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Abstract

Decision tree learning algorithms performance evaluation is essential for build-
ing or selecting the optimal algorithm to solve classification problems. Generally,
research studies use datasets provided by universities, reputable companies and
organizations, or collected by the research teams themselves. However, there are
two major problems with this approach. First, the number of datasets used in these
studies are generally limited (usually less than 25 datasets are used), which sug-
gests the results may be to a large degree dependent on a specific dataset. Sec-
ondly, many traditional metrics rely on cross-validation to measure the correct-
ness of the classification. In this case, the evaluation process is done by estimating
how well the inferred model classifies the data examples in the test set without
knowing what the actual model is. We recognize these problems and propose a
new approach that evaluates the performance of decision tree learning algorithms
generically. The underlying idea of this approach is paths tracing and comparing.
We assess various decision tree algorithms with our new framework and compare
their performance. We also investigate the relation between the inferred trees and
the properties of the training datasets.
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Chapter 1

Introduction

Binary classification is a problem studied in supervised machine learning, where
the task is to classify the samples of a given dataset into two predefined subgroups
based on some classification rules. This is an important topic in machine learn-
ing with significant applications in many fields including medical diagnosis, spam
detection, and malware recognition. There are many existing algorithms that are
commonly used for binary classification. The use of decision trees is among the
most popular choices mainly because they are easy to understand and visualize.

Traditionally, decision tree learning algorithms use heuristic functions to find
the best combination of features and their values to construct a tree-like structure
representing the classification rule set. Some of the most used decision tree learning
algorithms, including ID3 [23], C4.5 [25], and CART [6], minimize the information
entropy of different classes guided by some heuristic functions. Even though in
general the decision tree learning algorithms infer models of great accuracy, they
often fail to find the global optimal solution due to their greedy nature. Moreover,
their performance also depends on the properties of the dataset on which the deci-
sion tree algorithms are trained, including the size of the dataset, the bias of class
labels, the duplication of data examples, and noisy samples. In recent years, ex-
act model inferences are getting increased attention. Algorithms like InferDT [3]
are aiming to find the optimal decision trees consistent with the learning datasets.
They are known for their ability to produce very accurate models, but very few re-
search studies have been done comparing them to the heuristic-based decision tree
algorithms. Therefore, evaluating the performance of the decision trees is crucial
for classification tasks. A good evaluation metric helps us better understand the
behavior of decision tree learning algorithms.

We propose in our study a new approach that evaluates the quality of deci-
sion trees using statistic-based metrics. Decision tree learning algorithms are at-
tempting to infer a decision tree that can best represent a dataset, so our idea is to
randomly generate a decision tree that acts as the oracle and produce sets of data
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CHAPTER 1. INTRODUCTION 2

examples from it. Then after training decision tree learning algorithms on the gen-
erated dataset, we compare the trained models with the oracle model. We define a
degree of equivalence (DOE) between the learned trees and the oracle to describe
the similarity between the two models. We use this new approach to assess various
decision tree algorithms and compare their performance. We also investigate the
relation between the inferred trees and the properties of the training datasets.

The reminder of this thesis is organized as follows. We first address in Chapter
2 the motivation of our research by discussing some common evaluation metrics
and their disadvantages. We also present the hypothesis and expectations in prac-
tical decision tree algorithm development. We introduce in Chapter 3 our novel
evaluation method by explaining the design of the decision tree generators and
introducing the concept of equivalence tests between the oracle and the inferred
model. We then present our empirical experimental results on evaluating several
decision tree learning algorithms (Chapter 4). We conclude the study in Chapter 5.



Chapter 2

Motivations and Hypothesis

2.1 Standard Evaluation Metrics

Traditionally, the evaluation metrics in binary classification problems are devel-
oped based on a 2x2 confusion matrix with the row of the table representing the
predicted class labels and the column representing the actual class labels. As shown
in Table 2.1, the true positive (tp) indicates the number of positive labeled data ex-
amples that are correctly classified. Similarly, the true negative (tn) indicates the
number of negative labeled data examples that are correctly classified. The false
positive ( f p) and false negative ( f n) denote the number of wrongly classified pos-
itive and negative data examples, respectively.

From the confusion matrix, some numerical evaluation metrics such as accu-
racy, sensitivity, specificity, precision, and recall can be calculated to discriminate
the performance of the decision trees (Table 2.2). According to previous studies
[9, 12], accuracy is the most chosen metric when optimizing decision trees due to
its simplicity. However, it has some major disadvantages, especially when dealing
with imbalanced data. Under these special circumstances the minority class has
less impact on the accuracy score, whereas the majority class has an overwhelm-
ing impact [11]. Similarly, precision, recall, and the F1 Score all suffer from biased
performance as they overlook the importance of correct negative predictions [22].

One alternative metric that mitigates the problems arising from evaluating im-
balanced datasets is the Area under ROC Curve (AUC) [5]. ROC, which stands for
Receiver Operating Characteristics, is plotted as True Positive Rate (Sensitivity) on

Positive Class Negative Class
Positive Prediction tp f p

Negative Predication f n tn

Table 2.1: Confusion Matrix for Binary Classification

3



CHAPTER 2. MOTIVATIONS AND HYPOTHESIS 4

Metric Formula Description

Accuracy tp+tn
tp+ f p+tn+ f n

The proportion of correctly classi-
fied cases from the total number of
cases

Precision tp
tp+ f p

The proportion of true positive
cases from the cases that are pre-
dicted as positive

Recall tp
tp+ f n

The proportion of true positive
cases from the cases that are actu-
ally positive

F1 Score 2 ∗ precision∗recall
precision+recall

The harmonic mean between preci-
sion and recall

Table 2.2: Common Evaluation Metrics for Binary Classification Based on Confu-
sion Matrix

the y-axis against False Positive Rate (1 − specificity) on the x-axis. The area be-
tween the ROC curve and the x-axis indicates how good the classification model is
at distinguishing examples belonging to different classes. AUC is well-recognized
as an excellent metric when discriminating and comparing decision trees [7, 31].

A number of comparative studies on decision trees exist [1, 13, 16, 18, 26]. Nev-
ertheless, to this day scientists are still in search of a better way to generically com-
pare the performance between different decision tree algorithms. It is particularly
important to evaluate the decision trees generically when developing a new deci-
sion tree learning algorithm or aiming to improve an existing one. Previous com-
parisons were mostly performed using datasets provided by universities, reputable
companies, and organizations, or collected by the research teams themselves [17].
There are two major problems with this approach. First, the number of datasets
used in these studies are generally limited (usually under 25 datasets are used).
When training on such a small number of datasets, the obtained results may be
more dependent on a specific dataset. Secondly, many traditional metrics rely on
cross-validation to measure the correctness of the classification. In this case, the
evaluation process is done by estimating how well the inferred model classifies
the data examples in the test set without knowing what the actual model is. To
avoid these problems when discriminating decision tree learning algorithms, we
propose a path tracing and comparing evaluation method which directly tests the
equivalence between trained models and oracle models.
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2.2 Hypothesis

In this study, we plan to examine the behavior of the decision trees by directly
comparing the trained model to an oracle model, where the training dataset is ran-
domly generated from the oracle. Hence, we are expecting to observe the relation
between the size of the dataset and the correctness of the trained model. Our hy-
pothesis is that with an increased number of data examples the decision tree learn-
ing algorithms produce more accurate models. The idea behind this hypothesis is
that for a random dataset, more information can possibly be included in the result-
ing decision tree when the size of the dataset grows.

Additionally, we expect the accuracy of the “best” decision tree learning algo-
rithms to increase more aggressively than the others. In this case, we define the best
learning algorithm as the one that produces an accurate model with the least num-
ber of data examples. We are expecting the exact decision tree inference algorithm
(InferDT) to have the best overall performance.

With our new approach, we also intend to investigate in the effect of the depth
of the oracle on the performance of decision tree learning algorithms with the same
number of data examples in the dataset. We predict that the learning algorithms
need more data examples in the training dataset to infer an accurate model if the
oracle grows deeper.



Chapter 3

Evaluation by Path Tracing and
Comparing

As mentioned previously, our approach to evaluating the decision trees consists of
generating a random oracle tree, generating a random training dataset, and per-
forming an equivalence test between the inferred tree and the oracle. The first two
stages occur before the training process, and the tree equivalence testing occurs
after the decision tree learning algorithm finishes inferring the model.

3.1 Definitions

We first define the notations used in the following sections. For a given dataset,
we identify F = { f0, f1, ..., fn−1} as the feature set, where the domain of the ith
feature is denoted by Di. We then use S for the set of training data examples and
C = {c0, c1} for the two labels in the target class; each example sr is a vector in the
feature space ∏

n
i=1 Di.

Since a multi-variable feature can be easily converted to multiple binary-valued
(Boolean) features, we only consider Boolean features in this study. As shown in
Table 3.1, a feature fi which contains v different variables can be converted to v
Boolean feature with each feature representing one possible variable of feature fi.
Consequently, the domain of each new feature contains only Boolean values, false
and true.

We use T to denote the decision tree model inferred based on the training set S.
Each path P in the tree consists of some nodes t and a single leaf l f . Each node in
the tree represents a feature, and each leaf represents a class. We denote the depth
of each path by k and the number of total paths as p. If all paths in the tree have the
same depth k and ever node in the tree contains two children, then we call this tree
a perfect tree [3]. Assuming we have a dataset containing the set of features from
Table 3.1b, one example of a possible perfect tree is shown in Figure 3.1.

6



CHAPTER 3. EVALUATION BY PATH TRACING AND COMPARING 7

Features f0 f1
Values 0, 1, 2 0, 2, 3, 5

(a)

Features f2 f3 f4 f5 f6
Meanings f0 < 2? f0 < 1? f1 < 5? f1 < 3? f1 < 2?

Values false, true false, true false, true false, true false, true

(b)

Table 3.1: Conversion from Multi-variable Features to Binary Features

f3

f2 f5

f5 f6 f4 f6

c1 c0 c0 c1 c0 c1 c1 c0

f alse true

f alse true f alse true

f alse true f alse true f alse true f alse true

Figure 3.1: An example of perfect tree using the feature set in Table 3.1b

A decision tree is essentially a set of non-contradicting rules, where every path
in a decision tree represents one unique combination of feature values. Taken the
right-most paths in Figure 3.1 as an example, it can be described as the following
rule: for a data instance, if its values for f3, f5, and f6 are all true, then this instance
should be classified as c0. An oracle is a decision tree on which all the examples
in the dataset can be mapped correctly. We use O to denote the oracle, which is
essentially a decision tree. The oracle is randomly produced by a generator, then
used as a reference when creating training datasets and comparing them with the
inferred models. The design of the oracle generator is explained in the next section.

3.2 The Random Oracle Generator

To produce the oracle tree the generator first takes inputs from the user, specifying
the desired number of features n, the depth of the paths k, and the number of vari-
ables v for each feature. As we explained in the previous section, because a feature
with multiple variables can be translated to numerous binary features, the default
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Algorithm 1 Oracle Tree Generator
Input: n, k, v
Output: O

1: Create F with n features { f0, f1, ..., fn−1}
2: for each fi in F do
3: Create Di with v values
4: end for
5: Create root node t0 in O
6: if |F| 6= 0 then
7: lvl = 0 . lvl denotes depth of O
8: EXPANDTREE(t0, F, lvl)
9: end if

10: return O
11:
12: procedure EXPANDTREE(t, Fs, lvl) . Fs ⊆ F
13: if |Fs| 6= 0 and depth(O) < k then
14: random (0, n)→ i . choose random from Fs
15: feature(t)← fi
16: for each dil in Di do
17: create tl → children(t)
18: EXPANDTREE(tl , Fs \ fi, lvl + 1) . ”\” denotes exclusion
19: end for
20: else if depth(O) = k then
21: for each j in |C| do
22: create t j → children(t)
23: end for
24: end if
25: end procedure

number of variables for each feature is set to 2. To better demonstrate the usage
of the generator, we design the generator to always produce perfect trees, which
means that all the rules described by the tree will have an identical number of fea-
tures. Note that though the length (depth) of each path is the same, if the depth k is
smaller than the size of feature sets n, then each path may contain different feature
subsets. An example of this situation is shown in Figure 3.1. Though the depth of
the left-most path and the right-most path is the same (3), the feature subset of the
left-most path ( f2, f3, f5) is different than the feature subset of the right-most path
( f3, f5, f6).

The generator starts by initializing the feature set and assigns values to each
feature. The feature set is an array of feature pointers containing the name of each
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f3

f2 f4

c0 f6 f2 f6

c0 c1 c0 c1 c1 c0

f alse true

f alse true f alse true

f alse true f alse true f alse true

Figure 3.2: An example of a imperfect tree which does not meet the depth require-
ment

feature, an array of values for each feature, and the number of values for each fea-
ture. Then, the generator creates the root node of the tree and randomly assigns a
feature to it. The tree expands from the root node by adding nodes recursively and
choosing features in a random fashion until the prescribed depth k is reached. Each
node is labeled with one feature which has not yet been selected by its ancestors,
for indeed duplicate features in a single path will cause a contradiction. To avoid
duplication, a number array is carried with the node indicating the availability of
features at each stage. Moreover, every internal node links to its parent and its
children, and it contains an index number that represents the chosen value for the
feature that its parent labeled with.

When a path reaches the depth of k the generator creates a leaf node and at-
taches it to the last internal node. The class label of the leaf is also randomly as-
signed, but for multiple leaves attaching to the same node at least one leaf has a
different class label. Taken Figure 3.1 again as an example, if the left-most path has
a leaf labeled c0, then f5 would become useless in the tree and so we would be able
to re-plot the tree as in Figure 3.2. It is obvious that the left-most path in this new
tree does not satisfy the depth requirement.

Once the oracle tree is fully constructed, the generator will output the tree,
which can now act as a reference when producing training sets and evaluating
decision trees. Pseudo-code demonstrating the rule set generation algorithm is
presented in Algorithm 1.

3.3 The Random Dataset Generator

After obtaining an oracle tree from the oracle generator, our next goal is to cre-
ate a training dataset generator. This generator follows the rules from the oracle
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and randomly produces a dataset with a pre-defined number of instances. In our
study, the generated training dataset S is consistent with the oracle, meaning every
example sr ∈ S can be correctly mapped to the oracle trees.

To better understand possible behaviors of the generator, it is necessary to first
investigate the relations between the number of features, the depth, and the num-
ber of unique data instances. We assume that we have a feature set with n features
and every feature has a binary-valued domain. Since each data example is a vector
in the feature space and the total number of unique combinations of feature values
is 2n, the number of unique data instances in the training set is 2n.

If the oracle has a depth of k = n, because the oracle is a perfect tree and each
path contains all n features, then each data example represents one path in the tree.
However, if the prescribed depth k < n, then each path in the oracle has only k
features, which means those features not present in this path do not impact the
classification result. These features are said to be free attributes. Note that even
though a feature is free in a specific path, it still cannot be classified as irrelevant.
Indeed, different paths contain different feature subsets, and the free attributes of
one path may well be essential components of other paths. For each path P, the
number of free attributes is n− k, whereas the number of paths in the oracle is k.
While the total number of unique data instances remains the same, each path is
now represented by 2n−k unique data examples.

We propose two different design methodologies for the dataset generator: gen-
erating completely random datasets and generating uniquely random datasets.

3.3.1 Completely Random Dataset

To generate completely random datasets the generator takes an input specifying
how many data examples m to produce. Because the uniqueness of data instances
is not considered in this type of dataset, the only restriction that can be imposed
on m is that m ∈ N. The generator then creates an empty 2D array with every row
referring to one data instance, and every column representing a feature or a class.
Meanwhile, the generator reads the oracle tree into the program and maps all the
information to a tree structure. This step can be viewed as a reverse process of the
outputting step of the oracle generator.

After having the tree and the plain dataset ready, the generator starts imple-
menting a recursive random walk. For each data example in the dataset starting
from the root, the generator randomly chooses one of its children. Because each
node is labeled by a feature and indexed by the value of its parent’s features, the
value of this feature is updated accordingly for the current instances. The genera-
tor continues to walk through the tree from the top to the bottom until a leaf node
is reached. Once the class label is updated for the current data example, the gener-
ator then moves to the next data example and repeats the random walk process to
fill the entire dataset. The recursive process is formally presented in Algorithm 2.
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Algorithm 2 Completely Random Dataset Generator
Input: m, O, F
Output: S

1: Create S with n features { f0, f1, ..., fn−1} and m data examples
2: for each sr in S do
3: RANDOMWALK(sr, F, t0) . t0 denotes the root of O
4: for each sr[i] in sr do
5: if sr[i] is empty then
6: random(0, |Di|)→ l . choose random in Di
7: sr[i]← dil
8: end if
9: end for

10: end for
11: return S
12:
13: procedure RANDOMWALK(sr, F, t)
14: if feature(t)= fi then
15: random(0, |Di|)→ l
16: sr[ fi]← dil
17: RANDOMWALK(sr, F, tl) . tl is a child of t
18: else if label(t) = c0 then
19: label(sr)← c0
20: else if label(t) = c1 then
21: label(sr)← c1
22: end if
23: end procedure

If the oracle’s depth k is smaller than the number of features n, then some values
in the dataset would not be updated by the recursive random walk simply because
those free attributes do not exist in certain paths. In such a case, for each instance,
the generator stochastically chooses a possible value of the free attributes and in-
serts it into the corresponding position. Finally, the completely random dataset will
be outputted as CSV file.

The completely random dataset simulates a real-life dataset, in which many
data examples are duplicated. Depending on the number of instances, it is also
possible that some paths have no representation in the dataset. With this type of
dataset, we can observe the performance of different decision trees when inferring
models with incomplete information.
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3.3.2 Uniquely Random Dataset

Similar to generating completely random datasets, to produce a uniquely random
dataset the generator takes input m as the size of the dataset and then creates an
empty 2D array for the dataset. However guaranteeing the uniqueness of data
examples is now a critical task, so the number of instances m cannot exceed the
total number of distinct examples 2n. That is, m ∈ N and m < 2n. The empty
2D array the generator create is also a bit different than the previous one. Because
producing a uniquely random dataset requires the full knowledge of the oracle,
instead of using recursive a random walk, the generator needs to allocate 2n rows
in the dataset to record the entire feature space. Each data example is labeled with
the id of their associating path, denotes by pid.

After reading the oracle into the program and transforming it to a tree struc-
ture, the generator walks through the paths, one by one and in order. Proceeding
from the left-most path, the generator follows the path and updates the value of
each feature in the first data example accordingly. When a leaf node is reached the
generator updates the class label and checks if the data example contains missing
values. If the data example is complete (which means k = n), then the generator
records the index of the path in the index array and moves on to the next path and
updates the next instances. Because the oracle is set to be a perfect tree, all paths
have the same depth and the generator is not required to check for missing values
again for the remainder of the tree. In contrast, if some missing values are found in
the first instances (which means k < n), then the generator copies the values of the
first data instance to the next 2n−k − 1 instances. After inserting all possible com-
binations of values for the free attributes, these 2n−k instances then complete the
data representations of the first path. All the indexes referring to these instances
get updated with the index of the first path. Then the generator repeats the process
until all the paths are visited. The algorithm for finding the dataset with all distinct
examples is illustrated in Algorithm 3.

When outputting the dataset the generator first compares the number of data
examples m and the number of paths b. If m < b, then the generator randomly se-
lects one instance of each path and stochastically outputs m of them into a CSV file.
If m = b, then the generator randomly selects one instance of every path and out-
puts all the selected data into a CSV file. Finally, if m > b, the first b instances will
be select similarly as in the case where m = b; then the remaining m− b instances
will be selected randomly throughout the full dataset. Note that each instance can
only be select once to avoid duplicates. The pseudo-code of the uniquely random
dataset algorithm is given in Algorithm 4.

The goal of generating a uniquely random dataset is to provide as much infor-
mation in the dataset as possible without having redundant data examples. With
such a dataset, we are able to discover the effect of having different representations
of the same path on the accuracy of the classification.
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Algorithm 3 Full Dataset with All Possible Data Examples
Input: O, F, n, k
Output: S′, pid

1: Create S′ with n features { f0, f1, ..., fn−1}, and 2n data examples
2: pid ← 0 . pid denotes the ID of current path
3: ALLEXAMPLES(S′, F, t0, pid) . t0 denotes the root of O
4: pid– . avoid over increment
5: return S′, pid
6:
7: procedure ALLEXAMPLES(S′, F, t)
8: if feature(t)= fi then
9: for each dil in Di do

10: sr[i]← dil
11: ALLEXAMPLES(S′, F, tl ) . tl is a child of t
12: end for
13: else if label(t) = c0 or label(t) = c1 then . check if a leaf is reached
14: label(sr)← label(t)
15: path(sr) = pid . assign sr to path pid
16: COMBINATION(S′, F, t)
17: pid++
18: end if
19: end procedure
20:
21: procedure COMBINATION(S′, F, t)
22: ct← 0 . ct denotes a counter
23: ms← |n− k| . ms denotes total num of free variables
24: ps← 0 . ps denotes the num of free variables encountered
25: while ct < pow(2, ms) do
26: for each sr[i] in sr do
27: if sr[i] is not empty then
28: sr+ct[i]← sr[i]
29: else if sr[i] is empty then
30: ct%(int)(pow(2, ps))→ l
31: sr+ct[i]← dil) . % denotes modulo operation
32: ps++
33: end if
34: end for
35: label(sr+ct)← label(sr)
36: path(sr+ct)← path(sr)
37: ct++
38: end while
39: r = r + ct
40: end procedure
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Algorithm 4 Uniquely Random Dataset Generator
Input: m, F, S′, pid
Output: S

1: Create S with n features { f0, f1, ..., fn−1} and m data examples
2: pct← 0
3: while pct <= pid do
4: random(0, |S′|)→ r if path(sr) = pct
5: . choose random in S′ with path label pct
6: add(sr, S)
7: remove(sr, S′) . avoid duplication
8: pct++
9: end while

10: if m > bid then
11: tmp← m− bid
12: while tmp > 0 do
13: random(0, |S′|)→ sr
14: add(sr, S)
15: remove(sr, S′)
16: tmp–
17: end while
18: else if m < bid then
19: tmp← bid −m
20: while tmp > 0 do
21: random(0, |S|)→ sr
22: remove(sr, S)
23: tmp–
24: end while
25: end if
26: return S

3.4 Equivalence Test

Now that we have a training dataset generated based on the oracle and trained
the decision trees on the dataset, we need to evaluate the correctness of the trained
model. Adopting the tracing technique from model-based testing in formal verifi-
cation [29], we design a path tracing equivalence tester E. We say that a path in the
decision tree T is equivalent to the path in the oracle O if the rule set they are rep-
resenting do not contradict each other. By the same logic, the tree T is considered
equivalent to the oracle O if the decision tree classifies all the examples generated
by the oracle correctly.

The equivalence tester E consist of two pointers, with one of the pointer ptr1
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f2

f3 f4

f5 c0 f3 c0

c1 c0 f6 c1

c1 c0

f alse true

f alse true f alse true

f alse true f alse true

f alse true

Figure 3.3: An example of a inferred decision tree

tracing the nodes in oracle O and the other pointer ptr2 tracing the nodes in the
inferred model. In addition, a cache of values cache stores the features and values
visited by the pointer in the oracle tree. The tracing starts at the root node and
follows the oracle node by node, and path by path. While tracing, we record the
total number of paths visited total and the number of consistent paths succ. We de-
fine the new evaluation metric degree of Equivalence (DOE) as the ratio of consistent
paths over the total number of paths, that is:

DOE =
succ
total

(3.1)

DOE ranges from 0 to 1, with a higher number indicating a better inference.
We first place one pointer ptr1 at the root of the oracle, and the other pointer

ptr2 at the root of the inferred model. The value cache cache is empty because none
of the nodes has been visited yet. The total number of paths visited total and the
number of consistent paths succ are both 0. The equivalence test is a recursive
procedure and is shown in Algorithm 5.

This recursive process guarantees that no duplication occurs when counting the
paths, because we are using the oracle as reference and always trace the inferred
model accordingly. Once the process is complete we calculate the degree of equiv-
alence (DOE) of the decision tree by dividing the number of consistent paths by
the total number of paths.

To demonstrate the evaluation process we consider the following example. As-
sume that a dataset S is generated based on the tree in Figure 3.1, which is the
oracle O in our example. Let some decision tree learning algorithm produce the
model T shown in Figure 3.3 after training on S.
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Algorithm 5 Equivalence Test
Input: O, T
Output: DOE

1: ptr1 ← o0, ptr2 ← t0 . ptr1 and ptr2 points to root of O and T respectively
2: total← 0, succ← 0
3: SCANTREE(ptr1, ptr2, cache, total, succ)
4: DOE← succ/total
5: return DOE
6:
7: procedure SCANTREE(ptr1, ptr2, cache, total, succ)
8: if ptr1 not leaf and ptr2 not leaf then
9: for each vl in D( f eature(ptr1)) do

10: ptr1 ← ovl . move ptr1 to the child node ovl
11: add(( f eature(ptr1), vl), cache) . add the feature-value pair to cache
12: if feature(ptr2) in cache then
13: v f ← cache.get(feature(ptr2)) . get the value of feature(ptr2)
14: ptr2 ← tv f . move ptr2 to the child node tv f
15: end if
16: SCANTREE(ptr1, ptr2, cache, total, succ)
17: end for
18: else if ptr1 is leaf and ptr2 not leaf then
19: if feature(ptr2) in cache then
20: v f ← cache.get(feature(ptr2))
21: ptr2 ← tv f
22: SCANTREE(ptr1, ptr2, cache, total, succ)
23: else if feature(ptr2) not in cache then
24: for each v f in D( f eature(ptr2)) do
25: ptr2 ← tv f
26: SCANTREE(ptr1, ptr2, cache, total, succ)
27: end for
28: end if
29: else if ptr1 not leaf and ptr2 is leaf then
30: for each vl in D( f eature(ptr1)) do
31: ptr1 ← ovl
32: add(( f eature(ptr1), vl), cache)
33: SCANTREE(ptr1, ptr2, cache, total, succ)
34: end for
35: else if ptr1 is leaf and ptr2 is leaf then
36: total+ = 1 . add this path to total
37: if label(ptr1) = label(ptr2) then succ+ = 1 . add this path to succ
38: end if
39: end if
40: end procedure
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In what follows we represent the three values manipulated by the algorithm as
a triplet 〈prt1, ptr2, cache〉 and we refer to this triplet as the scanner data structure.
We then initialize ptr1 to the root of the oracle, ptr2 to the the root of the decision
tree, and an empty cache stores values when we start to visit nodes. The scanner
structure is thus initialized as 〈 f3, f2, {}〉. We also initialize both total and succ to 0.

The algorithm first proceeds on the left-most path of O by choosing the value
f alse for f3 and moving the pointer to the child with f2 as the label. We update
scanner with the new feature and the selected value of the visited feature, which
gives 〈 f2, f2, { f3 = f alse}〉. Because the feature label f2 of the node that ptr2 points
to does not exist in cache yet, ptr2 stays at the same position. We then move the
pointer ptr1 to the next node on this path, which is f5, by choosing the value f alse
for f2. The updated scanner is 〈 f5, f2, { f3 = f alse, f2 = f alse}〉. We notice that f2 is
present in cache now, so ptr2 can move to the child satisfying f2 = f alse, which is
the node labeled f3. Again since f3 exist in cache, ptr2 can move to the node labeled
f5. The new scanner becoming 〈 f5, f5, { f3 = f alse, f2 = f alse}〉. After moving
ptr1 to the left child of the current node and updating cache and ptr2 accordingly,
scanner becomes 〈c1, c1, { f3 = f alse, f2 = f alse, f5 = f alse}〉. Since both pointers
reach the leaves on their respective tree and the resulting class labels are the same,
we add this path to both total and succ. We repeat this process path-by-path and
so we are able to scan both trees thoroughly without duplication.



Chapter 4

Empirical Evaluation of Decision
Tree

To test the effectiveness of our novel evaluation metrics, we now select a few pop-
ular decision tree learning algorithms and compare their performance in terms of
DOE using our equivalence test.

4.1 Objective Decision Tree Learning Algorithms

We selected four heuristic-based learning algorithms namely, ID3, J48, simple-
CART, and RandomTree, and one exact model inference algorithm, InferDT.

4.1.1 ID3

ID3, which stands for Iterative Dichotomiser 3, is a basic yet powerful decision tree
learning algorithm invented in 1986 by Ross Quinlan [23]. The idea of ID3 is to
construct a decision tree by using a heuristic-based greedy search algorithm to test
each feature in the data subset at each node. Starting with the root node, with the
input of the entire training set S, the learning algorithm selects the best feature to
split S into subsets S0, S1, . . .. Each child node will have one data subset attach to
it. The splitting process repeats for all successive nodes until all data examples in
the training set are correctly classified or a stopping criterion is satisfied.

The selection of the best feature at each node is critical in decision trees. In infor-
mation theory, entropy is a measure of uncertainty of the outcome when a selection
choice is made [27]. In the context of classification, entropy can be defined as the
measure of information impurity in a collection of data examples. For a feature fi
with v values and the target class C, the entropy of class C is:

H(C) =
|C|

∑
j
−PC(c j)log2PC(c j) (4.1)

18
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where PC(c j) is the probability that a randomly picked example belongs to class c j,
which equals to the proportion of examples belonging to class c j in S.

If the feature fi has v possible values, then the dataset S can be divided into v
subsets using fi. Let Sx be the subset of the of S in which all data examples have
value x for fi. Let Sx j denotes the number of examples in S j labelled with c j. The
expected entropy after the partition by fi is then:

H(CA) =
v

∑
x

H(Cx)
∑
|C|
j=1 Sx j

S
(4.2)

where
∑
|C|
j=1 sx j

S is the weight of the xth subset in S.
Entropy ranges from 0 to 1. If all examples in the data sample belong to the

same class, the entropy value is 0. Conversely, if the proportion of examples be-
longing to each distinct class are equal, then the entropy value is 1.

Based on the entropy of the current dataset and expected entropy after selecting
fi, we can calculate the information gain as follows:

In f oGain( fi) = H(C)− H(CA) (4.3)

ID3 considers the feature with the largest information gain to be the best fea-
ture, and this feature will be used to split the current node. This approach tries to
minimize the size of the tree; however, due to its greedy nature, the results may not
be optimal.

As an early invention in the decision tree family ID3 does not support pruning,
so the tree expands fully until all examples in the data subset have the same class
label. Moreover, ID3 can only handle features with nominal values.

4.1.2 J48

J48 is a Java implementation of the C4.5 algorithm [25] in WEKA [30]. C4.5 is
developed based on the ID3 learning algorithm so it has a similar design which also
employs the concept of information entropy when constructing the decision tree.
However, instead of using information gain, which tends to favor features with
larger value sets, C4.5 uses the Information Gain Ratio [24] to mitigate this problem.
The idea behind Information Gain Ratio is normalizing the information gain by
the entropy of feature values when partitioning the sample dataset, which can be
formally presented as follows:

GainRatio( fi) =
In f oGain( fi)

∑
v
x=1− Sx

S log2
Sx
S

(4.4)

C4.5 selects the feature that yields the highest information gain ratio to split the
current node. As the successor of ID3, C4.5 can handle features with both nominal
and continuous values, and also data examples with missing information.
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In contrast to ID3, the standard C4.5 algorithm features a pruning process.
Pruning, or post-pruning, is a technique used in decision tree learning algorithms
to reduce the effect of data uncertainty by removing parts of the inferred tree that
are statistically trivial [19]. Because in our approach the datasets generated by the
oracle are deterministic and contain no noise, we are going to evaluate the perfor-
mance of J48 without the pruning stage.

4.1.3 simpleCART

simpleCART is a Java implementation of the Classification and Regression Trees
(CART) algorithm [6] in WEKA. CART was first introduced in 1984 and it has been
a popular choice of classification tool ever since. Like ID3 and C4.5, CART uses
heuristic functions for sample impurity calculation to split the nodes and so grow
the tree. However, instead of using entropy, CART embraces another definition of
impurity namely, Gini impurity. In this definition, the level of impurity is measured
as the error rate of a randomly selected class label at each node [8]. The impurity
score obtained from this measure is called Gini index, and is computed as follows:

GINI(t) = 1−
|C|

∑
j=1

P2(c j) (4.5)

where t denotes the objective node and PC denotes the probability of a randomly
selected data example belonging to class c j.

Similar to C4.5, the standard CART algorithm can handle features with nomi-
nal, numerical, and missing values. It also includes a pruning process. Again, be-
cause our generated datasets are consistent with the oracle, the simpleCART with
no pruning stage is used in our experiments.

4.1.4 RandomTree

RandomTree is an ensemble algorithm implemented in WEKA. It combines the
idea of single tree models with random forests [10]. When inferring a tree model,
it investigates a feature sub-space with K randomly chosen attributes at each node.
Then each node is split using the best feature of the chosen subset at that node [15].
Usually, the number of features K is defined as follows:

K = int(log2(# f eatures) + 1) (4.6)

The RandomTree learning algorithm can be trained on datasets with both nominal
and numerical values, and it does not support pruning.
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4.1.5 InferDT

Recently, several exact algorithm to infer decision tree have been introduced, such
as InferDT [3] and DL8.5 [21]. These algorithms infer optimal decision trees con-
sistent with the set of learning dataset. Several definitions of optimality have been
used, but the main optimality criteria used are: a tree with a minimum number of
nodes [4, 20]; a tree with a minimum depth [3]; or a tree with a minimum number
of nodes among the trees with a minimum depth [3].

The problem of inference of optimal decision trees is known to be NP-complete
[14] and it is also hard to approximate up to any constant factor under the assump-
tion P 6= NP [28]. Despite the complexity of the problem, recent approaches can
infer an optimal decision tree in a reasonable time for small decision trees [2, 3].
Moreover, from a theoretical point of view, and in accordance with the principle
of parsimony, optimal decision trees should be more accurate than non-optimal
decision trees.

In our experiments we evaluate the quality of these optimal decision trees by
considering only the maximum depth as a criterion of optimality. We evaluate the
performance of InferDT, but we expect that similar results are obtained for any
other exact algorithm.

4.2 Experiments and Results

We are aiming to answer the following questions during our empirical experi-
ments:

Question 1 With the same number of features and depth in the oracle, what is the
relation between number of data instances in the training set and the correct-
ness of the model inferred by the learning algorithms?

Question 2 With the same number of features, how does the depth in the oracle
impact the performance of decision tree learning algorithms in terms of DOE?

Question 3 With the same number of features and depth in the oracle and same
number of instances in the training set, which decision tree learning algo-
rithm infers the most accurate model?

Question 4 With the same number of features and depth in the oracle, what is
the difference when training on completely random dataset and on uniquely
random dataset?

To answer the above questions we perform a number of atomic experiments.
Each such an experiment takes three parameters as inputs: the number n of fea-
tures, the maximal depth k of an oracle, with 1 ≤ k ≤ n, and the size m of the
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training dataset. An experiment proceeds in four steps. First, we generate an ora-
cle with Algorithm 1. A generated oracle uses n features and the length of each of
its path is k. Two paths in the same oracle can use different features and the order
of occurrence of the features on two distinct paths can be different. In the sec-
ond step, we randomly generate a training dataset with m data examples from the
oracle. Third, for each generated training dataset we use the the L-th learning al-
gorithm under evaluation to generate the L-th learned tree. In the fourth step, we
determine the DOE of the generated learned trees by performing an equivalence
test for each learned tree against the oracle.

For each set of input values (n, k, m, L), we perform a number tl of experiments
and average the DOE values obtained from the equivalent tests. The purpose of
calculating average DOE is to minimize the potential performance bias when the
respective algorithm trains on a specific dataset. In our experiment, we set tl to 100
when evaluating the performance of ID3, J48, simpleCART, and RandomTree; on
the other hand we set tl to 20 when inferring tree models using InferDT because
the results from optimal tree inference are more stable.

Figure 4.1 uses line plots to illustrates the performance difference between de-
cision tree learning algorithms for different input depth, where the number of fea-
tures n is fixed to 10, and the training is done on completely random datasets. In
these plots, each point (x, y) represents the average DOE values y obtained from
the equivalence tests between the oracle and the tree constructed by the learning
algorithm trained on a dataset with the given size x. The depth input ranges from
5 to 8, aiming to observe the performance difference of each decision tree learning
algorithm when the oracle tree grows deeper.

As shown in the plots, when the number of features and depth is fixed the
DOE score increases as the size of the training set gets larger (Question 1). For
the heuristic-based decision trees, the line plots show a logarithmic-like increase,
whereas the DOE scores of InferDT increase near-linearly with a very steep slope
and exceed 99% when the number of data examples in the datasets are relatively
small.

We also observe that, with the same number of features and as the depth of
the oracle increases, the learning algorithms need larger training sets to train on
in order to achieve the same DOE score as before (Question 2). To take ID3 as
an example, it requires 1200 random data examples to infer a model with a 90%
DOE score when depth is 5. However, when the depth is set to 8, a dataset with
1800 data examples is needed to train a model with the same DOE score. J48 and
simpleCART are more sensitive to depth increase. When the oracle deepens from
5 to 8, J48 and simpleCART need training sets with nearly double the size (from
1800 to 3000) to produce a model with 90% DOE score. It is also noticeable that the
curves are flattened when the depth escalates.

Based on the graphs, InferDT clearly outperforms all the heuristic-based learn-
ing algorithms because it requires fewer data examples to infer an accurate model
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(a) Depth = 5 (b) Depth = 6

(c) Depth = 7 (d) Depth = 8

Figure 4.1: DOE comparison for decision tree learning algorithms trained on com-
pletely random datasets with 10 features and binary values

(Question 3). However, because the computational time increases exponentially
as the oracle tree gets deeper, this algorithm takes much longer to produce a tree
model. ID3 shows significantly better results when compared to J48 and simple-
CART despite it being the earliest member of the decision tree algorithm family. It
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also performs better than RandomTree when the depth of oracle is small; however,
because ID3 is more sensitive to the depth increase, the performance difference be-
tween the two algorithms becomes very small when the depth grows. The perfor-
mance of J48 and simpleCART are very similar since we observe that their curves
overlap each other in every plot.

To answer Question 4, we also performed a series of experiments using
uniquely random datasets. Similar to the above-mentioned experiments, we eval-
uate the objective decision tree algorithms by training them on the generated train-
ing sets. We then compare the DOE score computed by the equivalence tests and
plot line graphs to illustrate the performance difference for inputs of various depth.
Figure 4.2 shows the results of these experiments. The number of features is again
set to 10 for comparable results.

One major difference between the results obtained from these two sets of ex-
periments is the size of the dataset. For 10 features with binary values, the total
number of unique data examples is 1024 (210). Hence, it is impossible for the num-
ber of data examples in the uniquely random datasets to be more than 1024. On the
other hand, completely random datasets contain redundant data examples, which
means a larger dataset is required to represent the same amount of information as
in the uniquely random dataset.

Another observation from comparing the two sets of results is the difference in
the shape of the curves in the line plots. In contrast to the logarithmic-like curves,
when the heuristic-based decision tree learning algorithms train on uniquely ran-
dom datasets, the line plots are approximately linear. The curve of InferDT shapes
distinctively. When the datasets are small, the curves are roughly straight and the
slopes are similar to the slopes of ID3 and RandomTree curves; however, when the
size the datasets passes a critical number (i.e., 150 when the depth is set to 6, 300
when the depth is 7, or 500 when the depth is 8), the increase of the DOE values
accelerates and the shape of the curves becomes logarithmic-like.

It may seem odd that InferDT does not have advantages over heuristic-based
algorithms when training on datasets with a small number of examples. Yet, the
reason is rather simple: small datasets do not have enough data examples to fully
represent the entire oracle model. For an oracle with depth of k, at least 2k data
examples are needed in the datasets to represent every path in the oracle. As the
a depth k gets larger, the minimum number of examples for full oracle representa-
tion grows exponentially. Without enough data providing information about the
oracle, the exact model inferred by InferDT would not be equivalent to the oracle
model. Note that when the size of the datasets grows over a critical number, the
performance of InferDT improves drastically.

Overall, InferDT shows the best performance among the learning algorithms
under test (Question3). Even if InferDT produces similar DOE values as ID3
and RandomTree when the training sets contain a limited number of instances,
it quickly surpasses the other learning algorithms as the size of the datasets grows.
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(a) Depth = 5 (b) Depth = 6

(c) Depth = 7 (d) Depth = 8

Figure 4.2: DOE comparison for decision tree learning algorithms trained on
uniquely random datasets with 10 features and binary values

ID3 is better than the other heuristic-based learning algorithms, especially when
training on large datasets. RandomTree also infers very accurate models in gen-
eral. It even defeats ID3 when dealing with small datasets generated by deep or-
acle models. J48 and simpleCART again produce similar results, but simpleCART
performs slightly better when the oracle tree is deeper.
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Conclusion and Future Work

We propose a novel approach to evaluating decision tree learning algorithms. This
approach consists of generating data from reference trees playing the role of ora-
cles, use the generated data to produce learned trees using existing learning algo-
rithms, and determining the correctness of the learned trees by comparing them
with the oracles. The correctness of the learned trees is measured by the degree of
equivalence (DOE), which is calculated based on the percentage of correctly labeled
paths.

Using this new evaluation framework, we then assess five decision tree learn-
ing algorithms, namely ID3, J48, simpleCART, RandomTree, and InferDT. The first
four algorithms under test are heuristic-based, whereas InferDT is an exact algo-
rithm aiming to infer the optimal model. The preliminary evaluation results show
that, when training on deterministic datasets, InferDT produces the most accurate
models. In the family of heuristic-based decision trees, ID3 and RandomTree have
the best performance, with ID3 performing slightly better than RandomTree. The
results also show the effectiveness of our evaluation method. By using the DOE
metric, our framework successfully distinguishes the performance difference be-
tween learning algorithms.

We believe that our approach can be improved in several ways, as follows: We
plan on enhancing our framework to consider noisy data, which involves gener-
ating non-deterministic datasets. We are expecting J48 and simpleCART to show
better performance in this context because of their pruning process. We also intend
to apply this approach to evaluate feature selection techniques. Indeed, when the
depth of an oracle is smaller than the number of available features, each path would
have ”free attributes” that do not contribute to assigning class labels. These free at-
tributes are irrelevant to this path. Based on these free attributes we are expecting
then to be able to rank features based on their relevancy and correctly identify the
ones that are irrelevant overall. We would also like to examine the relation between
the size of the dataset and the performance of these feature selection techniques in
terms of their ability to recognize trivial features.
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