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Abstract

The Parallel Random Access Machine (PRAM for short) is the most convenient and widely used

model of parallel computation. Other, more complex models have also been studied. Examples

include the Broadcast with Selective Reduction (or BSR) andthe Reconfigurable Multiple Bus

Machine (or RMBM). While the PRAM and the BSR are shared memory models, the RMBM ac-

complishes the communication between processors using buses. In this thesis we identify surprising

relationships between these models: We show that several variants are equivalent with each other in

a strong sense, but we also establish strict distinctions between the other variants. Some models are

folklorically considered feasible and some others are not considered so. We find a delimitation that

matches the folklore, but we also find important (and intriguing) equivalencies.
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Chapter 1

Introduction

Technology is developing so fast that pursuing faster and faster computations is instinctual. First,

we make the processors fast. Then we use multiple processor to do a task in parallel.

More and more evidence shows that some limit on the CPU frequency is approaching. This

justifies an earlier trend (which is becoming mainstream) toperform computations in parallel by

multiple processors or equivalently multiple cores in a singe CPU.

What is parallel computation? At the deeper theoretical level it includes two main concepts:

computational models and algorithms. The latter depends onthe former, as different models im-

plement algorithms differently. A model of computation is the definition of the set of allowable

operations used in computation and their respective costs.Only assuming a certain model of com-

putation it is possible to analyze the computational resources required, such as the execution time or

memory space, or to discuss the limitations of algorithms orcomputers. An algorithm is a sequence

of instructions, often used for calculations and data processing. It is formally a type of effective

1
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Figure 1.1: Sequential computation

method in which a list of well-defined instructions for completing a task will, when given an ini-

tial state, proceed through a well-defined series of successive states, eventually terminating in an

end-state.

People at Princeton University proposed in the 1940s a design that ushered in the modern com-

puter era [1]. This architecture continues to work and is theearliest model for sequential com-

putation Figure 1.1 shows the architecture of sequential computation. The computation unit (or

processor) is the core, and other devices (I/O device,memory and other control units) communicate

with the processor to do a job. The general structure of a parallel computation model is shown in

Figure 1.2. This model features more computation units (or processors). The processors on such a

model (or machine) can communicate with each other by sharedmemory or buses.
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Figure 1.2: Parallel computation

1.1 History

In 1964, Daniel Slotnick proposes building a massively-parallel machine for the Lawrence Liver-

more National Laboratory [25, 27]. Slotnick’s design evolves into the ILLIAC-IV. The machine is

built at the University of Illinois, with Burroughs and Texas Instruments as primary subcontractors.

In 1969, Honeywell delivers the first Multics system (symmetric multiprocessor with up to 8 proces-

sors). In 1977, the C.mmp multiprocessor is completed at Carnegie-Mellon University. The machine

contains 16 PDP-11 minicomputers connected by a crossbar toshared memories, and supports most

of the early work on languages and operating systems for parallel machines.

In 1982, Steve Chen’s group at Cray Research produces the first X-MP, containing two pipelined

processors (compatible with the CRAY-I) and shared memory.

In 1991, Sun begins shipping the SPARC server 600 (also called Sun-4/600) series machines

(shared-memory multiprocessors containing up to 4 SPARC CPUs each).

In 2000, Blue Horizon, built by IBM, is located at the San Diego Supercomputer Center and first

come into full production operation March 1st, 2000. The hardware consists of 1152 processors.
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Each processor runs at 222 MHz and they are grouped into nodesof 8 processors per node. Each

node is able to access 4 GB of RAM, this gives a total memory of 576Gb.

In 2003, TeraGrid is the world’s largest, fastest, distributed infrastructure for open scientific

research. It includes 20 tera flops of computing power distributed at five sites, facilities capable of

managing and storing nearly 1 peta byte of data, high-resolution visualization environments, and

toolkits for grid computing. These components will be tightly integrated and connected through a

network that will operate at 40 gigabits per second—the fastest research network on the planet.

Now [26] the world’s first hybrid supercomputer has broken through the ”petaflop barrier”

of 1,000 trillion operations per second, according to the U.S. Department of Energy. Codenamed

”Roadrunner,” the machine is designed by IBM and uses Cell Broadband Engine chips originally

developed for video game platforms.

1.2 Applications

The main shortcoming of single-CPU systems comes from the inherent lack of memory and com-

putational resources; then parallel computation providesa solution for this problem. Parallel com-

putation provides higher performance than single-CPU, as parallel computation can solve same

sized problems faster or can treat larger problems that require more processing power and/or more

memory. Moreover, it is possible to easily upgrade a parallel computer by adding more CPUs and

memory.

Parallel computing is used for many applications, and it would be futile to try to list them all.

Some of the major market sectors are:
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• Numerically intensive simulations, including: computational fluid dynamics (CFD), compu-

tational electromagnetics (CEM), oil reservoir simulations, combustion modelling, molecular

dynamics modelling, quantum chromodynamics, quantum chemistry, etc;

• Graphical visualization including image processing;

• Database operations and information systems including: client and inventory database man-

agement, data mining, online transaction processing, management information systems, geo-

graphic information systems, seismic data processing, etc;

• Real-time systems and control applications including: hardware and robotics control, speech

processing, pattern recognition, etc.

1.3 Future

According to Moore’s Law, the number of transistors on a microprocessor would double approxi-

mately every eighteen months, which is to say that for the next two decades computer chips would

double in speed every eighteen months. This makes it possible for parallel computers to increase

performance at this rate as well. One can guess at the capabilities and possibilities of parallel com-

puters in the future. The following are some of what is emerging in the parallel computing field:

computers similar to the TeraGrid (the world’s fastest network of parallel computers, mentioned

earier), and grid support software that will provide a relatively “seamless” interface among geo-

graphically separated computers sharing data and computations.

Other developments include:
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• Return of the vector machines—one of the first technology forparallel systems is enjoying a

“renaissance” in the US.

• Computers that will take advantage of the inherent parallelism to higher levels:

1. Processor-In-Memory (PIM) designed to compensate for the disparity between memory

access times and computation times.

2. Quantum Computers—will take advantage of parallelism inherent in quantum mechan-

ical systems.

1.4 The Issue

The notion of one model being more powerful than another is rather intuitive. However, although

not always explicit, we always have in mind real-time computations, so in this thesis we are using

a strong notion of “more powerful”: We say that model A is (notnecessarily strictly) more power-

ful than model B only ift(n) computational steps of model B using polynomial resources can be

simulated inO(t(n)) steps of model A using polynomial resources.

The shared memory and bus models are the major parallel computation models (a third model,

the interconnection network is a particular case of the bus model). They have been researched by

the industry and academia alike. Based on such models, many relevant products and demos showed

up. They have been used widely and with significant success. In shared memory models (such as

the PRAM), any computation unit can access any memory location. Similarly, in bus models any
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computation unit can access any bus, which thus replaces thememory for inter-processor communi-

cation. Shared memory models have emerged as a good theoretical model, while bus models are con-

sidered closer to practice. A natural question that has spawned the research on parallel computation

is whether these two models are similar in power. To make matters more complicated, some shared

memory models support concurrent write, but only produce a flag if collision happens; some other

models support priority concurrent write, and some others can combine concurrent writes. Combin-

ing concurrent write shared memory model appear intuitively to be the most powerful, though this

has not been proven to date.

More specifically, the Priority concurrent-read concurrent-write parallel random access ma-

chine1 (CRCW PRAM) is the most convenient and powerful model of parallel computation and so it

is used extensively in analyzing parallel solutions to various problems. Lower bounds on the PRAM

are in particular very strong. The Priority CRCW PRAM is sometimes considered [19] to be at the

upper level of feasible parallel models. The broadcast withselective reduction (BSR) on the other

hand is at present the most powerful model of parallel computation, with the Combining CRCW

PRAM falling somewhere in between. By logical extension of the Priority CRCW PRAM being

at the upper end of the feasibility chain [19], the CombiningCRCW PRAM and the BSR should

not be considered feasible; however, efficient implementations for them have been proposed [1, 2].

Finally, models with directed reconfigurable buses (namelythe directed reconfigurable multiple bus

1Reading from shared resources can happen concurrently or not, so exclussive-read (ER) and the concurrent-read
(CR) variants exist for most models. Similarly, a model can or cannot write concurrently into shared resources, so the
EW and CW variants exist. Combining these features, we distinguish between EREW, CREW , CRCW variants of a
model. Writing concurrently into a shared resource can leadto conflicts which are resolved using a conflict resolution
rule such as Common (concurrent writing is allowed only whenall the processors write the same value), Collision (a
special collision marker ends up written instead of any processor provided data), Priority (only the writing of the highest
priority processors succeeds), and Combining (a combination is written in the shared location). These notions presented
in mode details in Section 2.3.
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machine or DRMBM and the directed reconfigurable network of DRN) are not only feasible, but

they have also been implemented in VLSI circuits [22]; still, they are considered complex and of

restricted feasibility as a general model of parallel computation.

It is widely believed (though to our knowledge not proven) that Priority CRCW PRAM is strictly

less powerful than the Combining CRCW PRAM, which is in turn strictly less powerful then the

BSR. The models with directed reconfigurable buses have beenshown to be at least as powerful as

the Priority CRCW PRAM [23] but are otherwise not placed anywhere in this hierarchy.

In all, mirroring the beliefs and formal results summarizedabove, one can identify two “cate-

gories” of models of parallel computation: we thus call the Priority CRCW PRAM and the models

below it in terms of computational powerlightweight models, with theheavyweightmodels rep-

resented by the Combining CRCW PRAM, the BSR, and the models with directed reconfigurable

buses.

In this thesis we attempt to clarify the relationship between all these various models, with partic-

ular focus on the heavyweight class. We find that all the models in the heavyweight class are actually

equivalent with each other, and that the choice of two classes (heavyweight and lightweight) is jus-

tified. We also provide results regarding the bus models, bringing them yet closer to the practical

realm.

1.5 The Hierarchy of Parallel Models

The work presented in this thesis can be grouped along three main ideas:

• The relationship between PRAM varieties (Collision, Priority, Combining).



CHAPTER 1. INTRODUCTION 9

• The relationship between PRAM and the BSR(a Combining PRAM with a Broadcast instruc-

tion added on top).

• The relationship between directed reconfigurable buses andthe BSR.

Recall that we called the computational models below Priority CRCW PRAM lightweight,

while the BSR, Combining CRCW PRAM and directed reconfigurable buses get to be heavyweight

models.

Previous work on parallel real-time computation [9] has produced a number of incidental re-

sults regarding these models. Specifically, a tight characterization of constant time computations

on directed reconfigurable multiple bus machines (DRMBM) was offered: DRMBM and directed

reconfigurable networks (DRN) with constant running time have been found to have the same com-

putational power, which in turn is the same power as nondeterministic logarithmic space-bounded

Turing machines. In addition, it was shown that in the case ofconstant time DRMBM computations

there is no need for such powerful write conflict resolution rules as Priority or Combining as they

do not add computational power over the easily implementable Collision rule, that an unitary bus

width is enough (i.e., a simple wire as bus will do for all constant time DRMBM computations),

and that segmenting buses does not add computational power over fusing buses.

Such properties (Collision being the most powerful resolution rule and unitary bus width be-

ing sufficient) turn out to hold for the other model with directed reconfigurable buses, namely the

DRN [7]. Finally, whether the Conflict resolution rule is generally (i.e., not only for constant time

computations) universal on DRMBM and DRN was also shown true[7].
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We use the results mentioned in the above paragraph as both tool and motivation to offer an

analysis of computational power for various models of parallel computation. As expected, we find

that the class of heavyweight models is strictly more powerful than the class of lightweight models.

Surprisingly, we also find that all the heavyweight models are however equivalent with each other,

despite the perceived high computational power of the BSR.

Since one class of models we consider extensively is models with reconfigurable buses, we also

linger a bit more on the matter. We clarify the notion of writeconflict on these models, and we show

that either exclusive-write or Combining concurrent-write is universal on all these models (be they

directed or undirected). We also note that all the reconfigurable models can be laid out as meshes.

Both these results are practically significant in the domainof VLSI circuits.

1.6 Thesis Summary

The remainder of this thesis is organized as follows: Chapter 2 introduces the concepts used through-

out the thesis. We first review briefly (Section 2.2) the necessary notions from the complexity theo-

retical realm, including the notion of complexity classes,Turing machines, and the Graph Accessi-

bility Problem (which is central to our results). We then introduce the parallel computation models

that we will use, namely the PRAM (with all its variants including the BSR, in Section 2.3), the

models with reconfigurable buses (Section 2.4), and the Boolean circuit (Section 2.5).

We mentioned earlier that our work is based on and is also motivated bt previous results about

models with reconfigurable buses. Chapter 3 presents these results, namely the characterization of

constant time computations on the RMBM (Section 3.1) and theRMBM (Section 3.2), as well as
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the universality of Collision on directed reconfigurable buses (Section 3.3).

Chapter 4 presents the main contribution of this thesis. Theequivalence of all the heavyweight

models and the difference between the heavyweight and the lightweight classes are the subject of

Section 4.1, while consequences (including real-time considerations) are presented in Section 4.2.

Further consequences of our results are addressed in Chapter 5: we address here the different

definitions of Collision on reconfigurable buses and we show how our previous results adjust de-

pending on the definition used (Section 5.1), and we also focus on the simulation of reconfigurable

buses on their simplest variant, the mesh (Section 6.2).



Chapter 2

Models And Computational Complexity

We introduce here the parallel computation models of interest in our work. We give the main features

of these models, such as the type of resources used (processors, memory, buses, switches), the size

of these resources, and the way they can talk to each other effectively.

We do not consider here some models, as they are too weak to simulate the others: Some models

with limited interconnection schemes can be too weak to simulate other models [11]. For example, in

the tree connected parallel machine, although any two processors can communicate via short paths,

there is a bottleneck at the root that limits the bandwidth ofthe communication between processors.

The mesh connected parallel machine can only communicate directly with its neighbors, and this

results in an average path of length
√

n for n processors.

Some other models of parallel computation are too powerful to be simulated by the more com-

mon models. This includes machines that can generate exponentially long values or activate expo-

nential numbers of processors in polylogarithmic time.

12
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Before we start presenting the models as promised, we present briefly some complexity theoret-

ical notions used throughout the thesis.

Results proved elsewhere are introduced henceforth as Propositions, whereas results proved in

this work are introduced as Theorems. Intermediate resultsare all Lemmata.

2.1 GAP and NL

GAPi,j denotes the following problem: Given a directed graphG = (V,E), V = {1, 2, ..., n}

(expressed e.g., by the (Boolean) adjacency matrixI), determine whether vertexj is accessible from

vertexi. PARITYn denotes the following problem: givenn integer datax1, x2, . . . ,xn, compute the

function PARITYn(x1, x2, . . . , xn) = (
∑n

i=1 xi) mod 2.

We denote byL [NL] the set of languages that are accepted by deterministic [nondeterministic]

Turing machines that use at mostO(log n) space (not counting the input tape) on any input of length

n [20].

For some languageL ∈ NL there exists a nondeterministic Turing machineM = (K,Σ, δ, s0)

that acceptsL and usesO(log n) working space.K is the set of states,Σ is the tape alphabet (we

consider without loss of generality thatΣ = {0, 1}), δ is the transition relation, ands0 is the initial

state.M accepts an input stringx iff M halts onx. A configuration ofM working on inputx is

defined as a tuple(s, i, w, j), wheres is the state,i andj are the positions of the heads on input

and working tape, respectively, andw is the content of the working tape. There arepoly(n) possible

configurations ofM . For two configurationsv1 andv2, we writev1 ⊢ v2 iff v2 can be obtained by

applyingδ exactly once onv1 [20].
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The set of possible configurations ofM working onx forms a directed graphG(M,x) = (V,E)

as follows:V contains one vertex for each and every possible configuration of M working on

x, and (v1, v2) ∈ E iff v1 ⊢ v2. It is clear thatx ∈ L iff some configuration(h, ih, wh, jh) is

accessible inG(M,x) from the initial configuration(s0, i0, w0, j0). For any languageL ∈ NL and

for anyx, determining whetherx ∈ L can be reduced to the problem of computing GAP1,|V | for

G(M,x) = (V,E), whereM is someNL Turing machine decidingL.

The class of problems inNL with the addition of (any kind of) real-time constraints is denoted

by NL/rt [9]. We denote by rt-PROCM (f) the class of those problems solvable in real time by the

parallel model of computationM that usesf(n) processors (and alsof(n) buses if applicable) for

any input of sizen [8]. The following strongly supported conjecture is then established.

Claim 1 [9] rt-PROCCRCW F-DRMBM(poly(n)) = NL/rt.

2.2 Other Complexity Classes

Typically, a complexity class is defined by

• A model of computation.

• A resource (or collection of resources).

• A function known as the complexity bound for each resource.

The models used to define complexity classes fall into two main categories:

• Machine-based models.
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• Circuit-based models.

Turing machines (TMs) and random-access machines (RAMs) are the two principal families of

machine models. We describe circuit-based models later, inSection 2.5. Other kinds of (Turing)

machines includes deterministic, nondeterministic, alternating, and oracle machines. We empha-

size the fundamental resources of time and space for deterministic and non-deterministic Turing

machines. We concentrate on resource bounds between logarithmic and exponential, because those

bounds have proved to be the most useful for understanding problems that arise in practice.

Given functionst(n) ands(n): DTIME[t(n)] is the class of languages decided by determin-

istic Turing machines witht(n) running time. NTIME[t(n)] is the class of languages decided by

nondeterministic Turing machines witht(n) running time. DSPACE[s(n)] is the class of languages

decided by deterministic Turing machines usings(n) tape space. NSPACE[s(n)] is the class of

languages decided by nondeterministic Turing machines using s(n) tape space. We sometimes ab-

breviate DTIME[t(n)] to DTIME[t] (and so on) whent is understood to be a function, and when no

reference is made to the input lengthn.

The following are the canonical complexity classes [4]:

• L = DSPACE[logn] (deterministic log space)

• NL = NSPACE[logn] (nondeterministic log space)

GAP∈ NL-Complete [11]

• P = DTIME[nO(1)] (polynomial time)

• NP = NTIME[nO(1)] (nondeterministic polynomial time)



CHAPTER 2. MODELS AND COMPUTATIONAL COMPLEXITY 16

• PSPACE = DSPACE[nO(1)] (polynomial space)

• EXP = DTIME[2O(n)] (deterministic exponential time)

• NEXP = NTIME[2O(n)] (nondeterministic exponential time)

• EXPSPACE = DSPACE[2nO(1)] (exponential space)

The space classesPSPACE andEXPSPACE are defined in terms of the DSPACE complex-

ity measure. By Savitch’s Theorem, the NSPACE measure with polynomial bounds also yields

PSPACE, and with2nO(1) bounds yieldsEXPSPACE.

2.3 The PRAM and the BSR

The PRAM [1, 19] is the most convenient and thus most popular model of parallel computation. A

PRAM consists of a number of processors that share a common random-access memory. The pro-

cessors execute the instructions of a parallel algorithm synchronously. as shown in Figure 2.1. The

shared memory stores intermediate data and results, and also serves as communication medium for

the processors. The model is further specified by defining thememory access mode; we thus obtain

exclusive-read exclusive-write (EREW), concurrent-readexclusive-write (CREW) and concurrent-

read concurrent-write (CRCW) PRAM. While reading concurrently from the shared memory is

defined straightforwardly, writing concurrently into the shared memory requires the introduction

of a conflict resolution rule (for the case in which two or moreprocessors write into the same

memory location). Four such conflict resolution rules are inuse: Common (the processors writing

simultaneously in the same memory location must write the same value or else the algorithm fails),
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Shared Memory

P2 P3P1 Pn

Figure 2.1: The PRAM architecture

Collision (multiple processors writing into the same memory location garble the result so that a

special “collision” marker ends up written at that locationinstead of any processor-provided data),

Priority (processors are statically numbered and the memory location receives the value written by

the lowest numbered processor), and Combining (where a binary, associative reduction operation is

performed on all the values sent by all the processors to the same memory location and the result is

stored in that memory location).

Given the obvious decreased computational power as well as the straightforward implementa-

tion of concurrent-read machines, we will not consider exclusive-read variants. For similar reasons,

exclusive-write machines will receive a spotty consideration, if any.

The BSR model [1, 2, 3] is an extension of the Combining CRCW PRAM. All the read and write

operations of the CRCW PRAM can also be performed by the BSR. In addition, all the BSR proces-

sors can write simultaneously into all the memory locations(the Broadcast instruction, illustrated

graphically in Figure 2.2). Every Broadcast instruction consists of three steps: In thebroadcasting

step, all then participating processors produce a datumdi and a taggi, 1 ≤ i ≤ n, destined to
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Figure 2.2: The BSR model

all them memory locations. In theselection stepeach of them memory locations uses a limitlj,

1 ≤ j ≤ m and a selection ruleσ ∈ {<,≤,=,≥, >, 6=} to test the received data; the datumdi is

selected for the next step iffgi σ lj. Finally, thereduction stepcombines all the datadi destined for

memory locationj, 1 ≤ j ≤ m and selected in the previous step using a binary, associative oper-

atorR, and then writes the result into memory locationj. The Broadcast instruction is performed

simultaneously for all the processors and all the memory locations.

Typically, the reduction operatorR of the BSR as well as the Combining operator of the

Combining CRCW PRAM can be any of the following operations:Σ (sum),Π (product),
∧

(logical

conjunction)
∨

(logical disjunction),
⊕

(logical exclusive disjunction),max (maximum), andmin

(minimum).

We denote byX CRCW PRAM(p(n), t(n)) the class of problems of sizen that are solvable in

time t(n) on a CRCW PRAM that usesp(n) processors andX as collision resolution rule,X ∈

{Common, Collision, Priority, Combining}. Similarly, we denote by BSR(p(n), t(n)) the class of
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problems of sizen that are solvable in timet(n) on a BSR that usesp(n) processors.

The notion of uniform families of PRAM or BSR machines exists[14] and is similar to the

notion of uniformity for models with reconfigurable buses (to be introduced below). However, we

do not need such a notion in this thesis. Still, we assume as customary that one location in the shared

memory haslog n size for an input of sizen, and that the number of memory locations are upper

bounded by a polynomial in the number of processors used. Again as usual, we assume that every

BSR or PRAM processor has a constant number of internal registers, each of sizelog n. Finally, we

assume that every PRAM processor knows its number as well as the total number of processors in

the system.

The following facts will be used later:

Proposition 2.3.1 [10]PARITYn 6∈ Priority CRCW PRAM(poly(n), O(1)).

Proposition 2.3.2 [12]The reflexive and transitive closure of a graph withn vertices (and thus

GAPi,j on the given graph) are inBSR(O(n2), O(1)).

2.4 Models with Reconfigurable Buses

2.4.1 The Reconfigurable Multiple Bus Machine (RMBM)

An RMBM [21] consists of a set ofp processorsandb buses. Figure 2.3 shows the structure of an

RMBM. For each processori and busb there exists aswitchcontrolled by processori. The details

of the switches are shown in Figure 2.4. Using these switches, a processor has access to the buses

by being able to read or write from/to any bus. A processor maybe able tosegmenta bus (open the
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Si,j,1 or Si,j,0), obtaining thus two independent, shorter buses, and it is allowed to fuseany number

of buses together by using afuse lineperpendicular to and intersecting all the buses. DRMBM,

the directedvariant of RMBM, is identical to the undirected model, except for the definition of

fuse lines: Each processor features two fuse lines (downandup). Each of these fuse lines can be

electrically connected to any bus. Assume that, at some given moment, busesi1, i2, ..., ik are all

connected to the down [up] fuse line of some processor. Then,a signal placed on busij is transmitted

in one time unit to all the busesil such thatil ≥ ij [il ≤ ij ]. If some RMBM [DRMBM] is not

allowed to segment buses, then this restricted variant is denoted by F-RMBM [F-DRMBM] (for

“fusing” RMBM/DRMBM). The bus widthof some RMBM (DRMBM, etc.) denotes the maximum

size of a word that may be placed (and read) on (from) any bus inone computational step.

For CRCW RMBM, the most realistic conflict resolution rule isCollision , where two values

simultaneously written on a bus result in the placement of a special, “collision” value on that

bus. We consider for completeness other conflict resolutionrules such as Common, Priority, and

Combining. However, we find that all of these rules are in factequivalent to the seemingly less

powerful Collision rule (see Proposition 3.1.1(3)). We restrict only the Combining mode, requiring

that the combining operation be associative and computablein nondeterministic linear space.

An RMBM (DRMBM, F-DRMBM, etc.) family R = (Rn)n≥1 is a set containing one RMBM

(DRMBM, F-DRMBM, etc.) construction for eachn > 0. A family R solves a problemP if,

for any n, Rn solves all inputs forP of sizen. We say that some RMBM familyR is a uniform

RMBM family if there exists a Turing machineM that, givenn, produces the description ofRn

using O(log(p(n)b(n))) cells on its working tape. We henceforth drop the “uniform” qualifier,

with the understanding that any RMBM family described in this paper is uniform. Assume that
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some familyR = (Rn) solves a problemP , and that eachRn, n > 0, usesp(n) processors,

b(n) buses,X as write conflict resolution rule, and has a running timet(n). We say then that

P ∈ X, RMBM(p(n), b(n), t(n)) (or P ∈ X F-DRMBM(p(n), b(n), t(n)), etc.), and thatR has

size complexityp(n)b(n) andtime complexityt(n). Whenever we state a property that holds for any

conflict resolution rule we drop theX (thus writingP ∈ RMBM(p(n), b(n), t(n)), etc.).

It should be noted that a directed RMBM can simulate a undirected RMBM by simply keeping

all the up and down fuse lines synchronized with each other. That is,X Y Z RMBM(x(n), y(n),

z(n)) ⊆ X Y ZDRMBM(x(n), y(n), z(n)) for anyx, y, z : IN → IN, X ∈ {Common, Collision,

Priority, Combining}, Y ∈ {CRCW, CREW}, andZ ∈ {F-, ε}.

2.4.2 The Reconfigurable Network (RN)

An RN [5] is a network of processors that can be represented asa connected graph whose vertices are

the processors and whose edges represent fixed connections between processors. Each edge incident
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to a processor corresponds to a (bidirectional) port of the processor. A processor can internally

partition its ports such that all the ports in the same block of that partition are electrically connected

(or fused) together. A sample RN structure is shown in Figure2.5. Two or more edges that are

connected together by a processor that fuses some of its ports form a bus which connects ports of

various processors together. CREW, Common CRCW, CollisionCRCW, etc. are defined as for the

the RMBM model. ThedirectedRN (DRN for short) is similar to the general RN, except that the

edges are directed. The concept of (uniform) RN family is identical to the concept of RMBM family.

For some write conflict resolution ruleX, the classX RN(p(n), t(n)) [X DRN(p(n), t(n))] is the

set of problems solvable by RN [DRN] uniform families withp(n) processors (p(n) is also called

the size complexity) andt(n) running time using the conflict resolution ruleX. As in the RMBM

case, we dropX when the stated property refers to any conflict resolution rule.

Once more similar to the RMBM case, we note that given a undirected RN, we can create an
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equivalent DRN by simply replacing every undirected bus with a pair of directed buses. That is,

X Y RN(x(n), y(n)) ⊆ X Y DRN(x(n), y(n)) for anyx, y : IN → IN, X ∈ {Common, Collision,

Priority, Combining}, andY ∈ {CRCW, CREW}.

2.4.3 The Reconfigurable Mesh

A two-dimensional reconfigurable mesh is a special case of RN. This special case is of particular

significance for implementation reasons. AnR × C 2-dimensional reconfigurable mesh (or simply

anR × C R-Mesh) consists ofR × C processors arranged inR rows andC columns as anR × C

two-dimensional mesh. Figure 2.6 shows the structure of a 3×5 R-Mesh. We will usually number

rows [columns] 0,1,. . . ,R − 1 [0, 1, . . . ,C − 1] with row 0 at the top [columns 0 at left]. Each

processor has four ports,N , S, E, andW , through which it connects to processors (if any) to its

North, South, East, and West. Besides these external connections, each processor can also establish

internal connections among its ports that correspond to partitions of the setN,S,E,W of ports.

There are 15 possible port partitions along with the corresponding internal connections. A processor
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can change its internal connections at each step. The external and internal connections together

connect processor ports by buses. The buses formed by a givenset of port partitions of processors

of the R-Mesh comprise a bus configuration of the R-Mesh. Figure 2.7 shows a bus configuration

of a 3 × 5 R-Mesh with one of the buses shown in bold. We say that a port (or processor) through

which a bus passes is incident on that bus or that the bus traverses the port (or processor). Any port

that is incident on a bus can read from and write to that bus.

Similarly, anR × C 2-dimensional DR-MESH is anR × C reconfigurable mesh, except that

the bus communication is directed: theN , S, E, andW ports of the processors are directed, and the

inter-port connection in a processor is also directed.

In passing, note that the definition of a two-dimensional (directed or undirected) reconfigurable

mesh extends naturally to higher dimension.

2.5 The Boolean Circuit

Although the PRAM model is a natural parallel extension of the RAM model, it is not obvious

that the model is actually reasonable. Many experts had questions about the PRAM. For example:

does the PRAM model correspond, in capability and cost, to a physically implementable device?

Is it fair to allow unbounded numbers of processors and memory cells? Is it sufficient to simply

have a unit charge for the basic operations? Is it possible tohave unbounded numbers of proces-

sors accessing any portion of shared memory for only unit cost? Is synchronous execution of one

instruction on each processor in unit time realistic? To expose issues like these, it is useful to have

a more primitive model that, although being less convenientto program, is more closely related to
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the realities of physical implementation. Such a model is the Boolean circuit. The model is simple

to describe and mathematically easy to analyze. Circuits are basic technology, consisting of very

simple logical gates connected by bit-carrying wires. Theyhave no memory and no notion of state.

Circuits avoid almost all issues of machine organization and instruction repertoire. Their computa-

tional components correspond directly with devices that wecan actually manufacture. The circuit

model is still an idealization of real electronic computingdevices. It ignores a host of important

practical considerations such as circuit area, volume, pinlimitations, power dissipation, packaging,
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and signal propagation delay. Such issues are addressed more accurately by more complex VLSI

models, but for many purposes the Boolean circuit model seems to provide an excellent compro-

mise between simplicity and realism. For example, one feature of PRAM models that has been

widely criticized as unrealistic and unimplementable is the assumption of unit time access to shared

memory. Consideration of (bounded fan-in) circuit models exposes this issue immediately, since a

simple fan-in argument provides a lower bound of processors(log p) on the time to combine bits

from p sources, say by logical or, a trivial problem on a unit cost CRCW PRAM. A circuit is sim-

ply a formal model of a combinational logic circuit. It is an acyclic directed graph in which the

edges carry unidirectional logical signals and the vertices compute elementary logical functions.

The entire graph computes a Boolean function from the inputsto the outputs in a natural way. Let

Bk = {f | f : {0, 1}k → {0, 1}} denote the set of allk-ary Boolean functions. We refer informally

to such functions by strings “1,” “0,” “∧,” “∨,” among others.

Since the 1970s, research on circuit complexity has focusedon problems that can be solved

quickly in parallel, with feasible amounts of hardware—circuit families of polynomial size and

depth as small as possible. Note, however, that the meaning of the phrase ”as small as possible”
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depends on the technology used. With unbounded fan-in gates, depth O(1) is sufficient to carry out

interesting computation, whereas with fan-in two gates, depth less than log(n) is impossible if the

value at the output gate depends on all of the input bits. In any technology, however, a circuit with

depth nearly logarithmic is considered to be very fast. Thisobservation motivates the following

definitions.

Boolean circuitα is a labeled finite directed acyclic graph. Each vertexv has a type(v) ∈

I ∪
(
⋃

i>0 Bi

)

. A vertexv with (v) = I has in-degree 0 and is called an input. The inputs ofα are

given by a tuple(x1, . . . , xn) of distinct vertices. A vertexv with out-degree 0 is called an output.

The outputs ofα are given by a tuple(y1, . . . , ym) of distinct vertices. A vertexv with (v) ∈ Bi

must have in-degreei and is called a gate [11].

A Boolean circuitα with inputs(x1, . . . , xn) and outputs(y1, . . . , ym) computes a functionf :

{0, 1}n → {0, 1}m in the following way: inputxi is assigned a valueν(xi) from {0, 1} representing

thei-th bit of the argument to the function. Every other vertexv is assigned the unique value[v] ∈

{0, 1} obtained by applying(v) to the value(s) of the vertices incoming toυ. The value of the

function is the tuple(ν(y1), . . . , ν(ym)) with outputyj contributing thej-th bit of the output. When

the logical function associated with a gate is not symmetric, the order of the incoming edges into

the gate is important [11].

Like we can define sequential complexity classes using Turing machine, we can use Boolean

Circuits to define parallel complexity classes. Parallel complexity measures (for a given circuit C)

are:

• Depth = parallel time.
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• Size (number of gates) = parallel work.

Let C = (Ci)i≥0 be a family of Boolean circuits, and letf(n) andg(n) be functions from integers

to integers. We say that parallel time ofC is at mostf(n) if for all n the depth ofCn is at most

f(n). Analogously, the sizeg(n) is equivalent with parallel work.

We definePT/WK(f(n), g(n)) to be the class of all languagesL ⊆ {0, 1}∗ such that there

is a family of circuitsC decidingL with O(f(n)) parallel time andO(g(n)) parallel work. For

example,

• MATRIX MULTIPLICATION ∈ PT/WK(log n, n3/ log n) [11]

• REACHABILITY ∈ PT/WK(log2 n, n3 log n) [11]

Proposition 2.5.1 [11]If L ∈ {0, 1}∗ is in PT/WK(f(n), g(n)), then there is a PRAM that com-

putes the corresponding function FL mapping{0, 1}∗ to {0, 1} in parallel time O(f(n)) using

O(g(n)/f(n)) processors.
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That is, circuits can be efficiently simulated by the PRAM. One processor will simulate approx-

imatelyg(n)/f(n) gates. Simulating a gate is straightforward, we only need tomake sure that the

input of the gate is already computed, i.e., we need to compute the time for each gate when its input

data will be ready for sure and then execute its program at that time.

The converse is also true: circuits can simulate the PRAM quite efficiently.

Proposition 2.5.2 [11] If a function F can be computed by a PRAM family in timef(n) with

g(n) processors, then there is a familyC of circuits of depthO(f(n)(f(n) + logn)) and size

O(g(n)f(n)(nkf(n)+ g(n))) which computes the binary representation ofF , wherenk is the time

bound of the log-space Turing machine which outputs then-th PRAM in the family.

A configuration of the PRAM—including all program counters and all registers —is of size at

mostf(n)g(n). The next configuration can be computed in timeO(log l), wherel is the largest

number in a register. We have quite a number of tests performed in parallel, but all are conceptually

straightforward.

The circuit shown in Figure 2.8 has size eight and depth three. This description can be thought

of as a blueprint for that circuit, or alternatively as a parallel program executed by a universal circuit

simulator.
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Preliminary And Known Results

3.1 DRMBM and Small Space Computations

The characterization of constant time DRMBM computations described in the introductory chapter

can be formally summarized as follows:

Proposition 3.1.1 [9]

1. DRMBM(poly(n), poly(n), O(1)) = NL = Collision CRCW F-DRMBM(poly(n), poly(n),

O(1)) with bus width1.

2. DRMBM(poly(n), poly(n), O(1)) = DRN(poly(n), O(1)).

3. For any problemπ solvable in constant time by some (directed or undirected)RMBM fam-

ily usingpoly(n) processors andpoly(n) buses,π inCollision CRCW F-DRMBM(poly(n),

poly(n), O(1)) with bus width1.

The crux of the proof for Proposition 3.1.1 is given by the following Lemmata.

30
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Lemma 3.1.2 [9]CRCW DRMBM(poly(n), poly(n), O(1)) ⊆ NL, for any write conflict resolu-

tion rule and any bus width.

Proof. Consider someR ∈ CRCW DRMBM(poly(n), poly(n), O(1)) performing stepd of its

computation(d ≤ O(1)). We need to find anNL Turing machineMd that generates the description

of R after stepd usingO(log n) space, and thus [11] anNL Turing machineM ′
d that receivesn′ (the

number of processors inR) and somei, 1 ≤ i ≤ n′, and outputs the (O(log n) long) description

for processori instead of the whole description. We establish the existence ofMd (and thusM ′
d) by

induction overd, and thus we complete the proof.

M0 exists by the definition of a uniform RMBM family. We assume the existence ofMd−1,

M ′
d−1 and show howMd is constructed. For each processorpi and each busk read bypi during

stepd, Md performs (sequentially) the following computation:Md maintains two wordsb andρ,

initially empty. For everypj , 1 ≤ j ≤ poly(n), Md determines whetherpj writes on busk. This

implies the computation of GAPj,i (clearly computable in nondeterministicO(log n) space since it

is NL-complete [20]). The local configurations of fused and segmented buses at each processor (i.e.,

the edges of the graph for GAPj,i) are obtained by calls toM ′
d−1. The computation of GAPj,i is

necessary to ensure that we takepj into account even whenpj does not write directly to busk but

instead to another bus that reaches busk through fused buses.

If pj writes on busk, thenMd usesM ′
d−1 to determine the valuev written bypj , and updatesb

andρ as follows:(a) If b is empty, then it is set tov (pj is currently the only processor that writes to

busk), andρ is set toj. Otherwise:(b) If R uses the Collision rule, the collision signal is placed in

b. (c) If the conflict resolution rule is Priority,ρ andj are compared; if the latter denotes a processor
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with a larger priority, thenb is set tov andρ is set toj, otherwise, neitherb nor ρ are modified;

the Common rule is handled similarly.(d) Finally, if R uses the Combining resolution rule with◦

as combining operation,b is set to the result ofb ◦ v (since the operation◦ is associative, the final

content ofb is indeed the correct combination of all the values written on busk).

Once the content of busk has been determined, the configuration ofpi is updated accordingly,

b andρ are reset to the empty word, and the same computation is performed for the next bus read

by pi or for the next processor. The whole computation ofMd clearly takesO(log n) space.

Lemma 3.1.3 [9]Let M = (K,Σ, δ, s0) be anNL Turing machine that acceptsL ∈ NL. Then,

given some wordx, |x| = n, there exists aCREWor CRCW F-DRMBMalgorithm that computes

G(M,x) (as an adjacency matrixI) in O(1) time, and usingpoly(n) processors andpoly(n) buses

of width1.

Proof. Putn′ = |V | (n′ = poly(n)). The RMBM algorithm usesn+(n′2−n′) processors: The first

n processorspi, 1 ≤ i ≤ n, containx, i.e., eachpi containsxi, thei-th symbol ofx; pi does nothing

but writesxi on busi. We shall refer to the remainingn′2 − n′ processors aspij, 1 ≤ i, j ≤ n′.

Eachpij assembles first the configurations corresponding to verticesvi andvj of G(M,x) and then

considers the potential edge(vi, vj) corresponding toIij . If such edge exists, thenpij writes True

to Iij , and False otherwise. There is no inter-processor communication between processorspij, thus

any RMBM model is able to carry on this computation.

Clearly, given a configurationvi, pij can compute in constant time any configurationvl acces-

sible in one step fromvi, as this implies the computation of at most a constant number(O(2k)) of

configurations. The whole algorithm runs thus in constant time.
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3.2 DRN and Small Space Computations

The generality of the Collision resolution rule is not limited to DRMBM computations. Indeed, the

same property holds for constant time computations on DRN aswell. We also find that a DRN is

able to carry out any constant time computation using only buses of width1.

Proposition 3.2.1 [7]For any problemπ solvable in constant time on some variant ofRN, it holds

thatπ ∈ CRCW DRN(poly(n), O(1)) with Collision resolution rule and bus width1.

The proof of Theorem 3.2.1 is based on the following intermediate results.

Lemma 3.2.2 For anyX ∈ {CRCW, CREW}, Y ∈ {D, ε}, and for any write conflict resolution

rule, it holds thatX Y RN(poly(n), O(1)) ⊆ Collision CRCW DRN(poly(n), O(1)).

Proof. First, note that Collision CRCW DRN(poly(n), O(1)) = NL [5]. Thus, we complete the

proof by showing that, for any conflict resolution rule, CRCWDRN(poly(n), O(1)) ⊆ NL.

This result is however given by the proof of Lemma 3.1.2. Indeed, it is immediate that the Turing

machinesMd andM ′
d, 0 ≤ d ≤ c for some constantc ≥ 1, provided in the mentioned proof work in

the case of an RNR just as well as for the RMBM simulation. The only difference is that buses are

not numbered in the RN case. So, we first assign arbitrary (butunambiguous) sequence numbers for

the RN buses as follows: There exists anO(log n) space-bounded Turing machine that generates a

description ofR, sinceR belongs to a uniform RN family (in fact, such a Turing machineis M0).

Then, in order to find “busk,” Md usesM0 to generate the description ofR until exactlyk buses

are generated. The description is discarded, except for thelast generated bus, which is considered to

be “busk.” SinceM0 is deterministic, it always generates the description in the same order. Thus, it
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is guaranteed that “busk” is different from “busj” if and only if k 6= j. The proof of Lemma 3.1.2

continues then unchanged.

The extra space used in the process of generating busk consists of two counters over the set

of buses (one to keep the valuek and the other one to count how many buses have been already

generated). The counters takeO(log n) space each, since there are at mostpoly(n) processors, and

(poly(n))2 = poly(n). Thus, the overall space complexity remainsO(log n), as desired.

Lemma 3.2.3 GAP1,n ∈ Collision CRCW DRN(n2, O(1)) with bus width1.

Proof. Let R be the DRN solving GAP1,n instances of sizen. Then,R usesn2 processors (referred

to aspij, 1 ≤ i, j ≤ n), connected in a mesh. That is, there exists a (directional)bus frompij only

to p(i+1)j if and only if i+1 ≤ n, and topi(j+1) if and only if j +1 ≤ n, as shown in Figure 3.1(a).

As shown in the figure, we also denote byE, S, N , andW the ports ofpij to the buses going to

pi(j+1), going top(i+1)j , coming frompi(j−1), and coming fromp(i−1)j , respectively.

We assume that the input graphG = (V,E), |V | = n, is given by its adjacency matrixI, and

that each processorpij knows the value ofIij.

The DRNR works as follows: Each processorpij, i < j fuses itsW andS ports if and only if

Iij = True. Analogously, each processorpij , i > j fuses itsN andE ports if and only ifIij = True.

Finally, each processorpii fuses all of its ports.

Then, a signal is placed byp11 on both its outgoing buses. Ifpnn receives some signal (either

the original one emitted byp11 or the signal corresponding to a collision) the input is accepted;

otherwise, the input is rejected.
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Figure 3.1: (a) A mesh ofn × n processors. (b) A collection ofn meshes connected together

It is immediate thatR solves GAP1,n, by an argument similar to the one for RMBM [9] (also

note that a similar construction is presented and proved correct elsewhere [22]). In addition, the

content of the signal received bypnn is clearly immaterial, so a bus of width1 suffices.

Recall now that the graphG(M,x) is the graph of configurations of the Turing machineM

working on inputx.

Lemma 3.2.4 For any languageL ∈ NL (with the associatedNL Turing machineM accepting

L), and given some wordx, |x| = n, there exists a constant timeCREW(and thusCRCW) DRN

algorithm usingpoly(n) processors and buses of width1 that computesG(M,x) (as an adjacency

matrix I).
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Proof. This fact is obtained by the same argument as the one presented in the proof of Lemma 3.1.3.

Indeed, except for the distribution of inputx to processors, there is no inter-processor communica-

tion; as such, any parallel machine will do.

Thus, the computation ofG(M,x) = (V,E) will be performed by the same mesh of processors

R depicted in Figure 3.1(a), this time of sizen′ × n′ (wheren′ = |V |). In addition, the desired

input distribution will be accomplished byn additional meshes identical toR. We will denote these

meshes byRi, 1 ≤ i ≤ n. For any1 ≤ i, j ≤ n′ and1 ≤ k ≤ n, the processor at rowi, columnj in

meshRk [R], will be denoted bypk
ij [pn+1

ij ]. Each processorpk
ij has two new portsU andD. There

exists a bus connecting portD of pk
ij to portU of pk+1

ij for any1 ≤ k ≤ n. Then + 1 meshes and

their interconnection are shown in Figure 3.1(b).

At the beginning of the computation,xk, thek-th symbol of inputx, is stored in a register of

processorpk
11, 1 ≤ k ≤ n.

We note from the proof of Lemma 3.1.3 that each processorpn+1
ij of R is responsible for check-

ing the existence of a single edge(i, j) of G(M,x). In order to accomplish this, it needs onlyone

symbolxhij
from x, namely the symbol scanned by the head of the input tape in configurationi. We

assume that all the processorspk
ij , 1 ≤ k ≤ n, know the configurationi (and thus the value ofhij).

It remains therefore to show now howxhij
reaches processorpn+1

ij in constant time, for indeed,

after this distribution is achieved,R is able to compute the adjacency matrixI exactly as shown in

the proof of Lemma 3.1.3. The set ofn + 1 meshes performs the following computation: For all

1 ≤ k ≤ n and1 ≤ i, j ≤ n′,

1. Eachpk
11 broadcastsxk to all the processors inRk. To do this, all processorspk

ij fuse together
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their N , S, E, andW ports, and thenpk
11 placesxk on its outgoing buses.

2. Eachpk
ij comparesk andhij, and writes True in one of its registersd if they are equal and

False otherwise.

3. Eachpk
ij fuses itsU andD ports, thus formingi × j “vertical” buses.

4. Eachpk
ij for whichd = True placesxk on its portD.

5. Finally, eachpn+1
ij stores the value it receives on itsU port. This is the value ofxhij

it needs

in order to compute the elementIij of the adjacency matrix.

It is immediate that the above processing takes constant time. In addition, it is also immediate

that exactly one processor writes on each “vertical” bus, and thus no concurrent write takes place.

Indeed, there exists exactly one processorpk
ij, 1 ≤ k ≤ n, such thatk = hij . Therefore, we realized

the input distribution.

Iij is then computed by processorpn+1
ij without further communication, as shown in the proof

of Lemma 3.1.3. The construction of the DRN algorithm that computesI is therefore complete.

Clearly, buses of width1 are enough for the whole processing, sincex is a word over an alphabet

with 2 symbols.

Given Lemmata 3.2.3, 3.2.4, and 3.2.2 we can now prove our first main result.

Proof of Proposition 3.2.1. That the Collision resolution rule is the most powerful follows from

Lemma 3.2.2. It remains to be shown only that a bus width1 suffices.

Given some languageL ∈ NL, let M be the (NL) Turing machine acceptingL. For any in-

putx, the DRN algorithm that acceptsL works as follows: Using Lemma 3.2.4, it obtains the graph
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G(M,x) of the configurations ofM working onx. Then, it applies the algorithm from Lemma 3.2.3

in order to determine whether vertexn (halting/accepting state) is accessible from vertex1 (initial

state) inG(M,x), and accepts or rejectsx, accordingly. In addition, note that the valuesIij com-

puted by (and stored at)pn+1
ij in the algorithm from Lemma 3.2.4 are in the right place as input

for pij in the algorithm from Lemma 3.2.3 (that uses only the meshR). It is immediate given the

aforementioned lemmata that the resulting algorithm accepts L and uses no more thanpoly(n)

processors, and unitary width for all the buses.

The proof is now complete, since all the problems solvable inconstant time on DRN are included

in NL.

3.3 Collision is Universal on Directed Reconfigurable Buses

The results regarding constant time computations are useful to extend the universality of the Collision

resolution rule to any running time.

Proposition 3.3.1 [7]TheCollision resolution rule is universal on models with directed reconfig-

urable buses. That is:

For anyX ∈ {CRCW, CREW}, Y ∈ {D, ε}, Z ∈ {RN(poly(n), ·), RMBM(poly(n), poly(n),

·)}, andt : IN → IN it holds thatX Z(t(n)) ⊆ Collision X DZ(O(t(n))).

Proof. The proof is immediate for CREW machines. Let nowR be an RMBM family in CRCW

D RMBM(poly(n), poly(n), t(n)), and recall theNL machinesM ′
d constructed in the proof of

Lemma 3.1.2. We then take the originalR, replace its conflict resolution rule with Collision, and

then split every stepi of the computation ofR into a constant number of steps, as follows:
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1. Each processorp of R reads the content of the original buses as required and then performs

the prescribed computation for stepi, except that wheneverp wants to write to busk it also

writes the same value of a dedicated buskp (there is one such a bus for each processor).

2. A suitably modified machineM ′
d from the proof of Lemma 3.1.2 (call this machineM ) com-

putes the content of all the original buses of the network, based on the configurations of all the

processors and the content of the (new)kp buses; the content of busk thus computed is placed

on a brand new busk′. The meaning of “suitably modified” is that the machine does not need

to determine the configuration of the processors ofR; indeed, the configurations are already

present in the processors themselves. So the machine startsdirectly with the computation of

GAP problems to determine the content of the buses.

3. A designated processorpk transfers the content of busk′ onto busk and the algorithm con-

tinues with stepi + 1.

Given thatM is anNL Turing machine, it can be implemented by an polynomially bounded

DRMBM RM that runs in constant time, so the modified stepi takesO(1) time (and then the

whole computation takesO(t(n)) time, as desired). This new RMBM needs to read the configu-

rations ofR; for this purpose a polynomial number of new buses can interconnect each processor

of R with each processor ofRM . We end up with a polynomial number of buses; that we have a

polynomial number of processors is immediate. The correctness of the transformation follows from

Lemma 3.1.2 and Proposition 3.1.1.

The proof for RN represents a minor variation of the above proof in light of Lemma 3.2.2

(that replaces Lemma 3.1.2) and of the construction used in Lemma 3.2.4 to distribute values to
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processors.



Chapter 4

Relationships Between Parallel Models

We establish here our main result, the hierarchy of parallelmodels of computation and its collapse

at the top. We then consider some consequence, including a generalization of previous results re-

garding real-time computations.

4.1 The Heavyweight and the Lightweight Classes of ParallelModels

Recall that we called Priority CRCW PRAM and all the models ofless computational power light-

weight, while the Combining CRCW PRAM, the BSR, and the models with directed reconfigurable

buses were called heavyweight. We show in this section that all the heavyweight models have the

same computational power, and that they are strictly more powerful than the lightweight models.

We thus obtain our main result:

Theorem 4.1.1 For anyX ∈ {Collision, Common},

X CRCW PRAM(poly(n), O(t(n))) ⊆ Priority CRCW PRAM(poly(n), O(t(n))) (

41
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Combining CRCW PRAM(poly(n), O(t(n))) = BSR(poly(n), O(t(n))) =

DRMBM(poly(n), poly(n), O(t(n))) = DRN(poly(n), O(t(n))).

Proof. Theorem 4.1.1 is a direct consequence of Lemmata 4.1.2 to 4.1.7 below. Specifically, all the

inclusions shown in the theorem are proved in the mentioned Lemmata one by one. Additionally, it

is already known [21] that DRMBM(poly(n), poly(n), O(t(n))) = DRN(poly(n), O(t(n))).

We complete all the proofs below by showing how the model on the right hand side of the

inclusion simulates in constant time one computational step of the model on the left hand side.

Once this is shown, the inclusion that needs to be proved becomes immediate.

Lemma 4.1.2 Collision CRCW PRAM(poly(n), O(t(n))) ⊆ Priority CRCW PRAM(poly(n), O

(t(n))).

Proof. A Collision CRCW PRAM withk processorspi, 1 ≤ i ≤ k andm memory locationsuj,

1 ≤ j ≤ m is readily simulated by a Priority CRCW PRAM with2k + m processors denoted by

p↑i (1 ≤ i ≤ k), p↓i (1 ≤ i ≤ k), andpm
j (1 ≤ j ≤ m). (Note however that the processor grouppm

j

and the processor groupp↑i plusp↓i take turns in the simulation, so the actual number of processors

required ismax(2k,m); however, the differentiation eases the presentation.)

In addition to the original memory locationsuj , we use two more “banks” of the same sizeu↑
j

andu↓
j , 1 ≤ j ≤ m. A Collision CRCW PRAM step (read,compute, write) is then simulated as

follows:

1. For every1 ≤ i ≤ k, both the processorsp↑i andp↓k+1−i perform the same read, compute, and

write cycle as the originalpi, with the following addition: Whenever processorpi writes into
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memory locationuj , it also writes its number into memory locationu↑
j ; similarly, whenever

processorpn+1−i writes into memory locationuj, it also writesn+1−i into memory location

u↑
j .

2. Every processorpm
i writes the collision value into memory locationuj iff u↑

j = u↓
j .

That the above simulation takes constant time is immediate.Note further that after Step 1 of the sim-

ulation the locationu↑
j [u↓

j ] contains the index of the lowest [highest] ranked processor that modified

the memory locationuj (indeed, we operate on a Priority CRCW model, so only the lowest num-

bered processor succeeds in writing into a given memory location; we then chose the processors

numbers in appropriate manner for this to happen). Then, wheneveru↑
j 6= u↓

j , more than one pro-

cessor wrote into the given memory location, so a collision occurred. Step 2 places collision markers

accordingly. The simulation is complete.

Lemma 4.1.3 Common CRCW PRAM(poly(n), O(t(n))) ⊆ Priority CRCW PRAM(poly(n),

O(t(n))).

Proof. We simulate now a computational step of a Common CRCW PRAM with k processors and

m memory locations in constant time using a Priority CRCW PRAM. The simulation will use the

same numberk of processors (we denote them bypi, 1 ≤ i ≤ k) and the same memory space

(denoted byuj , ≤ j ≤ m). The simulation proceeds as follows:

1. All the processorspi carry on the computational step prescribed by the Common CRCW PRAM

algorithm, including the operation of writing into the shared memory (recall, however, that

we are now using the Priority conflict resolution rule).
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2. Each processorpi that wrote a valuevi into memory locationuj in Step 1 also remembersvi

by storing it into an otherwise unused internal registerρ.

3. Everypi that wrote a value into locationuj in Step 1 compares the content ofuj with the

content its registerρ.

(a) If the contents ofuj andρ are the same then either(a) pi is the sole processor which

wrote intouj, (b) pi is the highest priority processor which wrote intouj , or (c) pi and

the highest priority processor agree on the value written into uj. None of these cases

violate the Common resolution rule, sopi does not do anything.

(b) If on the other handuj andρ contain different values, then the value written intouj bypi

disagrees with the value written in the same location by someother processor, which in

turn violates the Common resolution rule. Sopi aborts the algorithm and reports failure.

Note that in effect we choseoneof the processors writing concurrently into a memory location as

representative for all the others (given that we have a Priority machine at our disposal, that rep-

resentative turned out to be the processor with the highest priority—however the way we chose a

representative is immaterial). Every processor which wants to write a value in some memory lo-

cation compares now its value with the value already writtenby its representative; if the value is

different, then the Common conflict resolution rule is violated; otherwise all is good and the overall

algorithm continues with the next step.

The above proof uses the usual definition of Common, as presented in Section 2.3. Still, we note

that sometimes this definition is termed “Fail Common,” casein which the “Error-safe Common”

variant is also defined. In such a variant, any computationalstep that violates the Common resolution
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rule is discarded completely (that is, for all the processors in the system) and the algorithm contin-

ues with the next step (instead of aborting the computation). A proof for this modified variant of

Common is readily possible. Indeed, all we need is “backup” copies of the memory locations used

by the algorithm, plus one memory location used to signal anyviolation to everybody. The proces-

sors now use the backup memory to perform all the simulation described above, except that they set

the violation flag instead of aborting the algorithm whenever a violation of the Common resolution

rule occurs (since is is just a flag, using Priority as conflictresolution rule will do just as well as

almost any other rule). In the end, all the processors inspect the flag and write again the values they

wanted to write in the first place (this time in the main memory, not the backup) iff the flag is not

set.

Lemma 4.1.4 Priority CRCW PRAM(poly(n), O(t(n))) ( Combining CRCW PRAM(poly(n),

O(t(n))).

Proof. A Priority CRCW PRAM withk processorspi, 1 ≤ i ≤ k andm memory locationsuj,

1 ≤ j ≤ m is readily simulated by a Combining CRCW PRAM with the same number of processors

(denoted byp′i) and2m memory locations (denoted byui andu′
i):

1. Each processorp′i performs the same read and compute operations aspi. Instead of writing

(to memory locationuj), p′i however performs a “dry run” by writing its number into memory

locationu′
j using a Combining CRCW write withmin as combining operation.

2. Each processorp′i performs now the real operation: It writes into the memory locationuj in

which it wanted to write to begin with, but only iff its numbermatches the value stored inu′
j.
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Themin as combining operation performed over the locationsu′
j in the previous step ensures

that a matching occurs only for the lowest numbered processor, as desired.

That Combining CRCW PRAM(poly(n), O(t(n))) 6⊆ Priority CRCW PRAM(poly(n), O(t(n)))

is an immediate extension of Proposition 2.3.1. Indeed, PARITYn is trivially solvable in constant

time by a Combining CRCW PRAM. Such a machine performs a Combining CRCW usingΣ as

combining operation, followed by a modulo operation on one memory location.

Lemma 4.1.5 Combining CRCW PRAM(poly(n), t(n)) = BSR(poly(n), O(t(n))).

Proof. That Combining CRCW PRAM(poly(n), t(n)) ⊆ BSR(poly(n), O(t(n))) is immediate

from the definition of BSR. Surprisingly enough, the reverseinclusion is also true. We show this re-

verse inclusion by showing how one BSR computational step issimulated by a Combining CRCW

PRAM in constant time.

Consider a BSR withk processors andm memory locations. Every BSR processorpi is simu-

lated by a set ofm PRAM processorsrij , 1 ≤ j ≤ m. The PRAM memory is doubled, every BSR

memory locationuj will be simulated by two PRAM memory locationsud
j andul

j , 1 ≤ j ≤ m. Fi-

nally, the PRAM uses extra processorspu
j , 1 ≤ j ≤ m. The PRAM simulation of a BSR Broadcast

step (read, compute, Broadcast) proceeds as follows:

• Read and Compute:All the processorsrij , 1 ≤ j ≤ m perform the reading and the compu-

tation prescribed forpi. Every time some processor wants to read the value ofuj it will read

the value ofud
j instead. Processorsrij will then all hold the values of the datumdi and the

taggi computed bypi.
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• Selection limits:Every processorpu
j computes the limitlj associated withuj in the selection

phase of the BSR step, and stores it in the memory locationul
j .

• Broadcast instruction:rij will be responsible for the data written by the BSR processorpi

into memory locationrj (note that all the processorsrij, 1 ≤ j ≤ m contain identical data,

sopi’s replacement covers all the memory locations, thus realizing the desired broadcast):

1. rij readslj from memory locationul
j so that it holdsdi, gi, andlj ;

2. rij then computes the selection criteriongi σ lj as prescribed by the BSR algorithm;

3. rij writesdj into memory locationud
j iff gi σ lj = True, using a Combining CRCW write

with the combining operator prescribed by the BSR algorithm.

In effect, we use one PRAM processor for every pair processor–memory location in the BSR algo-

rithm. This allows for an easy simulation of the broadcast phase of a Broadcast instruction: Instead

of broadcasting, every PRAM processor is responsible for writing to one memory location; since

we have as many processors as memory locations, we nonetheless write to all the memory locations

at once, as desired. The rest of the simulation is immediate,as is the overall constant running time.

Lemma 4.1.6 BSR(poly(n), t(n)) ⊆ DRMBM(poly(n), poly(n), O(t(n))).

Proof. We are given a BSR withk processors andm memory locations. Without loss of generality

we provide a Combining DRMBM that simulates the given BSR; for indeed, once such a construc-

tion is established a Collision DRMBM with polynomially bounded resources andO(t(n)) running

time exists by Theorem 3.3.1.
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Figure 4.1: A DRMBM simulation of the BSR

The DRMBM that simulates the BSR is partially depicted in Figure 4.1. It has(k + 1) × m

processors, which we denote bypi,j, 1 ≤ i ≤ k + 1, 1 ≤ j ≤ m. The “real” processorspi,1,

1 ≤ i ≤ k perform identically to the processors of the original BSR (except for the bus manipulation

routines). The “memory” processorspk+1,j, 1 ≤ j ≤ m will simulate the locations of the shared

memory. They designate one registerµ that will hold the data stored in the respective memory

location.

As shown in the figure, the DRMBM featuresk + m buses denoted byDi, 1 ≤ i ≤ k andLj,

1 ≤ j ≤ m. In addition, every “memory” processorpk+1,j has a dedicated busMj , 1 ≤ j ≤ m

(not shown in the figure). The DRMBM simulates one step of the BSR computation (meaning one

read-compute-broadcast-select-reduce cycle of the BSR) in constant time as follows (the steps of

the simulation—less the read and compute phases—are depicted by circled numbers in the figure):

1. At the beginning of every BSR step every “memory” processor pk+1,j puts the datum held

in its designated registerµ on busMj . Every “real” processorpi,1 that is interested in some
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memory data reads the bus of interest.

2. All the “real” processors perform the computation prescribed by the BSR for the current

computational step.

3. Every “real” processorpi,1 broadcasts the computed pair(di, gi) by putting it on busDi. At

the same time, every “memory” processorpk+1,j broadcasts its limitlj by placing it on bus

Lj .

4. The processorspi,j, 1 ≤ i ≤ k, 1 ≤ j ≤ m implement the selection phase as follows:pi,j

reads the pair(di, gi) and the limitlj from the busesDi andLj, respectively. It then computes

ti σ lj and placesdi on busLi as appropriate (i.e., iffti σ lj = True).

5. The reduction is accomplished by the busesLj, 1 ≤ j ≤ m which perform the combining

(reduction) operation prescribed by the BSR algorithm.

6. Finally, every “memory” processorpk+1,j reads busLj and stores the datum thus obtained

into its designated registerµ.

It is immediate that the above steps complete in constant time and accomplish the desired computa-

tion. This sequence of steps is applied repeatedly for everystep performed by the BSR. The running

time of the whole simulation is thenO(t(n), as desired. We have(k+1)×m = poly(n) processors

and2m + k = poly(n) buses, so the DRMBM uses polynomial resources.

We have shown that one computational step of the BSR is computable in constant time by a

DRMBM. The inclusion follows immediately, and the proof is thus complete.

Lemma 4.1.7 DRMBM(poly(n), poly(n), t(n)) ⊆ BSR(poly(n), O(t(n))).



CHAPTER 4. RELATIONSHIPS BETWEEN PARALLEL MODELS 50

Proof. The result is an almost immediate consequence of Proposition 2.3.2. Indeed, the capability

of the BSR to compute GAP in constant time allows this model tosimulate bus fusing, which is the

only essential supplementary capability of the RMBM over the BSR.

As usual by now, we prove the inclusion by showing how one computational step of a DRMBM

can be simulated in constant time by a BSR. According to Proposition 3.1.1, it is enough to offer a

proof with respect to the Collision F-DRMBM.

Consider a Collision F-DRMBM withk processors andm buses. The BSR that simulates it uses

k processorspi, 1 ≤ i ≤ k to simulate the DRMBM processors andO(m2) processors (referred

to collectively asP c and individually aspc
ij, 1 ≤ i, j ≤ m) dedicated to the computation of the

reflexive and transitive closure of anm × m graph. In terms of memory space, the notable areas

includem memory locationsbj and anotherm memory locationscj , 1 ≤ j ≤ m to simulate the

buses,m × m memory locationsGij , 1 ≤ i, j ≤ m to hold the connectivity graph for the buses,

and anotherm × m memory locationCi,j, 1 ≤ i, j ≤ m to hold the reflexive and transitive closure

of the aforementioned graph. We assume that there exists a value that is never placed on a bus by

any DRMBM processor; we call this vale the collision marker (similar to the notion used in the

Collision CRCW PRAM).

A computational step of a DRMBM processor consists in the following phases: read data from

the buses, perform the prescribed computation (thus determining what buses to fuse and what values

to write to buses), fuse buses, and write data to buses. The BSR simulation of one DRMBM step

proceeds then as follows:

1. TheP c processors initialize in parallelGij to False andcj to 0,1 ≤ i, j ≤ m
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2. Everypi reads the memory locationsbj as prescribed by the DRMBM algorithm (we replace

reading buses with reading memory locations).

3. Everypi performs the operations prescribed by the DRMBM algorithm.

4. Everypi that wants to fuse buses in the DRMBM algorithm broadcasts True to all the memory

locationGuv corresponding to busesu andv being fused bypi. The writing is a

Combining CRCW write with
∨

as combining operator.

5. The memory locationsGuv , 1 ≤ u, v ≤ m now hold the adjacency matrix of the graph of

connected buses. The processorsP c now compute the reflexive and transitive closure ofG,

putting the result inCi,j, 1 ≤ i, j ≤ m.

6. Every processorpi that wants to write some value to busj writes the corresponding value into

bj using a Combining CRCW write with any combining operator, and writes 1 into memory

locationcj using a Combining CRCW write withΣ as combining operator.

7. The processorsP c now alter the content ofbj as follows: IfCji = False, thenpc
ji does not

perform anything. Otherwise,pcji reads the value frombj and writes it into the memory

locationbi using a Combining CRCW write with any combining operator.pc
ji also reads the

value fromcj and writes it into the memory locationci using a Combining CRCW write with

Σ as combining operator.

8. Every processorpc
j1, 1 ≤ j ≤ m readscj and places the collision marker into memory

locationbj iff cj > 1.
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Reading data from the buses and performing the prescribed computation are simulated by Steps 2

and 3 of the above simulation, respectively. Fusing the buses is prepared in Step 1 and carried on in

Steps 4 (Gij contains True iff busesi andj are fused together directly by a processor) and 5 (Cij

contains True iff busesi andj are fused together either directly by a processor of via a chain of

fused buses). Writing on the buses is performed in Step 6 (each bus receives the values written to

it directly by the DRMBM processors) and 7 (the bus content ispropagated according to the fused

buses). At the end of this step, the value ofcj contains the number of processors that have written

on busj (either directly or via intermediate, fused buses); Ifcj is one or zero, then the bus should

be left alone; otherwise, a collision has happened, so the content of the bus should be replaced by

the collision marker. This replacement is accomplished by Step 8.

We argue that Step 4 is achievable in constant time, as follows: there is no specification of how

many buses can be fused and in what combination by a DRMBM. However, a DRMBM processor

should be capable of computing the configuration of fused buses in constant time. It follows that

the BSR processor simulating the DRMBM processor is capableof determining the corresponding

broadcast parameters in constant time, since it is the same processor in terms of computational capa-

bilities. All the other steps are immediately achievable inconstant time, so the proof is established.

4.2 GAP, the Universality of Collision, and Real Time Considerations

As far as constant time computations are concerned, we noteda contrast between the power of

conflict resolution rules for models with directed reconfigurable buses (DRMBM and DRN) on
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one hand, and for shared memory models (PRAM) on the other hand. According to our results,

Collision is the most powerful rule on DRMBM and DRN. By contrast, we showed in Theorem 4.1.1

that the Combining CRCW PRAM is strictly more powerful than the Collision CRCW PRAM.

We also note that the ability of DRMBM (and DRN) to compute GAPin constant time is central

to the constant time universality of the Collision rule, andalso determines that exactly all DRMBM

and DRN computations are inNL; we also note that GAP isNL-complete [20]. In light of this,

we consider the classesM<GAP ,M≡GAP , andM>GAP of parallel models of computations using

polynomially bounded resources (processors and, if applicable, buses), such that:M<GAP contains exactly all the models that cannot compute GAP in constant time, and cannot

compute in constant time any problem not inNL.M≡GAP contains exactly all the models that can compute GAP in constant time, but cannot com-

pute in constant time any problem not inNL.M>GAP contains exactly all the models that can compute GAP in constant time and can compute

in constant time at least one problem not inNL. To our knowledge, no model has been proved

to pertain to such a class.

As a direct consequence of Theorem 4.1.1, we can then populate these three classes (or at least

the first two) in a meaningful manner:

Corollary 4.2.1 1. Combining CRCW PRAM(poly(n), O(1)) = BSR(poly(n), O(1))

= DRMBM(poly(n), poly(n), O(1)) = DRN(poly(n), O(1)) = NL.

2. X CRCW PRAM(poly(n), t(n)) ∈M<GAP for anyX ∈ {Collision, Priority, Common}.
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3. Combining CRCW PRAM(poly(n), O(1)), BSR(poly(n), O(1)),

DRMBM(poly(n), poly(n), O(1)), DRN(poly(n), O(1)) ∈M≡GAP .

Proof. Immediate from definitions, Theorem 4.1.1, and Proposition3.1.1.

Compare now the previous discussion on GAP with the following immediate generalization of

Claim 1:

Theorem 4.2.2 For any models of computationM1, M2, andM3 such thatM1 ∈M<GAP , M2 ∈M≡GAP , andM3 ∈M<GAP , it holds that

rt-PROCM1(poly(n)) ⊆ NL/rt (4.1)

rt-PROCM2(poly(n)) = NL/rt (4.2)

rt-PROCM3(poly(n)) ⊃ NL/rt (4.3)

Proof. Minor variations of the arguments used previously [9] show that those computations which

can be performed in constant time onMi, 1 ≤ i ≤ 3, can be performed in the presence of however

tight time constraints (and thus in real time in general). Then, Relations (4.1) and (4.3) follow imme-

diately from Claim 1. By the same argument, rt-PROCM2(poly(n)) ⊇ rt-PROCCRCW F-DRMBM(poly

(n)) holds as well. The equality (and thus Relation (4.2)) is given directly by the arguments that sup-

port Claim 1 [9].

Thus, the characterization of real-time computations established by Claim 1 does hold in fact

for any machines that are able to compute GAP in constant time. The characterization presented in

Theorem 4.2.2 emphasizes in fact the strength of Claim 1. Indeed, as noted above (Theorem 4.1.1),

no model more powerful than the DRMBM is known to exist. That is, according to the current body
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of knowledge,M>GAP = ∅. Unless this relation is found to be false, Claim 1 states essentially that

no problem outsideNL can be solved in real time no matter the model of parallel computation being

used (that is, Claim 1 holds for all the parallel models, not just the DRMBM).



Chapter 5

EW On Reconfigurable Buses And The

Power of the MESH

The universality of Collision on models with directed reconfigurable buses was established earlier

(as presented in Chapter 3). Similar arguments turn out to establish the same result for undirected

reconfigurable buses. As it turns out, the universality of Collision can even be strengthened, though

this depends on the definition of conflict on reconfigurable buses.

Indeed, a collision happens whenever two signals arrive simultaneously at the same bus, but

it can also be defined as happening whether two signalsfrom two different processorsarrive at

the same bus. Under the latter definition it turns out the EW isuniversal and the Collision conflict

resolution rule is not necessary. Such a result has practical consequences, most notably in the design

of VLSI circuits.

Still on the same practical level (design of VLSI circuits),we also note that MESH simulations
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exist for all the heavyweight models. This is practically significant given the ease of implementation

of MESH over other models with reconfigurable buses.

5.1 The Universality of EW or Collision on Reconfigurable Buses

One can conceivably identify two variants of CW, as follows:

Definition 5.1.1 Strong CW:Any two signals arriving simultaneously at the same bus are consid-

ered concurrent-write.

Weak CW: Two signals from two different processors arriving simultaneously at the same bus

are considered concurrent-write. However, a signal that issplit and arrives two times at some bus is

not considered concurrent-write.

Strong CW is implied earlier in this thesis. Weak CW also appears realistic, for indeed a bunch

of fused buses form an electrical, longer bus; then it makes no sense to consider a signal that travels

on two different paths; the signal is simply placed on the busand propagates along it according to

the physical laws.

As it turns out, the definition of CW makes a significant difference in terms of universality of

Collision: under weak CW, Collision is unnecessary on reconfigurable buses; instead, EW becomes

universal. This is all put together as follows:

Theorem 5.1.1 1. Under strong CW, Collision is universal on reconfigurablebuses (directed or

undirected).

2. Under weak CW, EW is universal on reconfigurable buses (directed or undirected).
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Proof. The strong CW case has been established for the directed caseearlier, as presented in Section

3.3. The undirected case is easily derived from the proofs supporting the directed case; one only need

to replace GAP with undirected GAP andNL with L as done (in different contexts) earlier [5, 6].

The weak CW case has been established for undirected buses elsewhere [6]. A simple extension

of this proof establishes it for directed buses as well. Alternatively, the proofs of the results presented

in Section 3.3 establish the directed buses variant immediately, as we note that no collision (in the

strong sense) happens in the constructions presented there.

In all, all of the heavyweight models of computation can in fact be simulated by EW DRMBMs

(or EW DRNs).

5.2 MESH Simulations

We found out that exclusive-write is universal on reconfigurable buses. Another practically useful

property of these models is their simulation as MESH. Indeed, a reconfigurable bus machine (be it

RMBM or RN) can be always laid out as a MESH.

Proposition 5.2.1 [17]A d-dimensionR-MESH(r1, r2, . . . , rd) can be simulated by a 2D R-MESH

with poly(r1 × r2 × . . . × rd) × poly(r1 × r2 × . . . × rd) resources in constant time.

Proposition 5.2.2 [17]For X,Y ∈ {C,E}, each step of a
√

(p)×
√

(p) XRY WR-MESHcan be

simulated on anXRY WF-RMBM(4p, 5p) in O(1) time.

Proposition 5.2.3 [17]For X,Y ∈ {C,E}, a step of anXRY W F-RMBM(p, b) can be simulated

on a(b + 1) × 3p XRY W R-MESH in O(1) time.
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The proof of Proposition 5.2.2 is sketched informally in Figure 5.2 and proceeds as follows:

let pi denote a processor of the simulated R-MESH, for0 ≤ i ≤ p. Divide the processors of

the simulating RMBM intop teamsTi, each with four processorsπi,N , πi,S , πi,E, andπi,W , for

0 ≤ i < p. The processors ofTi simulate the ports of R-MESH processorpi.

The first2p buses of the RMBM simulate external processor-to-processor connections in the

R-MESH. The next2p buses provide fusing locations to form internal connections. The lastp buses

provide channels for connection among processors on the same team.

The simulation stated in Proposition 5.2.3 is shown informally in Figure 5.2. Letpi and bj

denote the processors and buses, respectively of the F-RMBM, where0 ≤ i < p and0 ≤ j < b.

Here the simulating R-MESH is of size(b + 1) × 3p. Denote the processors of the R-MESH by

pik,g,where0 ≤ k < b + 1 and0 ≤ g < 3p. Rows1, 2, . . . , b of the R-MESH simulate theb buses

of RMBM. For any0 ≤ i < p,columns3i,3i + 1,and3i + 2 simulate the write port, read port, and

fuse line of processorpi of the RMBM.

These simulations are trivially extensible to the directedcase, so we have:

Corollary 5.2.4 For X,Y ∈ {C,E}, each step of a
√

(p) ×
√

(p) XRY W DR-MESH can be

simulated on anXRY WF-DRMBM(4p, 5p) in O(1) time.

Corollary 5.2.5 For X,Y ∈ {C,E}, a step of anXRY W F-DRMBM(p, b) can be simulated on a

(b + 1) × 3p XRY W DR-MESH in O(1) time.
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Figure 5.1: The simulated RMBM

Figure 5.2: A reconfigurable MESH simulates an RMBM



Chapter 6

Conclusions

This thesis focused on two points. The major point is the establishment of a hierarchy for parallel

models with shared memory and with reconfigurable buses. A secondary point is the investigation

of the universality of EW on reconfigurable buses (along withother practical considerations).

6.1 The Relationships Between Several Parallel Computation Models

Our results are rather significant, as we essentially free the analysis of parallel algorithms and prob-

lems from a number of restrictions such as whether using the Broadcast instruction of the BSR or

using the Combining resolution rule on distributed resources like buses diminishes the practicality

of the analysis. At the same time, we also offer a strict delimitation between the two classes of

heavyweight and lightweight models of parallel computation.

It was found earlier that there exists a very strong similarity between the two models with di-

rected reconfigurable buses, the DRN and the DRMBM: Not only they solve the same problems
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(namely, exactly all the problems inNL), but in both cases(a) the smallest possible bus width is

enough for all problems, and(b) the Collision resolution rule is the most powerful (even as power-

ful as the Combining rule). It was further shown that Collision is the most powerful on DRN and

DRMBM for any running time. Accordingly, the discussion regarding the practical feasibility of

rules like Priority or Combining on spatially distributed resources such as buses is no longer of in-

terest. Indeed, such rules are not only of questionable feasibility, but also not necessary! This offers

a powerful tool in the analysis of models with directed reconfigurable buses and in the design of

algorithms for these models: One can freely use Combining (Priority, etc.) rules on these models,

with the knowledge that they can be eliminated without penalty—the analysis or algorithm design

uses an “unfeasible” model yet is fully pertinent to the realworld. In fact we used such a technique

ourselves in the proof of Lemma 4.1.6.

By contrast with models with directed reconfigurable buses,it was widely believed that the all-

powerful Combining conflict resolution rule does add computational power to the PRAM model,

and that the BSR’s Broadcast instruction adds further power. We are to our knowledge the first to

establish formally a hierarchy of the PRAM variants that both confirms and contradicts the men-

tioned belief. Indeed, we showed that Combining does add computational power over “lesser” rules.

However, we also showed that surprisingly enough the Broadcast instruction does not add compu-

tational power over Combining . In fact we established an intriguing collapse of the hierarchy of

parallel models at the top of the food chain, where the Combining CRCW PRAM, the BSR, and the

models with directed reconfigurable buses turn out to have identical computational power.

Once more, this result offers substantial support for the analysis of shared memory models.
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Indeed, the power of BSR’s Broadcast instruction has attracted attention in various areas of paral-

lel algorithms. Algorithms with running time as fast as constant have been developed for various

problems, most notably in the areas of geometric and graph computations [12, 13]. Of course, con-

stant time algorithms for such practically meaningful problems are very attractive. Nevertheless, the

model tends to be frowned upon given its apparent implementation complexity, even after efficient

implementations have been proposed [2]. We now showed that whether the BSR is feasible or not is

irrelevant, as a Combining PRAM with the same performance and with all the attractive properties

of the BSR is automatically available. Same goes for, say theBSR versus the DRMBM: one can

freely use the BSR model to design DRMBM algorithms (which islike using an abstract, powerful

model to design VLSI circuits) and the other way around—in essence, one can freely choose be-

tween a number of models, depending on no matter what issues (ranging from practical feasibility

to convenience to mere taste) with the formally supported knowledge that the results are portable to

all the other models.

We also note that most of our proofs are constructive (and those which are not still offer con-

structive hints), so we also set the basis for automatic conversion back and forth between models.

True, we did not have efficiency in mind, so our constructionsare likely to be inefficient; however,

traditionally inefficient algorithms have been optimized quite easily, so we believe that our however

inefficient algorithms are nonetheless a significant contribution.

We also noted the central role of the graph accessibility problem (GAP) for the DRN and

DRMBM results obtained here and also previously [9]. We further strengthened our previous re-

sults on real-time computations, eliminating to some degree their weak point (model dependence).

Having found that Collision is universal on all the models with reconfigurable buses from
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believe that the Collision resolution rule isnotuniversal on models inM<GAP (on which the notion

of conflict resolution rule makes sense), such as models withundirected reconfigurable buses or the

lightweight PRAM models. For instance, note that Priority has already been established by Lem-

mata 4.1.2 and 4.1.3 as being the most powerful rule on these models, but this does not yet exclude

the possibility that Collision has equal power and is thus also universal; we believe however that

Priority is strictly more powerful than Collision on the PRAM. Showing (or disproving) all of this

is an intriguing open problem.

6.2 EW is Universal on Reconfigurable Buses

This thesis, as well as preceding work on the matter have established the universality of Collision

on reconfigurable buses assuming implicitly a strong CW rule. Under weak CW however an almost

identical proof establishes the universality of EW. We believe that weak CW is a realistic definition,

given the physical (electrical) realization of reconfigurable buses.

VLSI design uses reconfigurable buses extensively. The universality of Collision or EW (de-

pending on whether we choose the strong or weak CW rule) is significant for VLSI design, as both

Collision and EW are easily implemented in silicon. Equallysignificant (but this time from a lay-

out point of view) is that all the reconfigurable bus models can be all laid out as two-dimensional

meshes. More work is necessary for the refinement of these processes (of converting a general ma-

chine into a Collision-only machine, or to lay out a general machine as a mesh) before they become

useful in practice, but the most important step (or showing that they are possible) is done here.
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