned with termination of a parallel compositidfoth

components are ready to terminate, then termination occurs
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PypllaPy =Py ifo(Py) €A | —idem
Pyallpuo(QspllcRa) = (Pyall pQs) 4 U BllcRa || — assoc
Py all Qs = Qs ll 4Py | — sym

CCANDCB= (z:C— P))yalply: D —Qy))s
=(z:C = P@)y)alply: D — Qy)s)
=(z: ((C\B)U(D\ A)U(CND))— R(2))a
=z:((C\B)U(D\A)U(CND))— R(z)w
whereR(c)y
=P(c)yallply: D—Qy)y) i ceC\B
= (x:C — P(x)y) 4l gQ(C)s if ce D\ A

= P(c)y 4l pQ(c)s if  ceCnD | — step
SKIP | pSKIP = SKIP | —term 1
(1 C = P@), 4l pSKIP = (a: C — P(a),) 4 pSKLP
=x:CN(A\B) = (P(z)y 4| pSKIP) | —term 2
P,5||gRUN= P, | — unit
Py \IsSTOP = STOP | — zero

Figure 5.3: Laws for alphabetized parallel
5.5 Hiding

The process, \ A for A C 3 has the same execution &s, except that at any point where,
performs an external event from, the process’, \ A performs the same event internally; as a

result that event does not appear in the trace.
traceg P, \ A) = {tr \ Altr € tracegP,)}

Figure 5.4 shows the laws of Hiding. The first law states thding successive sets of events
obtains the same process as hiding all the sets of eventsat 8acond law states that if there is no
event then we there is noting to hide. The third and fourthslave special instances of hiding over

a prefix choice. In the first case none of the choice eventsligehi, resulting in the same choice of
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(Py\A)\B=P,\ (AUB) hide — combine
STOP\ A=STOP hide — STOP
(#:C = P@)y \A=(x:C— P(x)y)\ A

=(z:C — (P(x)y \ 4)) if ANC =10 hide — step 1
(#:C = P)y \A=(z:C— P(x)y)\ A

= Maec(P(x)y \ A) if CCA hide — step 2
SKIP\ A=SKIP hide — term

Figure 5.4: Laws for hiding

events being offered. In the second case all of the choiceteaee hidden, resulting in the choice

between the subsequent processes. The last law statesdihgtdoes not affect termination.

5.6 Renaming

A forward renamed proces§ P), behaves the same way & but performsf(a) wheneverP,

would have performed. Its traces are the traces Bf with every event mapped through

traceg f(Py)) = {f(tr)|tr € tracegP,)}

The backward renaming operatpr!(P,) also behaves in a similar fashion &, but any event,
that is performed by ~!(P,) corresponds to an evelfita) performed byP,. Hence a tracer of

f~Y(P,), when mapped through the functighmust yield a trace (¢r) of P,.

tracegf~!(P,)) = {tr|f(tr) € tracegP,)}

Figure 5.5 represents the laws of renaming. The first laesthiat if the mapping is one-to-one,
then renaming withy’ has a straightforward interaction with prefix choice. A deodf events from
C becomes a choice of events froffC) = {f(c)|c € C}. The fact thatf is injective means

that the eveny chosen corresponds to exactly one evet f~!(y)) from the original choice of
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f(x:C — P(x))y=f(z:C — Px)y) =

v F(C) = f(P(F M)y if fis 1 F() = step1
fl@:C — P(x))y = flz:C — Px)y)

=y: f(C)— I_Ix‘f(x):yf(P(w))ﬁ/ f(.) — step2
f(SKIP)=SKIP f() —term
J @i C = P@)y = e C > P(a)y)

=y f7HC) = [P W)y F7H) — step
Y SKIP)=SKIP f7Y) —term

Figure 5.5: Laws for Renaming

events fromC, so the subsequent behavior is thaigf:)., transformed througlf. The second law
states that if a process initially is prepared to perform ewgnt fromC, then the initial choice for
its renamed process is the set of evefit§'). However, the result of choosingcould be any of
the processes which follow an event mapping/tof a andb both appear irC', and f maps them
both to the same evemt then the renamed process is in effect offerinip two different ways,
once resulting fromx and once resulting frort. All of the term laws state that the various sorts of
renaming cannot affect a process ability to terminate. Tteraction between backward renaming

and prefix choice is straightforward.

5.7 Sequential Composition

The sequential compositioR, ; ()5 behaves a#, until P, terminates successfully, at which point
it passes control t@);. Since the termination of, does not denote termination of the entire
construct,P,’s v' event is made internal. The tracesf, () fall into two categories: trace df,

before termination, and terminating tracesryffollowed by traces of)s.

tracegP,;Qs) = { tr|tr e tracegPy) AV ¢ o(tr)} U {try.tratri(v)
€ trace§ Py) Atry € trace§Qs) }

There are a number of laws appropriate to sequential cottiqrosiThese are given in Figure 5.6.
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Py (Qs; Rp) = (Py; Qs); R ; —assoc
SKIP; Ps = P s —unit — 1
P,;SKIP =P, ;—unit —r
(x:C— P(x)y;Qs = (x: C — P(x)y); Qs

=x:C — (P(x)y;Qs) ; —step
STOP; Ps = STOP ;—zero — |

Figure 5.6: Laws for sequential composition

Law ; —assoc simply states that sequential composition is associatiMee unit laws state that
SKIP is a left and right unit of sequential composition. Lawstep states that a prefix choice in
a sequential composition is equivalent to a prefix choiceeqlientially composed processes. Law
; —zero — | is a special case of Lay—step, in which no events are initially offered—this yields a

left zero for sequential composition.

5.8 Interrupt

The process?, AQs executes a#’,, but at any stage before termination it can begin executing a
@Q;. There are therefore two possibilities for any given tratks either a trace of?,, or else it is a

not necessarily terminating trace Bf followed by a trace of);.
traces P,AQs) = traceg P,) U {try.tratr; € tracegP,) A v’ ¢ o(try) Atry € tracegQs)}

Interrupt satisfies a number of laws, given in Figure 5.7 ceoming its interaction with choice and
with termination. Law/A — assoc states that the interrupt operator is associative. Vaw step
shows how a prefix choice interrupted ¢ unwinds: either it behaves &% immediately, or else
one of the events of the prefix choice occurs, resulting irsthesequent process which may still be
interrupted. LawA — unit — [ is a special case af — step in which a process that does nothing

may be interrupted by’s. Law A — unit — r states that the proces&l"OP is ineffective as an
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P,A(QsARg) = (PyAQs)ARg A — assoc
STOPAPs = Ps A —unit — 1
P,ASTOP = P, A —unit —r
(x:C — P(x))yAQqgelta = (z: C — P(x)y)AQs

= Qs0(z : C — (P(2)y AQs)) A — step
SKIPAP, = SKIPOP, A —term

Figure 5.7: Laws for interrupt

interrupting process, since there are no events it can qerto interrupt another process. Finally,

A — term states that if termination occurs, then the interruptinaepss is discarded.

5.9 Recursion

In finite-state process algebrae a recursive process sradt®p from one state back to the same
state, so it is defined by a relation of forfh= F(P). If we follow the same line of thoughts, a
CVP recursive process will be defined by the relatin= F(P,). This would however restrict
the recursion to regular recursion. In the general case iftsudes self-embedding recursion),
the relation that defines a CVP recursive process renmfaias F'(P)! Indeed, a recursive process
defines a loop from oneP DA stateback to the same vPDA state; the stack needs not be the same in
the two occurrences of the same state, and its behaviourésmed by the processing taking place
according toF'.

Once this is established we can introduce the stack. We thiesider the recursive definition
P = F(P) within its proper place (as a CVP process), i(@,= F(P)),, or equivalentlyP, =
F(P).; v is the stack content of the process under scrutiny. Noterbaire in effect saying that the
vPDA stateP with stacky behaves the same as the vPDA stité”) with the same stack content.
We then have thatraces(P,) = traces(F(P),). The recursive definition defines aguation

which must be satisfied by the setces(P;). In fact, traces(P,) is afixed pointof the function
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on trace sets represented by the CVP expresBiowhen that function is applied torace(Py) to
obtaintrace(F(P)-), then the result is agaitraces(Py).

Every process contains the empty trace as one of its possilskes, sq) € traces(P,); thatis,
traces(STOP,) C traces(Py) = traces(F(STOP)y) C traces(F(P),) = traces(Py). This
is justified because all of the CVP operators arenotonicwith respect toC: if traces(P,) C
traces(Q~), thentraces(F(P)y) C traces(F(Q),) for any function F° constructed out of
CVP operators and terms. From standard induction we getrfpmatraces(F"(STOP),) C
traces(F(P)~) = traces(P,) which corresponds to the fact that all of the traces obtabyedn-
winding the definition(P = F(P)), n times are still traces of recursive proce3s All of the
F™(STOP)., processes correspond to the finite unwindings of the reeudfinition, so between

them they cover all of the possible traceg 8f= F'(P)),. Hence

traces((P = F(P))y) = U traces(F"(STOP),)
neN

5.10 Abstract

A process can contain several modules. Abstract extratystominternal trace of the first module
of a process then it follows the rest of the original tracehsf process. A complete sub-module
is a sub-module which returns to its parent module. Theeefdlrthe complete traces of every
complete sub-module are balanced and so no unbalancectat-can appear in a complete sub-
module trace. An incomplete sub-module can appear onlyeatrh of the trace but the incomplete
sub-module cannot have any unbalanced return. After theoktitk execution of the first module

abstract stops working, so the remaining trace of the pso@sains unchanged.
traceg P,) = {(tr)|tr € traceg P,)}

where2((¢r) is a function which extracts the trace wheretr is the trace of?,, andtr is the trace

of P,. 2 is defined at the beginning of Subsection 6.1.1 on page 50.
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CVP Trace Specification and Verification

The CVP trace observer knows the visible partition of theneve As a result, the trace observer
can detect when the system (VPDA) performs push and pop. f@dtigre facilitates the definition
of four significant functions: abstract function, stackregt, module extract, and completeness.
These functions can be used to specify some important pgiepdéor software verification: abstract
function to specify local properties of a module; stack &stito specify stack limits, access control,
and concurrent stack properties; module extract to specifyproperty specific to a module; and

completeness to specify partial and total correctness.

6.1 CVP Trace Functions

6.1.1 Abstract Function

Theabstract functioror 2(¢r) extracts the trace’ wheretr” is the trace ofP,, and¢r is the trace
of P,. The abstract function is defined as follow{tr) = {ly.c1.r1.li.co.r2.lo...cp. 75 L w|tr =
lotito . tpwAly € AV : 1 <o <kAty € {cp.52.72.0e, )} N (sSe = ) VVS <51 (s =

O VI 5. = [8'14,) Alszls, = [Szls,) Acx € B Arg € 8, ANl € A (w = () V head(w) €
YYVvvw <w: (W =) Vs, > |w's.))}. The use of abstract function will be illustrated in

Subsection 6.2.4.

51
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6.1.2 Stack Extract

In a CVP trace the number of call events is equal to the numbstiaok symbols pushed onto the
stack and the number of balanced return events is equal tautheer of stack symbols popped off
the stack. We can define a new functgiack extracor &(t¢r) which will extract the stack from the
CVP tracefr. S(tr) is defined as followsS (tr) = {citj.Citj—1.-.Cit2.Civ1 L|tr = tr\i{/\sq =
R(tr'). L A Sq = Siqj4+1.Citj-Sitj-Citj1---Sit2.Cit1.5i41.T3-8i.Ti—1...83.72.52.71.51. L AVz : 1 <
E<iATy €{S, UMIAYY:1<y<jAciry € {ZcUO)}AVz:1<2<i4+j+1As, €
S*ANS = {s|Vs' < s: (s = () VIl > [s']s.) Alsls, = sl }}. The use of the abstract

function will be illustrated in Subsections 6.2.1 and 6.2.2
6.1.3 Module Extract

Module extractor 9i(tr, a) extracts from the trace- the tracetr’ of the first module which starts
with the call eventz. MM(¢r) extracts the tracer’ of the first module from the trace: M(tr) =
{tr'jtr = tr'ar" AVt <tr' 2 (t = (O Vtg, 2 [tlg ) A" = Vir" = (V) V (head(tr") €
S A tr'ls, = [tr'ls, )} andM(tr, a) = {tr'|tr = tr'.a.tr™ A [tr"]o = O A tr" = DM(tr™)}. The

use of abstract function will be more clrear in Subsectiégh4and in Subscetion 6.2.5.
6.1.4 Completeness

Completenessr €(tr,a) is a function which verifies whether a tra¢e contains the complete
trace of a sub-module (invoked by call eventincluding the calle and its balanced return. i
contains the desired trace it will return that trace othsewi will return the empty tracé(tr, a) =
{tr'|(tr = tr" tr" tr" Ahead(tr") = anfoot(tr’) € ir/\t <tr':(t= <>\/]tlic > ]tlir)/\\tr’\ic =

ltr'ls, Altr"|a = 0)vir’ = ()}. The use of abstract function will be illustrated in Subec6.2.5.

6.2 CVP Trace Specification

CVP behaves as CSP when all the events are locals so CVP aafy sppey property CSP can. CVP

can also specify many important properties for softwarédigation which a regular or a context-free
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process algebra cannot specify. The most important amarigmoperties are described below:
6.2.1 Access Control

CVP can specify the access control properties of a moduleod@uta can be invoked if a certain
property holds. For example, a procedute(called by a call event) can be invoked only if
another procedur® (called by a call evenb) is in the stack. This property can be expressed by

S(tr) = |&(tr)|y # 0 = |&(tr)|, # 0.
6.2.2 Stack Limit

Whenever the stack size is bounded by a given constant, &npydpolds. For example, if stack
size is less thafi, then there will be no no occurrence of an everih the trace. This predicate is

expressed aS(tr) = |S(tr)| < 7= |tr|, = 0.
6.2.3 Concurrent Stack Properties

A concurrent stack property is defined as one stack propeftirty in a process and another stack
property holding in a concurrent process. This propertynoabe specified in any context free or
regular process algebra. From the trace”of; || Qs one can specify that if one stack propepty
holds inP,, then another stack propergyholds inQs. If tr is the trace ofP, 4|| Qs, thentr | AY

is the trace of?, andtr | A is the trace of);. Indeed, one can use the fact tiegftr | A¥) is the
stack of P, and&(tr | BY) is the stack ofps. For example, if stack size is less thain process
P,, then there will be no invocation for modulé(called by a call event) in Qs. This predicate is

expressed aS(tr) = |S(tr | AY)| < 7= |&(tr | BY)|, = 0, wheretr is the trace of?, 4| 5Qs-
6.2.4 Internal Properties of a Module

From a CVP trace one can extract the internal trace of a E&@&)rmodule and then specify any
trace properties on that internal trace. Consider a raeurmbduleA (which is called by call event
a) in processP,. We can then extract the trace of moduleusingMi(¢r, a), wheretr is the trace

of P,. Using the abstract function we can further extract theriatetrace: A(Mi(tr,a)) is the
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internal trace of modulel. For instance, that the numberipévents is always larger or equal than
the number of: events in the local execution of can be expressed B(tr) = [A(M(tr,a))|p >

[RA(M(tr, a))lc-
6.2.5 Pre- and Post-Conditions

One can specify pre-/post-conditions of a module. As a tgwutial and total correctness can be
specified in CVP. Partial correctness of a proceddrspecifies that if the pre-conditiop holds
when the procedure is invoked, then if the procedure teri@sndhe post-conditiop is satisfied
upon return. Let modulel be invoked bya. During the invocation of4, if some event always
precedes another eventthen if A returns then the number éfevents will be smaller than the
number ofc events in module A. The property specified &tr) = (tr = tri.a.try) A (tr; |
b= () =tri [ c= () = Catr2,a) = () V (C(a.tr2,a) # () A |M{Er2), < [M(tr2)].).
Total correctness of a procedure specifies that if the pneliion p holds when the procedure is
invoked, then the procedure must terminate and the postittmm ¢ must be satisfied upon return.
For instance, during the invocation df, if some evenb always precede another eventthen A
returns and the number éfevents will be smaller than the number©évents in module A. The
property can be specified asi(itr) = (tr = tri.atra) A(tr1 [ b= () = tri | ¢ = () =
Cla.tr2,a) = () A (€(a.tr2,a) # () N|M(tr2)], < |9M(tr2)|.). However, total correctness cannot
be specified in the trace model because in the trace modetdfca satisfies a property then any

prefix of it must also satisfy that property.

6.3 CVP Trace Verification

We can verify many non-regular specification properties WPCncluding the properties stated in
Section 6.2. Although the rules of CVP verification look vemnilar to the rules of CSP, the main
difference between CVP and CSP verification rules is thailQX@ verification rules are applied
on a visible alphabet whereas the CSP verification rules@stea on a local alphabet. The CVP

verification rules can handle the visible alphabet due tattaéability of the stack.



CHAPTER 6. CVP TRACE SPECIFICATION AND VERIFICATION 55

6.3.1 Prefix Choice

The prefix choice operator contains a number of componerdepees: It contains a number of
component processes, and the first event that is perforrredecany one of the menu of events
offered. The antecedent to the rule assumes a family of fega@ns.S(¢r), one for each of the
components”(a), where(z : A — P(x)), =« : A — P(x),. The proof rule is:

Vae A: P(a)y F S%tr)
(x:A— P(x)), b tr=()VvIac A: head(tr) = a A S*(tail(tr))

6.3.2 Choice

The choice procesB,[0Qs or P,MQ;s behaves either a8, or asQs. If P, = S(tr) andQs = T'(tr),

then the choice proceds [IQ; or P, 1 Q5 satifies the disjunction of these two specifications:

P, F S(tr)
Q5 - T(tr)
P,OQs = S(tr) v T(tr)

and
P, F S(tr)

Q5 - T(tl’)
P,MQs F StryvT(tr)

Let P, and@ be two CVP processes! is a module which can perform only evehtinvoked
by c and returned by. B is a module which after performing an evérgxecutes its sub-modulé.
C is another module which first executes its sub-modullinen performs an eveit ProcessP |
invokes moduleB and ends its execution whds returns, while) | invokes moduleC and ends
its execution wher© returns: P = ¢ — P1,, P1 =b — P2, P2 = ¢ — P3., P3 = d — P4,
P4, = ¢ — P5, P5, = f — P6, P6 = STOP, andQ = g — Ql,, Q1 = ¢ — Q2,,
Q2 =d — Q3,Q3. = e - Q4, Q4 =h — Q5 Q5 =1 — Q6, Q6 = STOP. So
traces(P1) = {(),(a),(a,b),{a,b,c),{a,b,c,d),{a,b,c,d,e),{a,b,c,d e, f)}, traces(Q1) =
{0.(9),(g,¢), (g, ¢, d), (g,¢,d,€),(g,c,d, e, h), (g,¢,d, e, h,i)},  and traces(PLOQL) =
traces(P NQ 1) = {(), (a), (9), (a,b), (g, ), (a,b,c), (g, ¢c,d), {a,b,c,d),{g,c,d,e),{a,b,cd,e),

(g9,¢,d,e,h),{a,b,c,de, f),{g,¢cd,e h,i)}. P, satisfies the following non-regular property:
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moduleA can be invoked only if: is on the stack, whil€) | satisfies another non-regular property:

moduleA can be invoked only if; is on the stack:
Py ES(tr) = (|6(tr)]|, = 0= |&(tr)|. = 0)

QL ET(r) = (I6(tr)lg = 0= |S(tr)]c = 0)
ThenP,OQ, or P, M@, meets the specification
(I6(tr)la = 0= [&(tr)]c = 0) V (|&(tr)lg = 0 = [&(tr)]c = 0)
6.3.3 Parallel Composition

A tracetr of the process’, 4|| Qs includes a contribution fron®, and a contribution fron@);,
contained within the alphabets” and B¥, respectively. Therefore i, I S(tr), thenS(tr) [ A
must hold. Similiarly, ifQs - T'(tr), thenT'(tr) | BY must hold. Finally, only events id¥ or BY
are possible for the parallel com, so it follows thdtr) C (A U B)¥. This leads to the following

proof rule:
P, F S(tr)
Qs + T(tl’)
PyallpQs = S(tr [ AY)AT(tr | BY) Ao(tr) C (AUB)Y

This rule demonstrates the way in which parallel compasitiorresponds to conjunction: the con-
straintsS andT" both hold, on their respective alphabets.
The parallel composition, , 4, . q ¢, 11ll{g,c,d, e, n,i}@ L between the two processés and

Q@ | of the Subsection 6.3.2 will satisfy

S(tr 1 {a,b,c.de, fY")ANT(tr | {g,c.d,e,h,i}") No(tr) C {a,b,c,d.e, f,g.h,i}"
which reduces to

&(tr)|a A S(tr)ly = 0= [&(tr)|. = 0Aa(tr) € {a,b,c,d,e, f,g,h, i}’
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6.3.4 Hiding

A trace of the procesg, \ A arises from a trace dP, simply by removing all the events iA from
the trace. Hence for any trace 8f \ A there is a corresponding trace Bf. The inference rule
thus takes the following form:

P, F S(tr)
P,\NAF 3tryitrg \A=tr AS(try)

The process?; of Subsection 6.3.2 meets the non-regular specificationttieae will be no

occurrence of event in the internal trace of the module which is invoked by catmv:
P FStr) = (tr =tr'.atr” = |A(tr")|q = 0)
So for the proces®, \ {c} meets the following specification:
S'(tr) = 3try s try \ {c} = tr A (tr1 = tr'.atr” = |2A(tr")]|g = 0))
6.3.5 Abstract

A trace of the proces#, is constructed from the trace @t, by removing all the traces of the

sub-modules of the top level module. This leads to the faligwnference rule:

P, F S(tr)
Py Jtry : Atry) =tr A S(try)

The process?; of Subsection 6.3.2 satisfies the partial correctness propi@at if b is in the

trace when a module is invoked then if the module returns there will be ad in the trace:
P FS(tr) = ((tr = tr'.atr” Altr']y 2 0Aa € B) = (€(atr”,a) = () Vir | MEr")|q £ 0))

so P, will satisfy

S/(tr) =3try s A(tr) =tr A( (tr = trlatr” Altr']y 0 Aa € 3,)
= (C(a.tr”,a) = () Vtr, | MEr") g #0) )
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6.3.6 Renaming

A tracetr of a renamed proces§(P,) will be a renamed tracg(tr,) for sometr; of P,. The
inference rule for translating specifications through avtod renaming is then the following:

P, F S(tr)
f(Py) B 3try 2 S(try) A f(try) =tr

A particular specificationS can be translated throughto a specification?. This will be valid
provided R(tr) can be shown to translate correctly: Vir : (S(tr) = R(f(tr))). If tris a trace
of f~1(P,), then f(tr) is a trace ofP,, so it must satisfy whatever specificatié} is known to
satisfy. The inference rule is as follows:
P, F S(tr)
FHPy) B S(f(tr)

6.3.7 Sequential Composition

The process,; Qs behaves entirely aB, until P, terminates, after which it behaves @s. Any
given trace ofP,; Qs admits one of the two possibilities: either it is a tracg®fwhich has not yet

reached termination, or else it is a tracefyffollowed by a trace of)s. The proof rule is following:

P, = S(tr)
Qs + T(tr)
P,;Qs F —term(tr) AS(tr) vV 3try,try s tr = trotrg A S(try(v')) AT (tra)

whereterm(tr) = v' € o(tr) denotes that the trace corresponds to a terminating erecuti
6.3.8 Interrupt

A trace of the interrupt proced3, AQ); is either a trace oF,, or else a non-terminated trace Bf

followed by a trace of)s. The inference rule is as follows:

P, F S(tr)
Q5 H T(tl’)
P,AQs = S(tr) v 3try, tro s tr = trytrg A —term(try) A S(try) A T(tra)
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6.3.9 Recursion

If processlV, is recursively defined by the equatiON = P)., or equivalently(N = F'(N))., then
a rule which is sufficient to establish that, - S(¢r) is the following:

VY, 1 (Y, F S(tr) = F(Y), - S(tr))

N, F S(tr) [S(W)]

This rule is sound because it provides all the ingredientseftablishing by induction thaV,
- S(tr). The traces ofV, are those ot J,.y traces((F*(STOP)),), all the finite unwindings
of (F(Y)), starting from the procesSTOP. The inductive hypothesis is that(STOP))., -
S(tr). The side condition$'(()) provides the base case, since it is equivaler8T@ P + S(tr),
which is same aéF°(STOP))., + S(tr).



Chapter 7

Conclusions

We showed that VPL are closed under shuffle and hiding. Tegetfith the already known clo-
sure under union, intersection, complementation, rengnmrefix, concatenation, and Kleene star,
we showed in effect that VPL have all the necessary closuwpepties in order for a VPL-based
process algebra for infinite-state systems to be possibéeal¥d offered in the process support for
the development of the algebra by establishing an LTS sécsaiar vPDA. Indeed, LTS are the
underlying semantic model for all the process algebraehisad one significant step.

Finite-state process algebrae have proven useful for thefgmtion and verification of hard-
ware, communication protocols, and drivers. The more cermppplication software cannot be
readily modelled using finite-state mechanisms, as thetagoa huge, impractical number of dis-
tinct finite states. We therefore believe that an infinitgesprocess algebra can dramatically open
the domain of application software to specification andfigation using formal methods (and more
specifically algebraic methods such as model-based tgstiffg thus offered CVP, the first fully
compositional visibly pushdown process algebra, as a sapef CSP. The semantics of a vPDA
in terms of labelled transition systems establishes traiosl between VPL and CVP. Using this
vPDA semantics we presented operational and trace semdatic€CVP. We proved that CVP is
indeed a process algebra, being closed under all its opgrato

We then defined some functions on CVP traces which are useéxttact important stack and

module information from traces. Using this stack and modhfi@rmation, we showed that unlike

60
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any other existing process algebra one can specify and/vaahy significant software verification
properties in CVP such as the access control of a module ltaits, concurrent stack properties,
internal properties of a module, and pre-/post-conditioha module. We thus laid the basis of a
near future where most of the concurrent process algelmalis and theories will be based on vPDA

instead of finite automata, so that application softwaréleitome amenable to formal verification.

7.1 Advantages of CVP over Other Process Algebrae

First, CVP is based on a formalism that goes beyond regufeyuiges and into the context-free
realm. For instance, CVP represents recursive modulesufmtibns), which is not possible in
finite-state process algebrae. In addition, CVP can alsesept multi-threaded modules; this is
possible in the finite state realm, but not in the contex@-fitemain. CVP is at a fortunate crossroad
where representing recursive, multi-threaded modulesssiple.

One of the major advantages of CVP over context free prodgsbrae is that by analyzing the
trace of a CVP process an observer can determine the corftém stack of that process. This
is possible because of the visible nature of CVP; in a CVPRetthe call events are in a one-to-
one relation with the symbols pushed onto the stack, anduh#ar of balanced return events is
equal to the number of stack symbols popped off the stackerGive one-to-one relation between
the set of call events and the set of stack symbols one canstugot the current stack from the
trace. Stack inspection properties (e.g. a modukhould be invoked only within the context of a
module B, with no interleaving call to an overriding moduie [8]) can thus be specified at trace
level. Concurrent processes are possible in CVP, so cartstack properties can be specified and
verified in CVP.

In CVP, the environment can notice when a module starts (lafl@eent) and terminates (by a
return event). As a result, one is able to specify and vetig¢/post-conditions; pre-conditions of
that module can be checked at the starting point, and postittans at the end point.

Using the abstract operator the designer can hide the sulde®from the environment. One

can go further and easily create one’s own variant of alistyaerator, for instance a variant that
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only hides a desired sub-module, or hides sub-modules aldgtigtheir top-level call and return
events, or terminate the process just after the end of a modul

By using the module extract function one can easily extiagtttace of a module. By using
the module extract and abstract functions together onelsareatract the local (internal) trace of
a module. Unlike context free and regular process algel@®®, is thus able to specify and verify

the internal properties of a module (e.g., evershould be followed by in the same module).

7.2 Future

A more concrete operational semantics of CVP (e.g., in tefaPDA) is appealing. Some ground-
work on the matter is presented in our proof of closure, thahg process outlined there is not algo-
rithmic (especially as far as the hiding operator is conegrrindeed, there might be infinite paths
that need to be considered). We believe that concretizinj atsemantics (based on automata) is
possible.

This dissertation is only the first milestone on the road tDAFbased axiomatic verification.
We have established a proof system based on the trace msdeg most preliminary proof system
for any process algebra. This work opens the whole realm D#Base failures, divergences and
infinite (FDI) traces model, pre-order relations, equinaketesting, and so on. The features of CVP
presented in Section 7.1 are very powerful so it is our béhiaf in the near future vPDA-based

process algebrae will dominate over context free and regutscess algebrae.



Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

R. Alur. Marrying words and trees. IRroceedings of the 26th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systeages 233 — 242, 2007.

R. Alur, M. Arenas, P. Barcelo, K. Etessami, N. Immermang L. Libkin. First-order and
temporal logics for nested words. Rroceedings of the 22nd IEEE Symposium on Logic in

Computer Scienggpages 151-160. IEEE Computer Society, 2007.

R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Repad M. Yannakakis. Analysis of
recursive state machineBCM Trans. Program. Lang. Sys27(4):786—-818, 2005.

R. Alur, M. Benedikt, K. Etessami, and M. Yannakakis. Aysis of recursive state machines.

In Proceedings of the 13th International Conference on CoppAitded Verification2001.

R. Alur, S. Chaudhuri, K. Etessami, and P. Madhusudan-tt@rfly reachability and cycle
detection for recursive state machin@sols and Algorithms for the Construction and Analysis

of Systems3440:61-76, 2005.

R. Alur, S. Chaudhuri, and P. Madhusudan. A fixpoint chlsuor local and global program
flows. SIGPLAN Not.41(1):153-165, 2006.

R. Alur, S. Chaudhuri, and P. Madhusudan. Languages steddrees. IiProceedings of the

18th International Conference on Computer-Aided Verifiagt2006.

63



BIBLIOGRAPHY 64

[8] R. Alur, K. Etessami, and P. Madhusudan. A temporal lagfinested calls and returns. In
Proceedings of the 10th International Conference on Tonbs Algorithms for the Construc-
tion and Analysis of Systems (TACAS, @Jume 2988 of_ecture Notes in Computer Science
pages 467-481. Springer, 2004.

[9] R. Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. @uoences for visibly pushdown
languages. IProceedings of the 32nd International Colloquium on Auttandanguages,

and Programmingpages 1102-1114, 2005.

[10] R. Alur and P. Madhusudan. Visibly pushdown languade$roceedings of the 36th Annual
ACM Symposium on Theory of Computing (STOGC pdyes 202—-211. ACM Press, 2004.

[11] R. Alur and P. Madhusudan. Adding nesting structure ¢twds. InProceedings of the 10th

International Conference on Developments in Language ihe606.

[12] M. Arenas, P. Barcel, and L. Libkin. Regular languagésested words: Fixed points, au-

tomata, and synchronizatiodutomata, Languages and Programmid96:888—900, 2007.
[13] J. C. M. Baeten and W. P. Weijlan&rocess AlgebraCambridge University Press, 1990.

[14] J. Baran and H. Barringer. A grammatical representatd visibly pushdown languages.

Logic, Language, Information and Computati@®76:1-11, 2007.

[15] V. Barany, C. Loding, and O. Serre. Regularity peyhk for visibly pushdown languages. In
STACS 2006pages 420-431. SpringerVerlag, 2006.

[16] D. Bergamini, N. Descoubes, C. Joubert, and R. Mateedgisimulator: A modular tool
for on-the-fly equivalence checking. Rroceedings of the 11th International Conference on
Tools and Algorithms for the Construction and Analysis dt@&ys TACAS 200%dinburgh,
Scotland, 2005.

[17] J. A. Bergstra and J. W. Klop. Algebra of communicatinggesses with abstractio.heo-
retical Computer Scien¢&7(1):77-121, 1985.



BIBLIOGRAPHY 65

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

J. A. Bergstra and J. W. Klop. Process theory based dmbiation semantics. In J. W.
de Bakker, W.P. de Roever, and G. Rozenberg, editimgear Time, Branching Time and Par-
tial Order in Logics and Models for Concurrencyolume 354 ofLecture Notes in Computer

Sciencepages 50-122. Springer, 1988.

L. Bozzelli. Alternating automata and a temporal fixptatalculus for visibly pushdown lan-

guages. CONCUR 2007 Concurrency Theo#i703:476-491, 2007.

S. D. Brookes, A. W. Roscoe, and D. J. Walker. An operaticemantics for CSPrechnical
Report 1988.

S.D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theoncafmunicating sequential
processesJournal of the ACM31(3):560-599, 1984.

M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A.t®iener, editors. Model-Based
Testing of Reactive Systems: Advanced lectuxesnber 3472 in Lecture Notes in Computer

Science. Springer, 2005.

S. D. Bruda. Preorder relationslodel-Based Testing of Reactive Systems: Advanced Igcture

2005.

D. Carotenuto, A. Murano, and A. Peron. 2-visibly pusivd automata. IiDevelopments in

Language Theorypages 132—-144, 2007.

D. Caucal. Synchronization of pushdown automafaevelopments in Language Thepry

4036:120-132, 2006.

J. Chabin and P. Réty. Visibly pushdown languages amd tewriting.Frontiers of Combining
Systems4720:252-266, 2007.

S. Chaudhuri and R. Alur. Instrumenting C programs witsted word monitors.Model

Checking Softwaret595:279-283, 2007.



BIBLIOGRAPHY 66

[28] P. Chervet and I. Walukiewicz. Minimizing variants asibly pushdown automataMathe-

matical Foundations of Computer Sciend&08:135-146, 2007.
[29] E. M. Clarke, O. Grumberg, and D. A. Pelddodel Checking MIT Press, 2000.

[30] R. De Nicola and M. Hennessy. Testing equivalences focgsses.Theoretical Computer

Science34:83-133, 1983.

[31] R.W. Floyd. Assigning meanings to programs. In J. T.\&atz, editorMathematical Aspects
of Computer Science, Proceedings of Symposia in Appliechétatics 19 pages 19-32,

Providence, 1967. American Mathematical Society.

[32] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. Cadp:2806olbox for the construction
and analysis of distributed processesPhceedings of the 19th International Conference on

Computer Aided Verification CAV 200Berlin, Germany, 2007.
[33] A. R. Hoare.Communicating Sequential ProcessBEsentice-Hall, 1988.

[34] C. A. R. Hoare. An axiomatic basis for computer programgnCommunications of the ACM

pages 576-580, 1969.
[35] C. A. R. Hoare. Communicating sequential proces€esnmun. ACM21(8):666—677, 1978.

[36] V. Kumar, P. Madhusudan, and M. Viswanathan. Minimi@at learning, and conformance

testing of boolean program&€ONCUR 2006 Concurrency Theod137:203-217, 2006.

[37] V. Kumar, P. Madhusudan, and M. Viswanathan. Visiblgipdown languages for streaming
XML. In Proceedings of 16th international conference on World Willdy pages 1053-1062,
2007.

[38] C. Loding, C. Lutz, and O. Serre. Propositional dynafogic with recursive programslour-

nal of Logic and Algebraic Programming3:51-69, 2007.



BIBLIOGRAPHY 67

[39] C. Loding, P. Madhusudan, and O. Serre. Visibly pustrdgames. IlFSTTCSpages 408—
420. Springer, 2004.

[40] J. Mccarthy. A basis for a mathematical theory of comagioh. InComputer Programming

and Formal Systemgages 33—70. North-Holland, 1963.

[41] A. J. R. G. Milner. A Calculus of Communicating Systemslume 92 ofLecture Notes in

Computer ScienceSpringer, 1980.

[42] R. Milner. A complete inference system for a class oistagbehavioursJournal of Computer

and System SciencezB8:439-466, 1984.

[43] A. S. Murawski and |. Walukiewicz. Third-order ideadid algol with iteration is decidable.

Foundations of Software Science and Computational Stregt8441:202—-218, 2005.

[44] D. H. Nguyen and M. Sudholt. Vpa-based aspects: Betippart for aop over protocols.
In SEFM '06: Proceedings of the Fourth IEEE International Ceneihce on Software Engi-
neering and Formal Methodpages 167-176, Washington, DC, USA, 2006. IEEE Computer
Society.

[45] D. Nowotka and J. Srba. Height-deterministic pushd@mtomata. InProceedings of the
32nd Mathematical Foundations of Computer Science (MEF2E)7.

[46] C. Pitcher. Visibly pushdown expression effects for Ktream processing. IRroceedings

of Programming Language Technologies for XML (PLAN<J&nhuary 2005.

[47] J. F. Raskin and Frdric Servais. Visibly pushdown tdamers. Automata, Languages and
Programming 5126:386—397, 2008.

[48] G. Rosu, F. Chen, and T. Ball. Synthesizing monitorsdafety properties: This time with
calls and returns. IRV, pages 51-68, 2008.

[49] S. SchneiderConcurrent and Real Time Systems: The CSP Approdchn Wiley & Sons,
Inc., New York, NY, USA, 1999.



BIBLIOGRAPHY 68

[50]

[51]

[52]

[53]

[54]

[55]

D. Scott and C. Strachey. Towards a mathematical seosaftr computer languages. In

J. Fox, editorComputers and Automatpages 19—46. John Wiley, 1972.

Jiri Srba. Visibly pushdown automata: From languageivaience to simiulation and bisimu-
lation. In Annual Conference on Computer Science Logic (CSLv@gyime 4207 ol ecture

Notes in Computer Sciengeages 89—-103. Springer, 2006.

A. Thomo, S. Venkatesh, and Y. Y. Ye. Visibly pushdowansducers for approximate valida-
tion of streaming XML.Foundations of Information and Knowledge Syste#®82:219-238,
2008.

S. L. Torre, P. Madhusudan, and G. Parlato. A robussabdigontext-sensitive languages. In
LICS '07: Proceedings of the 22nd Annual IEEE Symposium @iclin Computer Science
pages 161-170, Washington, DC, USA, 2007. IEEE Computeeoc

S. L. Torre, P. Madhusudan, and G. Parlato. An infinitemmaton characterization of double

exponential time. ICSL, pages 33-48, 2008.

S. L. Torre, M. Napoli, and M. Parente. On the memberghgblem for visibly pushdown
languagesAutomated Technology for Verification and Analydi318:96—109, 2006.



