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Abstract

The Parallel Random Access Machine (PRAM for short) is thetnsonvenient and widely used
model of parallel computation. Other, more complex modagehalso been studied. Examples
include the Broadcast with Selective Reduction (or BSR) #rad Reconfigurable Multiple Bus
Machine (or RMBM). While the PRAM and the BSR are shared mgmmeodels, the RMBM ac-
complishes the communication between processors usimgg bimsthis thesis we identify surprising
relationships between these models: We show that severaht@are equivalent with each other in
a strong sense, but we also establish strict distinctiotedsa the other variants. Some models are
folklorically considered feasible and some others are positlered so. We find a delimitation that

matches the folklore, but we also find important (and iningy equivalencies.
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Chapter 1

Introduction

Technology is developing so fast that pursuing faster astefecomputations is instinctual. First,
we make the processors fast. Then we use multiple procesdord task in parallel.

More and more evidence shows that some limit on the CPU fregyues approaching. This
justifies an earlier trend (which is becoming mainstreanpedorm computations in parallel by
multiple processors or equivalently multiple cores in gsiCPU.

What is parallel computation? At the deeper theoreticadll@dvincludes two main concepts:
computational models and algorithms. The latter dependheriormer, as different models im-
plement algorithms differently. A model of computation e tdefinition of the set of allowable
operations used in computation and their respective cOstly. assuming a certain model of com-
putation it is possible to analyze the computational resegirequired, such as the execution time or
memory space, or to discuss the limitations of algorithmsoonputers. An algorithm is a sequence

of instructions, often used for calculations and data meog. It is formally a type of effective
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Figure 1.1: Sequential computation

method in which a list of well-defined instructions for comphg a task will, when given an ini-
tial state, proceed through a well-defined series of suneestates, eventually terminating in an
end-state.

People at Princeton University proposed in the 1940s a deélsaj ushered in the modern com-
puter era [1]. This architecture continues to work and isdhdiest model for sequential com-
putation Figure 1.1 shows the architecture of sequentiaipeation. The computation unit (or
processor) is the core, and other devices (I/O device,mearat other control units) communicate
with the processor to do a job. The general structure of dlphcamputation model is shown in
Figure 1.2. This model features more computation units (ocgssors). The processors on such a

model (or machine) can communicate with each other by shassdory or buses.
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Figure 1.2: Parallel computation

1.1 History

In 1964, Daniel Slotnick proposes building a massivelyafiar machine for the Lawrence Liver-
more National Laboratory [25, 27]. Slotnick’s design ewsvinto the ILLIAC-IV. The machine is
built at the University of Illinois, with Burroughs and Texénstruments as primary subcontractors.
In 1969, Honeywell delivers the first Multics system (symrigahultiprocessor with up to 8 proces-
sors). In 1977, the C.mmp multiprocessor is completed até2ape-Mellon University. The machine
contains 16 PDP-11 minicomputers connected by a crossishated memories, and supports most
of the early work on languages and operating systems foflglamsachines.

In 1982, Steve Chen’s group at Cray Research produces th¥-4il&, containing two pipelined
processors (compatible with the CRAY-I) and shared memory.

In 1991, Sun begins shipping the SPARC server 600 (alsodc8lian-4/600) series machines
(shared-memory multiprocessors containing up to 4 SPARG<ch).

In 2000, Blue Horizon, built by IBM, is located at the San Diegupercomputer Center and first

come into full production operation March 1st, 2000. Thediaaare consists of 1152 processors.
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Each processor runs at 222 MHz and they are grouped into rddeprocessors per node. Each
node is able to access 4 GB of RAM, this gives a total memory’6{3b.

In 2003, TeraGrid is the world’s largest, fastest, distigloliinfrastructure for open scientific
research. It includes 20 tera flops of computing power thisted at five sites, facilities capable of
managing and storing nearly 1 peta byte of data, high-réealwisualization environments, and
toolkits for grid computing. These components will be tighhtegrated and connected through a
network that will operate at 40 gigabits per second—thesfgesearch network on the planet.

Now [26] the world’s first hybrid supercomputer has brokerotlgh the "petaflop barrier”
of 1,000 trillion operations per second, according to th8.UWDepartment of Energy. Codenamed
"Roadrunner,” the machine is designed by IBM and uses CealhBlband Engine chips originally

developed for video game platforms.

1.2 Applications

The main shortcoming of single-CPU systems comes from therént lack of memory and com-
putational resources; then parallel computation provaleslution for this problem. Parallel com-
putation provides higher performance than single-CPU,aallgl computation can solve same
sized problems faster or can treat larger problems thairequore processing power and/or more
memory. Moreover, it is possible to easily upgrade a pdratimputer by adding more CPUs and
memory.

Parallel computing is used for many applications, and it levdne futile to try to list them all.

Some of the major market sectors are:
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e Numerically intensive simulations, including: computatal fluid dynamics (CFD), compu-
tational electromagnetics (CEM), oil reservoir simulapcombustion modelling, molecular

dynamics modelling, quantum chromodynamics, quantum ®igmetc;

e Graphical visualization including image processing;

e Database operations and information systems includingntcand inventory database man-
agement, data mining, online transaction processing, geamant information systems, geo-

graphic information systems, seismic data processing, etc

e Real-time systems and control applications includingdivare and robotics control, speech

processing, pattern recognition, etc.

1.3 Future

According to Moore’s Law, the number of transistors on a opecocessor would double approxi-
mately every eighteen months, which is to say that for the tvex decades computer chips would
double in speed every eighteen months. This makes it pesfblparallel computers to increase
performance at this rate as well. One can guess at the céipalaind possibilities of parallel com-
puters in the future. The following are some of what is enmeygn the parallel computing field:

computers similar to the TeraGrid (the world’s fastest mekwof parallel computers, mentioned
earier), and grid support software that will provide a ey “seamless” interface among geo-
graphically separated computers sharing data and coriqngat

Other developments include:
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e Return of the vector machines—one of the first technology#&sallel systems is enjoying a

“renaissance” in the US.

e Computers that will take advantage of the inherent parstteto higher levels:

1. Processor-In-Memory (PIM) designed to compensate fodisparity between memory

access times and computation times.

2. Quantum Computers—will take advantage of parallelisneiant in quantum mechan-

ical systems.

1.4 Thelssue

The notion of one model being more powerful than anothertlgeraintuitive. However, although
not always explicit, we always have in mind real-time conagions, so in this thesis we are using
a strong notion of “more powerful”: We say that model A is (netcessarily strictly) more power-
ful than model B only ift(n) computational steps of model B using polynomial resouregshe
simulated inO(t(n)) steps of model A using polynomial resources.

The shared memory and bus models are the major parallel ¢atiggumodels (a third model,
the interconnection network is a particular case of the badet). They have been researched by
the industry and academia alike. Based on such models, relwant products and demos showed
up. They have been used widely and with significant succasshdred memory models (such as

the PRAM), any computation unit can access any memory lcagimilarly, in bus models any
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computation unit can access any bus, which thus replacesdh®ry for inter-processor communi-

cation. Shared memory models have emerged as a good tkkabnaetidel, while bus models are con-

sidered closer to practice. A natural question that has spduhe research on parallel computation
is whether these two models are similar in power. To makearsathore complicated, some shared
memory models support concurrent write, but only producagiflcollision happens; some other

models support priority concurrent write, and some otharsambine concurrent writes. Combin-
ing concurrent write shared memory model appear intuititelbe the most powerful, though this

has not been proven to date.

More specifically, the Priority concurrent-read concutherite parallel random access ma-
chinét (CRCW PRAM) is the most convenient and powerful model of f@raomputation and so it
is used extensively in analyzing parallel solutions tomasiproblems. Lower bounds on the PRAM
are in particular very strong. The Priority CRCW PRAM is sdimes considered [19] to be at the
upper level of feasible parallel models. The broadcast sétlective reduction (BSR) on the other
hand is at present the most powerful model of parallel coatjmut, with the Combining CRCW
PRAM falling somewhere in between. By logical extensiontaf tPriority CRCW PRAM being
at the upper end of the feasibility chain [19], the CombinBRCW PRAM and the BSR should
not be considered feasible; however, efficient implemantatfor them have been proposed [1, 2].

Finally, models with directed reconfigurable buses (narttedydirected reconfigurable multiple bus

!Reading from shared resources can happen concurrentlytosmexclussive-read (ER) and the concurrent-read
(CR) variants exist for most models. Similarly, a model carannot write concurrently into shared resources, so the
EW and CW variants exist. Combining these features, wendjsish between EREW, CREW , CRCW variants of a
model. Writing concurrently into a shared resource can teatbnflicts which are resolved using a conflict resolution
rule such as Common (concurrent writing is allowed only whérthe processors write the same value), Collision (a
special collision marker ends up written instead of any essor provided data), Priority (only the writing of the hégh
priority processors succeeds), and Combining (a comloinasi written in the shared location). These notions present
in mode details in Section 2.3.
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machine or DRMBM and the directed reconfigurable network BMN) are not only feasible, but
they have also been implemented in VLSI circuits [22]; stiiley are considered complex and of
restricted feasibility as a general model of parallel cotapan.

Itis widely believed (though to our knowledge not provergttRriority CRCW PRAM is strictly
less powerful than the Combining CRCW PRAM, which is in tutricly less powerful then the
BSR. The models with directed reconfigurable buses have sleman to be at least as powerful as
the Priority CRCW PRAM [23] but are otherwise not placed ahgve in this hierarchy.

In all, mirroring the beliefs and formal results summarizadmve, one can identify two “cate-
gories” of models of parallel computation: we thus call thimfty CRCW PRAM and the models
below it in terms of computational powdéightweight models, with theneavyweighimodels rep-
resented by the Combining CRCW PRAM, the BSR, and the moditsdivected reconfigurable
buses.

In this thesis we attempt to clarify the relationship betwalt these various models, with partic-
ular focus on the heavyweight class. We find that all the neidehe heavyweight class are actually
equivalent with each other, and that the choice of two clafseavyweight and lightweight) is jus-
tified. We also provide results regarding the bus modelsagbrg them yet closer to the practical

realm.

1.5 The Hierarchy of Parallel Models

The work presented in this thesis can be grouped along thageideas:

e The relationship between PRAM varieties (Collision, AfipiCombining).
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e The relationship between PRAM and the BSR(a Combining PRAM svBroadcast instruc-

tion added on top).

e The relationship between directed reconfigurable busest@nBSR.

Recall that we called the computational models below RyicRCW PRAM lightweight,
while the BSR, Combining CRCW PRAM and directed reconfiglerdduses get to be heavyweight
models.

Previous work on parallel real-time computation [9] hasdoied a number of incidental re-
sults regarding these models. Specifically, a tight charaettion of constant time computations
on directed reconfigurable multiple bus machines (DRMBM} wéfered: DRMBM and directed
reconfigurable networks (DRN) with constant running timeenbeen found to have the same com-
putational power, which in turn is the same power as nonaetestic logarithmic space-bounded
Turing machines. In addition, it was shown that in the casmoftant time DRMBM computations
there is no need for such powerful write conflict resolutiates as Priority or Combining as they
do not add computational power over the easily implemeat@lllision rule, that an unitary bus
width is enough (i.e., a simple wire as bus will do for all ciams time DRMBM computations),
and that segmenting buses does not add computational peesrefusing buses.

Such properties (Collision being the most powerful resofutule and unitary bus width be-
ing sufficient) turn out to hold for the other model with dited reconfigurable buses, namely the
DRN [7]. Finally, whether the Conflict resolution rule is geally (i.e., not only for constant time

computations) universal on DRMBM and DRN was also shown iriie
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We use the results mentioned in the above paragraph as lwthrid motivation to offer an
analysis of computational power for various models of garabmputation. As expected, we find
that the class of heavyweight models is strictly more powdhian the class of lightweight models.
Surprisingly, we also find that all the heavyweight modets lrmwever equivalent with each other,
despite the perceived high computational power of the BSR.

Since one class of models we consider extensively is modéig@configurable buses, we also
linger a bit more on the matter. We clarify the notion of widtaflict on these models, and we show
that either exclusive-write or Combining concurrent-eiig universal on all these models (be they
directed or undirected). We also note that all the recondiigler models can be laid out as meshes.

Both these results are practically significant in the dono&MLSI circuits.

1.6 Thesis Summary

The remainder of this thesis is organized as follows: Chiahitetroduces the concepts used through-
out the thesis. We first review briefly (Section 2.2) the nsagsnotions from the complexity theo-
retical realm, including the notion of complexity class@sting machines, and the Graph Accessi-
bility Problem (which is central to our results). We therraatuce the parallel computation models
that we will use, namely the PRAM (with all its variants inding the BSR, in Section 2.3), the
models with reconfigurable buses (Section 2.4), and theeBwoatircuit (Section 2.5).

We mentioned earlier that our work is based on and is alsovatetl bt previous results about
models with reconfigurable buses. Chapter 3 presents thealts, namely the characterization of

constant time computations on the RMBM (Section 3.1) andRREBM (Section 3.2), as well as
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the universality of Collision on directed reconfigurablesés (Section 3.3).

Chapter 4 presents the main contribution of this thesis.éethuivalence of all the heavyweight
models and the difference between the heavyweight andghemeight classes are the subject of
Section 4.1, while consequences (including real-time idenations) are presented in Section 4.2.

Further consequences of our results are addressed in Chapte address here the different
definitions of Collision on reconfigurable buses and we show bur previous results adjust de-
pending on the definition used (Section 5.1), and we alsosfoauthe simulation of reconfigurable

buses on their simplest variant, the mesh (Section 6.2).



Chapter 2

Models And Computational Complexity

We introduce here the parallel computation models of istereour work. We give the main features
of these models, such as the type of resources used (prozeassnory, buses, switches), the size
of these resources, and the way they can talk to each otleetieély.

We do not consider here some models, as they are too weakutaggnthe others: Some models
with limited interconnection schemes can be too weak to itawther models [11]. For example, in
the tree connected parallel machine, although any two psace can communicate via short paths,
there is a bottleneck at the root that limits the bandwidtthefcommunication between processors.
The mesh connected parallel machine can only communicegetlgi with its neighbors, and this
results in an average path of lengg for n processors.

Some other models of parallel computation are too poweofblet simulated by the more com-
mon models. This includes machines that can generate exjalhelong values or activate expo-

nential numbers of processors in polylogarithmic time.

12
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Before we start presenting the models as promised, we gresefly some complexity theoret-
ical notions used throughout the thesis.
Results proved elsewhere are introduced henceforth agsttiops, whereas results proved in

this work are introduced as Theorems. Intermediate reardtall Lemmata.

2.1 GAP and NL

GAP; ; denotes the following problem: Given a directed graph= (V,E), V = {1,2,...,n}
(expressed e.g., by the (Boolean) adjacency majridetermine whether verteXs accessible from
vertexi. PARITY,, denotes the following problem: giveninteger datacq, xo, .. .,x,, cOmpute the
function PARITY,, (z1, z2,...,2,) = (3, ;) mod 2.

We denote by [NL] the set of languages that are accepted by deterministitdgterministic]
Turing machines that use at mastlog n) space (not counting the input tape) on any input of length
n [20].

For some languagé € NL there exists a nondeterministic Turing machivfe= (K, X, J, so)
that acceptd. and uses)(log n) working spaceK is the set of states; is the tape alphabet (we
consider without loss of generality that= {0, 1}), J is the transition relation, ang, is the initial
state.M accepts an input string iff M halts onz. A configuration of A/ working on inputz is
defined as a tuplés, i, w, j), wheres is the statej andj are the positions of the heads on input
and working tape, respectively, ands the content of the working tape. There atéy(n) possible
configurations of\/. For two configuration®; andwvs, we writev; F vy iff v can be obtained by

applyingé exactly once on [20].
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The set of possible configurations &af working onx forms a directed grapff (M, z) = (V, E)
as follows: V' contains one vertex for each and every possible configuraifol/ working on
x, and (vi,ve) € E iff v; F vy. It is clear thatz € L iff some configuration(h, iy, wy, jp) 1S
accessible irG (M, ) from the initial configuration(sy, iy, wo, jo). For any languagé € NL and
for any z, determining whether € L can be reduced to the problem of computing GAR for
G(M,x) = (V, E), whereM is someNL Turing machine decidingd..

The class of problems iNL with the addition of (any kind of) real-time constraints sndted
by NL /7t [9]. We denote by rt-PROE ( f) the class of those problems solvable in real time by the
parallel model of computatio® that usesf(n) processors (and alst(n) buses if applicable) for

any input of sizen [8]. The following strongly supported conjecture is thetabfished.

Claim 1 [9] rt-PROCRCW F-DRMBM(),,14 (1)) = NL /rt.

2.2 Other Complexity Classes

Typically, a complexity class is defined by

¢ A model of computation.

e Aresource (or collection of resources).

¢ A function known as the complexity bound for each resource.
The models used to define complexity classes fall into twarnategories:

e Machine-based models.
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e Circuit-based models.

Turing machines (TMs) and random-access machines (RAMs}har two principal families of
machine models. We describe circuit-based models lateeation 2.5. Other kinds of (Turing)
machines includes deterministic, hondeterministic,ra#téng, and oracle machines. We empha-
size the fundamental resources of time and space for detistrmiand non-deterministic Turing
machines. We concentrate on resource bounds betweentlhogiarand exponential, because those
bounds have proved to be the most useful for understandotgegmns that arise in practice.

Given functionst(n) and s(n): DTIME[t(n)] is the class of languages decided by determin-
istic Turing machines witlt(n) running time. NTIMEt(n)] is the class of languages decided by
nondeterministic Turing machines witfw) running time. DSPACE(n)] is the class of languages
decided by deterministic Turing machines usifl@) tape space. NSPACEn)] is the class of
languages decided by nondeterministic Turing machinegusin) tape space. We sometimes ab-
breviate DTIMEt(n)] to DTIME[t] (and so on) whenis understood to be a function, and when no
reference is made to the input length

The following are the canonical complexity classes [4]:

L = DSPACHIogn| (deterministic log space)

NL = NSPACHIlogn]| (nondeterministic log space)

GAP € NL-Complete [11]

P = DTIME[n°(")] (polynomial time)

NP = NTIME [2°(M] (nondeterministic polynomial time)
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PSPACE = DSPACHnR®M] (polynomial space)

EXP = DTIME[29(")] (deterministic exponential time)

NEXP = NTIME [2°(")] (nondeterministic exponential time)

EXPSPACE = DSPACH2"©(1)] (exponential space)

The space classd3SPACE and EXPSPACE are defined in terms of the DSPACE complex-
ity measure. By Savitch’s Theorem, the NSPACE measure wotiinpmial bounds also yields

PSPACE, and with2"°(}) bounds yieldEXPSPACE.

2.3 The PRAM and the BSR

The PRAM [1, 19] is the most convenient and thus most populadahof parallel computation. A

PRAM consists of a number of processors that share a commdomaaccess memory. The pro-
cessors execute the instructions of a parallel algorithnetapnously. as shown in Figure 2.1. The
shared memory stores intermediate data and results, andealgees as communication medium for
the processors. The model is further specified by definingndiemory access mode; we thus obtain
exclusive-read exclusive-write (EREW), concurrent-readlusive-write (CREW) and concurrent-

read concurrent-write (CRCW) PRAM. While reading concntie from the shared memory is

defined straightforwardly, writing concurrently into thieased memory requires the introduction
of a conflict resolution rule (for the case in which two or m@mcessors write into the same
memory location). Four such conflict resolution rules arese: Common (the processors writing

simultaneously in the same memory location must write tieesealue or else the algorithm fails),
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Shared Memory

P1 P2 P3 Pn

Figure 2.1: The PRAM architecture

Collision (multiple processors writing into the same meyntmcation garble the result so that a
special “collision” marker ends up written at that locatiostead of any processor-provided data),
Priority (processors are statically numbered and the mgihooation receives the value written by
the lowest numbered processor), and Combining (where aybmssociative reduction operation is
performed on all the values sent by all the processors todime snemory location and the result is
stored in that memory location).

Given the obvious decreased computational power as wefleasttaightforward implementa-
tion of concurrent-read machines, we will not consider esivie-read variants. For similar reasons,
exclusive-write machines will receive a spotty considergtif any.

The BSR model [1, 2, 3] is an extension of the Combining CRCWAMRAII the read and write
operations of the CRCW PRAM can also be performed by the Bs&ddlition, all the BSR proces-
sors can write simultaneously into all the memory locatifthe Broadcast instruction, illustrated
graphically in Figure 2.2). Every Broadcast instructiomsists of three steps: In th@oadcasting

step all then participating processors produce a datdyrand a tagy;, 1 < i < n, destined to
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Figure 2.2: The BSR model

all them memory locations. In theelection ste@ach of then memory locations uses a limif,

1 < j < mand a selection rule € {<,<,=,>,>,+#} to test the received data; the datdimis
selected for the next step iff o /;. Finally, thereduction stegombines all the datd; destined for
memory locationj, 1 < j < m and selected in the previous step using a binary, assariapier-
ator R, and then writes the result into memory locatipriThe Broadcast instruction is performed
simultaneously for all the processors and all the memorgtions.

Typically, the reduction operatd® of the BSR as well as the Combining operator of the
Combining CRCW PRAM can be any of the following operatiofgsum),II (product), A (logical
conjunction)\/ (logical disjunction),& (logical exclusive disjunction)nax (maximum), andnin
(minimum).

We denote byX CRCW PRAM(n),t(n)) the class of problems of sizethat are solvable in
time ¢(n) on a CRCW PRAM that usgs(n) processors an& as collision resolution ruleX e

{Common Collision, Priority, Combining}. Similarly, we denote by BS®(n), t(n)) the class of
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problems of size: that are solvable in tim&n) on a BSR that uses(n) processors.

The notion of uniform families of PRAM or BSR machines exiftd] and is similar to the
notion of uniformity for models with reconfigurable buses lfe introduced below). However, we
do not need such a notion in this thesis. Still, we assumesisroary that one location in the shared
memory hadog n size for an input of size,, and that the number of memory locations are upper
bounded by a polynomial in the number of processors usedn/sgausual, we assume that every
BSR or PRAM processor has a constant number of internaltezgjeach of sizeg n. Finally, we
assume that every PRAM processor knows its number as wdikawstal number of processors in
the system.

The following facts will be used later:
Proposition 2.3.1 [10]PARITY,, ¢ Priority CRCW PRAMpoly(n), O(1)).

Proposition 2.3.2 [12]The reflexive and transitive closure of a graph withsertices (and thus

GAP; ; on the given graph) are iBSR(O(n?), O(1)).

2.4 Models with Reconfigurable Buses

2.4.1 The Reconfigurable Multiple Bus Machine (RMBM)

An RMBM [21] consists of a set gb processorsaandb buses Figure 2.3 shows the structure of an
RMBM. For each processarand bush there exists awitchcontrolled by processar The details
of the switches are shown in Figure 2.4. Using these swit@d@socessor has access to the buses

by being able to read or write from/to any bus. A processor beagble tasegment bus (open the
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Si,j,1 0rS; j0), obtaining thus two independent, shorter buses, and ilowed tofuseany number
of buses together by usingfase lineperpendicular to and intersecting all the buses. DRMBM,
the directed variant of RMBM, is identical to the undirected model, extcln the definition of
fuse lines: Each processor features two fuse ligesvhandup). Each of these fuse lines can be
electrically connected to any bus. Assume that, at somengivement, buses,, io, ..., i, are all
connected to the down [up] fuse line of some processor. Thsignal placed on bug is transmitted
in one time unit to all the buses such that; > i; [¢; < i,]. If some RMBM [DRMBM] is not
allowed to segment buses, then this restricted variantnstdd by F-RMBM [F-DRMBM] (for
“fusing” RMBM/DRMBM). The bus widthof some RMBM (DRMBM, etc.) denotes the maximum
size of a word that may be placed (and read) on (from) any baaéncomputational step.

For CRCW RMBM, the most realistic conflict resolution ruleGsllision , where two values
simultaneously written on a bus result in the placement opecial, “collision” value on that
bus. We consider for completeness other conflict resolutibes such as Common, Priority, and
Combining. However, we find that all of these rules are in fagivalent to the seemingly less
powerful Collision rule (see Proposition 3.1.1(3)). Wetries only the Combining mode, requiring
that the combining operation be associative and compuialslendeterministic linear space.

An RMBM (DRMBM, F-DRMBM, etc.)family R = (R,,),>1 iS a set containing one RMBM
(DRMBM, F-DRMBM, etc.) construction for each > 0. A family R solves a problenP if,
for anyn, R, solves all inputs forP of sizen. We say that some RMBM family is a uniform
RMBM family if there exists a Turing machin&/ that, givenn, produces the description @i,
using O(log(p(n)b(n))) cells on its working tape. We henceforth drop the “uniformiatifier,

with the understanding that any RMBM family described irstpaper is uniform. Assume that
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some familyR = (R,,) solves a problenP, and that eaclR,,, n > 0, usesp(n) processors,
b(n) buses,X as write conflict resolution rule, and has a running titie). We say then that
P € X,RMBM(p(n),b(n),t(n)) (or P € X F-DRMBM(p(n),b(n),t(n)), etc.), and thaik has
size complexity(n)b(n) andtime complexity(n). Whenever we state a property that holds for any
conflict resolution rule we drop th& (thus writing P € RMBM(p(n), b(n), t(n)), etc.).

It should be noted that a directed RMBM can simulate a unticeBRMBM by simply keeping
all the up and down fuse lines synchronized with each othest 5, X Y Z RMBM (z(n), y(n),
z(n)) € XY ZDRMBM(z(n),y(n),z(n)) foranyz,y,z : IN — IN, X € {Common Collision,

Priority, Combining;, Y € {CRCW,CREW}, andZ € {F-,¢}.

2.4.2 The Reconfigurable Network (RN)

An RN [5] is a network of processors that can be representadasnected graph whose vertices are

the processors and whose edges represent fixed conneaioreen processors. Each edge incident
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to a processor corresponds to a (bidirectional) port of luegssor. A processor can internally
partition its ports such that all the ports in the same bldakat partition are electrically connected
(or fused) together. A sample RN structure is shown in FiguBe Two or more edges that are
connected together by a processor that fuses some of is foom a bus which connects ports of
various processors together. CREW, Common CRCW, Colli€§REW, etc. are defined as for the
the RMBM model. ThadirectedRN (DRN for short) is similar to the general RN, except tha th
edges are directed. The concept of (uniform) RN family isiabal to the concept of RMBM family.
For some write conflict resolution rul¥, the classX RN(p(n),t(n)) [X DRN(p(n), t(n))] is the
set of problems solvable by RN [DRN] uniform families witlin) processorsy(n) is also called
the size complexifyand¢(n) running time using the conflict resolution ruk. As in the RMBM
case, we drogX when the stated property refers to any conflict resolutide. ru

Once more similar to the RMBM case, we note that given a uotticeRN, we can create an
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equivalent DRN by simply replacing every undirected bushweitpair of directed buses. That is,
XY RN(z(n),y(n)) € XY DRN(z(n),y(n)) foranyz,y : N — IN, X € {CommonCollision,

Priority, Combining;, andY” € {CRCW, CREW}.

2.4.3 The Reconfigurable Mesh

A two-dimensional reconfigurable mesh is a special case of R special case is of particular
significance for implementation reasons. Bnx C' 2-dimensional reconfigurable mesh (or simply
anR x C' R-Mesh) consists oR x C processors arranged i rows andC' columns as am® x C
two-dimensional mesh. Figure 2.6 shows the structure ota &-Mesh. We will usually number
rows [columns] 0,1,...R — 1[0, 1, ...,C — 1] with row O at the top [columns O at left]. Each
processor has four portd/, S, F, andW, through which it connects to processors (if any) to its
North, South, East, and West. Besides these external ciimmgceach processor can also establish
internal connections among its ports that correspond tttipas of the setV, S, £, W of ports.

There are 15 possible port partitions along with the cooeding internal connections. A processor
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can change its internal connections at each step. The aktanal internal connections together
connect processor ports by buses. The buses formed by aggver port partitions of processors
of the R-Mesh comprise a bus configuration of the R-Mesh. rei@u7 shows a bus configuration
of a3 x 5 R-Mesh with one of the buses shown in bold. We say that a pogrmxessor) through
which a bus passes is incident on that bus or that the bugs$es/ehe port (or processor). Any port
that is incident on a bus can read from and write to that bus.

Similarly, anR x C' 2-dimensional DR-MESH is a® x C reconfigurable mesh, except that
the bus communication is directed: the S, £/, andWW ports of the processors are directed, and the
inter-port connection in a processor is also directed.

In passing, note that the definition of a two-dimensionale@ied or undirected) reconfigurable

mesh extends naturally to higher dimension.

2.5 The Boolean Circuit

Although the PRAM model is a natural parallel extension & RAM model, it is not obvious
that the model is actually reasonable. Many experts hadiqunesabout the PRAM. For example:
does the PRAM model correspond, in capability and cost, thysipally implementable device?
Is it fair to allow unbounded numbers of processors and mgroelis? Is it sufficient to simply
have a unit charge for the basic operations? Is it possibleate unbounded numbers of proces-
sors accessing any portion of shared memory for only unit?clsssynchronous execution of one
instruction on each processor in unit time realistic? Toosepissues like these, it is useful to have

a more primitive model that, although being less conveniemtrogram, is more closely related to
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the realities of physical implementation. Such a model ésBholean circuit. The model is simple
to describe and mathematically easy to analyze. Circuéshasic technology, consisting of very
simple logical gates connected by bit-carrying wires. Thaye no memory and no notion of state.
Circuits avoid almost all issues of machine organizatiod iastruction repertoire. Their computa-
tional components correspond directly with devices thatewe actually manufacture. The circuit
model is still an idealization of real electronic computidevices. It ignores a host of important

practical considerations such as circuit area, volumelimitations, power dissipation, packaging,
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and signal propagation delay. Such issues are addressedarmurately by more complex VLSI
models, but for many purposes the Boolean circuit model sdemprovide an excellent compro-
mise between simplicity and realism. For example, one feath PRAM models that has been
widely criticized as unrealistic and unimplementable s&ssumption of unit time access to shared
memory. Consideration of (bounded fan-in) circuit modeigases this issue immediately, since a
simple fan-in argument provides a lower bound of procesflogsp) on the time to combine bits
from p sources, say by logical or, a trivial problem on a unitdCRCW PRAM. A circuit is sim-
ply a formal model of a combinational logic circuit. It is anyalic directed graph in which the
edges carry unidirectional logical signals and the vesticempute elementary logical functions.
The entire graph computes a Boolean function from the infutse outputs in a natural way. Let
B ={f | f:{0,1}* — {0,1}} denote the set of aki-ary Boolean functions. We refer informally
to such functions by strings “1,” “0,”A,” “ V,” among others.
Since the 1970s, research on circuit complexity has focaesedroblems that can be solved

quickly in parallel, with feasible amounts of hardware—eait families of polynomial size and

depth as small as possible. Note, however, that the meaifitige phrase "as small as possible”
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depends on the technology used. With unbounded fan-in,gégpth O(1) is sufficient to carry out
interesting computation, whereas with fan-in two gategthliéess than log(n) is impossible if the
value at the output gate depends on all of the input bits. ynt@chnology, however, a circuit with
depth nearly logarithmic is considered to be very fast. Tiservation motivates the following
definitions.

Boolean circuita is a labeled finite directed acyclic graph. Each ventetias a type(v) €
T'U (U= Bi)- A vertexv with (v) = I has in-degree 0 and is called an input. The inputs afe
given by a tuplgx4, ..., z,) of distinct vertices. A vertex with out-degree O is called an output.
The outputs ofx are given by a tupléy, ..., y,,) of distinct vertices. A vertex with (v) € B;
must have in-degreeand is called a gate [11].

A Boolean circuito with inputs(zy, ..., z,,) and outputsy, . . . , y,,) computes a functioif :
{0,1}™ — {0, 1}™ in the following way: inputc; is assigned a valug(x;) from {0, 1} representing
thei-th bit of the argument to the function. Every other verteis assigned the unique vallig €
{0,1} obtained by applyingv) to the value(s) of the vertices incoming to The value of the
function is the tupl€v(y1), ..., v(ym)) With outputy; contributing thej-th bit of the output. When
the logical function associated with a gate is not symmetiie order of the incoming edges into
the gate is important [11].

Like we can define sequential complexity classes using @umachine, we can use Boolean
Circuits to define parallel complexity classes. Parallehptexity measures (for a given circuit C)

are:

e Depth = parallel time.
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e Size (number of gates) = parallel work.

Let C' = (C;)i>0 be a family of Boolean circuits, and I¢{n) andg(n) be functions from integers
to integers. We say that parallel time ©fis at mostf(n) if for all »n the depth ofC), is at most
f(n). Analogously, the sizg(n) is equivalent with parallel work.

We definePT /W K (f(n),g(n)) to be the class of all languagésC {0,1}* such that there
is a family of circuitsC' deciding L with O(f(n)) parallel time andD(g(n)) parallel work. For

example,
e MATRIX MULTIPLICATION € PT/W K (logn,n3/logn) [11]

e REACHABILITY € PT/W K (log? n, n®log n) [11]

Proposition 2.5.1 [11]if L € {0,1}* isin PT/W K(f(n), g(n)), then there is a PRAM that com-
putes the corresponding function FL mappif@, 1}* to {0,1} in parallel time O(f(n)) using

O(g(n)/f(n)) processors.
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That s, circuits can be efficiently simulated by the PRAM e(mocessor will simulate approx-
imately g(n)/ f(n) gates. Simulating a gate is straightforward, we only neadadke sure that the
input of the gate is already computed, i.e., we need to coerpettime for each gate when its input
data will be ready for sure and then execute its program #tithe.

The converse is also true: circuits can simulate the PRANeagfficiently.

Proposition 2.5.2 [11]If a function F' can be computed by a PRAM family in tinfén) with
g(n) processors, then there is a family of circuits of depthO(f(n)(f(n) + logn)) and size
O(g(n)f(n)(nkf(n)+ g(n))) which computes the binary representatiorFgfwheren;, is the time

bound of the log-space Turing machine which outputsittie PRAM in the family.

A configuration of the PRAM—including all program countersdeall registers —is of size at
most f(n)g(n). The next configuration can be computed in tiMédog!), wherel is the largest
number in a register. We have quite a number of tests perfibimearallel, but all are conceptually
straightforward.

The circuit shown in Figure 2.8 has size eight and depth thrkis description can be thought
of as a blueprint for that circuit, or alternatively as a fiatgprogram executed by a universal circuit

simulator.



Chapter 3

Preliminary And Known Results

3.1 DRMBM and Small Space Computations

The characterization of constant time DRMBM computatioaesatibed in the introductory chapter

can be formally summarized as follows:

Proposition 3.1.1 [9]
1. DRMBM(poly(n), poly(n),O(1)) = NL = Collision CRCW F-DRMBMpoly(n), poly(n),
O(1)) with bus widtht.

2. DRMBM(poly(n), poly(n),O(1)) = DRN(poly(n),O(1)).

3. For any problemr solvable in constant time by some (directed or undirecREIBM fam-
ily using poly(n) processors angoly(n) buses;r inCollision CRCW F-DRMBMpoly(n),

poly(n), O(1)) with bus widthl.

The crux of the proof for Proposition 3.1.1 is given by thddaiing Lemmata.

30
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Lemma 3.1.2 [9JCRCW DRMBM(poly(n), poly(n),O(1)) C NL, for any write conflict resolu-

tion rule and any bus width.

Proof. Consider som&? € CRCW DRMBM(poly(n), poly(n),O(1)) performing stepd of its
computation(d < O(1)). We need to find ahlL Turing machinel/, that generates the description
of R after stepl usingO(log n) space, and thus [11] &L Turing machinel/), that receives.’ (the
number of processors iR) and some, 1 < i < n/, and outputs the({(log n) long) description
for processot instead of the whole description. We establish the existefid/,; (and thus)/)) by
induction overd, and thus we complete the proof.

My exists by the definition of a uniform RMBM family. We assume tbxistence of\/;_,
M,_, and show how/; is constructed. For each procesgprand each bug read byp; during
stepd, M, performs (sequentially) the following computatiahf; maintains two word$ and p,
initially empty. For everyp; , 1 < j < poly(n), M, determines whether; writes on bust. This
implies the computation of GAR (clearly computable in nondeterministiZ(log n) space since it
is NL-complete [20]). The local configurations of fused and segettbuses at each processor (i.e.,
the edges of the graph for GAR are obtained by calls td/, ,. The computation of GAR, is
necessary to ensure that we takento account even whep; does not write directly to bus but
instead to another bus that reaches btisrough fused buses.

If p; writes on busk, then)M,; usesM,_, to determine the value written byp; , and updates
andp as follows:(a) If b is empty, then itis set to (p; is currently the only processor that writes to
busk), andp is set toj. Otherwise:(b) If R uses the Collision rule, the collision signal is placed in

b. (¢) If the conflict resolution rule is Priorityy and; are compared; if the latter denotes a processor
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with a larger priority, therb is set tov andp is set toj, otherwise, neitheb nor p are modified;
the Common rule is handled similarl) Finally, if R uses the Combining resolution rule with
as combining operatiom, is set to the result of o v (since the operation is associative, the final
content ofb is indeed the correct combination of all the values writtarbask).

Once the content of bushas been determined, the configuratiomppis updated accordingly,
b andp are reset to the empty word, and the same computation isrpextbfor the next bus read

by p; or for the next processor. The whole computationff clearly take<O(log n) space. |

Lemma 3.1.3 [9]Let M = (K, X, 4, s9) be anNL Turing machine that accepts € NL. Then,

given some word, |z| = n, there exists £REWor CRCW F-DRMBM algorithm that computes

G(M, z) (as an adjacency matrik) in O(1) time, and usingoly(n) processors angoly(n) buses

of width1.

Proof. Putn’ = |V|(n’ = poly(n)). The RMBM algorithm uses + (n/* —n/) processors: The first
n processory;, 1 < i < n, containz, i.e., eactp; containse;, thei-th symbol ofz; p; does nothing
but writesz; on busi. We shall refer to the remaining® — n’ processors apij, 1 <i,j7 <n
Eachp,; assembles first the configurations corresponding to verticendv; of G(M, ) and then
considers the potential edge;, v;) corresponding td;;. If such edge exists, them; writes True
to I;;, and False otherwise. There is no inter-processor commtimncbetween processars, thus
any RMBM model is able to carry on this computation.

Clearly, given a configuration;, p;; can compute in constant time any configuratigracces-
sible in one step from;, as this implies the computation of at most a constant nurf®er*)) of

configurations. The whole algorithm runs thus in constanéti |
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3.2 DRN and Small Space Computations

The generality of the Collision resolution rule is not liedtto DRMBM computations. Indeed, the
same property holds for constant time computations on DRNedls We also find that a DRN is

able to carry out any constant time computation using onsebuof widthl.

Proposition 3.2.1 [7]For any problemr solvable in constant time on some varianR, it holds

that™ € CRCW DRNpoly(n), O(1)) with Collision resolution rule and bus width.
The proof of Theorem 3.2.1 is based on the following intenaedresults.

Lemma 3.2.2 For any X € {CRCW,CREW}, Y € {D,¢}, and for any write conflict resolution

rule, it holds thatX Y'RN(poly(n),O(1)) C Collision CRCW DRNpoly(n), O(1)).

Proof. First, note that Collision CRCW DRyoly(n),O(1)) = NL [5]. Thus, we complete the
proof by showing that, for any conflict resolution rule, CR@MN(poly(n),O(1)) C NL.

This result is however given by the proof of Lemma 3.1.2. &djét is immediate that the Turing
machinesM; andM/;, 0 < d < ¢ for some constant > 1, provided in the mentioned proof work in
the case of an RN just as well as for the RMBM simulation. The only differensdhat buses are
not numbered in the RN case. So, we first assign arbitraryufinbiguous) sequence numbers for
the RN buses as follows: There exists@flog n) space-bounded Turing machine that generates a
description ofR, sinceR belongs to a uniform RN family (in fact, such a Turing machimé/).
Then, in order to find “bug,” M, usesM, to generate the description &f until exactly k buses
are generated. The description is discarded, except féashgenerated bus, which is considered to

be “busk.” Since M, is deterministic, it always generates the description ésdime order. Thus, it
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is guaranteed that “bus’ is different from “bus;” if and only if £ # j. The proof of Lemma 3.1.2
continues then unchanged.

The extra space used in the process of generating: lmomsists of two counters over the set
of buses (one to keep the valéeand the other one to count how many buses have been already
generated). The counters takélog n) space each, since there are at mesy(n) processors, and

(poly(n))? = poly(n). Thus, the overall space complexity remaiddog n), as desired. [

Lemma 3.2.3 GAP, ,, € Collision CRCW DRN~=?2, O(1)) with bus widthi.

Proof. Let R be the DRN solving GAP,, instances of size. Then,R uses»? processors (referred
to asp;;, 1 <i,j < n), connected in a mesh. That is, there exists a (directidne)fromp;; only
to pi41); ifand only ifi +1 < n, and top;(; 1) ifand only if j + 1 < n, as shown in Figure 3.1(a).
As shown in the figure, we also denote By S, N, andW the ports ofp;; to the buses going to
Pi(j+1)» 90ing top(;41);, coming fromp;;_yy, and coming fronp;_,);, respectively.

We assume that the input graph= (V, E),

V| = n, is given by its adjacency matrik and
that each processeg; knows the value of;;.

The DRNR works as follows: Each processpy;, i < j fuses itsi and.S ports if and only if
I;; = True. Analogously, each procesggy, i > j fuses itsV andE ports if and only if/;; = True.
Finally, each processor; fuses all of its ports.

Then, a signal is placed hyi; on both its outgoing buses. jf,,, receives some signal (either
the original one emitted by;; or the signal corresponding to a collision) the input is ated;

otherwise, the input is rejected.
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Figure 3.1: (a) A mesh af x n processors. (b) A collection ef meshes connected together

It is immediate that? solves GAR ,,, by an argument similar to the one for RMBM [9] (also

note that a similar construction is presented and proverecbelsewhere [22]). In addition, the
content of the signal received by, is clearly immaterial, so a bus of widthsuffices. [ |
Recall now that the grapt¥(M, x) is the graph of configurations of the Turing machihg

working on inputz.

Lemma 3.2.4 For any languagel. € NL (with the associatedL Turing machine)M accepting
L), and given some word, |z| = n, there exists a constant tilf@REW (and thusCRCW) DRN
algorithm usingpoly(n) processors and buses of widtlihat computegz(M, x) (as an adjacency

matrix I).
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Proof. This fact is obtained by the same argument as the one presarites proof of Lemma 3.1.3.
Indeed, except for the distribution of inputto processors, there is no inter-processor communica-
tion; as such, any parallel machine will do.

Thus, the computation @ (M, ) = (V, E) will be performed by the same mesh of processors
R depicted in Figure 3.1(a), this time of sizé€ x n’ (wheren’ = |V|). In addition, the desired
input distribution will be accomplished byadditional meshes identical #. We will denote these
meshes by?;, 1 < i < n.Foranyl <i,j < n/andl < k < n, the processor at row columnj in
meshRy, [R], will be denoted by, [p%+1]. Each processas’; has two new port’ andD. There
exists a bus connecting pait of pf’j to portU of pfj“ foranyl < k < n. Then + 1 meshes and
their interconnection are shown in Figure 3.1(b).

At the beginning of the computationy, the k-th symbol of inputz, is stored in a register of
processopk;, 1 < k < n.

We note from the proof of Lemma 3.1.3 that each proceﬁﬁt’r of R is responsible for check-
ing the existence of a single edgej) of G(M, z). In order to accomplish this, it needs ordpe
symbolz;, ; from z, namely the symbol scanned by the head of the input tape figcoation:. We
assume that all the processp@, 1 <k < n, know the configuration (and thus the value df;;).

It remains therefore to show now howij reaches processp@?rl in constant time, for indeed,
after this distribution is achieved® is able to compute the adjacency matfiexactly as shown in

the proof of Lemma 3.1.3. The set af+ 1 meshes performs the following computation: For all

1<k<mnandl <i,j <n/,

1. Eachpf, broadcasts; to all the processors ift;.. To do this, all processors); fuse together
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their N, S, E, andWW ports, and thep¥, placesr;, on its outgoing buses.

2. Eachpfj compares: andh;;, and writes True in one of its registedsif they are equal and

False otherwise.
3. Eachpfj fuses itsV and D ports, thus forming x j “vertical” buses.
4. Eachpy; for whichd = True placesz;, on its portD.

5. Finally, eactp%frl stores the value it receives on itsport. This is the value af;,; it needs

in order to compute the elemefyt; of the adjacency matrix.

It is immediate that the above processing takes constamt timaddition, it is also immediate
that exactly one processor writes on each “vertical” bus, thns no concurrent write takes place.
Indeed, there exists exactly one procesﬁprl < k < n, such that = h;;. Therefore, we realized
the input distribution.

I;; is then computed by procesgr;%Jrl without further communication, as shown in the proof
of Lemma 3.1.3. The construction of the DRN algorithm thanpates! is therefore complete.
Clearly, buses of width are enough for the whole processing, sincis a word over an alphabet
with 2 symbols. [ |

Given Lemmata 3.2.3, 3.2.4, and 3.2.2 we can now prove otinfis result.

Proof of Proposition 3.2.1. That the Collision resolution rule is the most powerful éats from
Lemma 3.2.2. It remains to be shown only that a bus widshffices.
Given some languagé € NL, let M be the (L) Turing machine accepting. For any in-

putz, the DRN algorithm that accepfsworks as follows: Using Lemma 3.2.4, it obtains the graph
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G (M, x) of the configurations o}/ working onz. Then, it applies the algorithm from Lemma 3.2.3
in order to determine whether vertex(halting/accepting state) is accessible from veitdinitial
state) inG(M, x), and accepts or rejects accordingly. In addition, note that the valugs com-
puted by (and stored apz;“ in the algorithm from Lemma 3.2.4 are in the right place asiinp
for p;; in the algorithm from Lemma 3.2.3 (that uses only the mB3hit is immediate given the
aforementioned lemmata that the resulting algorithm ascépand uses no more thamwly(n)
processors, and unitary width for all the buses.

The proof is now complete, since all the problems solvabtmirstant time on DRN are included

in NL. [ |

3.3 Collision is Universal on Directed Reconfigurable Buses

The results regarding constant time computations are useftend the universality of the Collision

resolution rule to any running time.

Proposition 3.3.1 [7]TheCollision resolution rule is universal on models with directed reapnfi
urable buses. That is:
Forany X € {CRCW,CREW},Y € {D,¢c}, Z € {RN(poly(n), ), RMBM (poly(n), poly(n),

)}, andt : IN — IN it holds thatX Z(¢(n)) C Collision X DZ(O(t(n))).

Proof. The proof is immediate for CREW machines. Let n&be an RMBM family in CRCW
D RMBM (poly(n), poly(n),t(n)), and recall theNL machines)M), constructed in the proof of
Lemma 3.1.2. We then take the origin&| replace its conflict resolution rule with Collision, and

then split every stepof the computation of? into a constant number of steps, as follows:
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1. Each processgr of R reads the content of the original buses as required and #réorms
the prescribed computation for stgpexcept that wheneverwants to write to bug it also

writes the same value of a dedicated kysgthere is one such a bus for each processor).

2. A suitably modified maching/, from the proof of Lemma 3.1.2 (call this machifé) com-
putes the content of all the original buses of the networ&etan the configurations of all the
processors and the content of the (néybpuses; the content of bisthus computed is placed
on a brand new bus’. The meaning of “suitably modified” is that the machine doetsneed
to determine the configuration of the processorg&pindeed, the configurations are already
present in the processors themselves. So the machineditaddy with the computation of

GAP problems to determine the content of the buses.

3. A designated processpy, transfers the content of b onto busk and the algorithm con-

tinues with step + 1.

Given thatM is anNL Turing machine, it can be implemented by an polynomially rutad
DRMBM R, that runs in constant time, so the modified siegjakesO(1) time (and then the
whole computation take®(¢(n)) time, as desired). This new RMBM needs to read the configu-
rations of R; for this purpose a polynomial number of new buses can iaterect each processor
of R with each processor dk;;. We end up with a polynomial number of buses; that we have a
polynomial number of processors is immediate. The coresstiof the transformation follows from
Lemma 3.1.2 and Proposition 3.1.1.

The proof for RN represents a minor variation of the aboveopio light of Lemma 3.2.2

(that replaces Lemma 3.1.2) and of the construction usedeinrha 3.2.4 to distribute values to
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processors.
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Chapter 4

Relationships Between Parallel Models

We establish here our main result, the hierarchy of parailedels of computation and its collapse
at the top. We then consider some consequence, includingexaeation of previous results re-

garding real-time computations.

4.1 The Heavyweight and the Lightweight Classes of Paralléflodels

Recall that we called Priority CRCW PRAM and all the model$¢est computational power light-
weight, while the Combining CRCW PRAM, the BSR, and the meaath directed reconfigurable
buses were called heavyweight. We show in this section thtteaheavyweight models have the
same computational power, and that they are strictly moveegol than the lightweight models.

We thus obtain our main result:
Theorem 4.1.1 For any X € {Collision, Commor},

X CRCW PRAMpoly(n),O(t(n))) C Priority CRCW PRAMpoly(n),O(t(n)))

41
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Combining CRCW PRANpoly(n), O(t(n))) = BSR(poly(n),O(t(n))) =

DRMBM (poly(n), poly(n), O(t(n))) = DRN(poly(n), O(t(n))).

Proof. Theorem 4.1.1 is a direct consequence of Lemmata 4.1.2 6 delow. Specifically, all the
inclusions shown in the theorem are proved in the mentioreedrhata one by one. Additionally, it
is already known [21] that DRMBNboly(n), poly(n), O(t(n))) = DRN(poly(n),O(t(n))). M
We complete all the proofs below by showing how the model anrtght hand side of the
inclusion simulates in constant time one computationgb stethe model on the left hand side.

Once this is shown, the inclusion that needs to be provednbesdmmediate.

Lemma 4.1.2 Collision CRCW PRAMpoly(n), O(t(n))) C Priority CRCW PRAMpoly(n), O

(t(n)))-

Proof. A Collision CRCW PRAM withk processorg;, 1 < i < k andm memory locations:;,
1 < j < m s readily simulated by a Priority CRCW PRAM wittk + m processors denoted by
pl (1 <i<k),pf (1 <i<k),andp? (1 <j < m). (Note however that the processor grqip
and the processor grom@ pIUSp} take turns in the simulation, so the actual number of praress
required ismax(2k, m); however, the differentiation eases the presentation.)

In addition to the original memory locations, we use two more “banks” of the same siz;e
and u]l 1 < 5 < m. A Collision CRCW PRAM step (read,compute, write) is themulated as

follows:

1. Foreveryl < i < k, both the processoys andpj ,_; perform the same read, compute, and

write cycle as the originab;, with the following addition: Whenever procesggrwrites into
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memory locationu;, it also writes its number into memory |0C8.ti(2'l§l; similarly, whenever
processop,,+1—; Writes into memory location, it also writesn+1—1 into memory location

1
uj.

2. Every processay; writes the collision value into memory locatia) iff u]T = ujl

That the above simulation takes constant time is immedyate further that after Step 1 of the sim-
ulation the Iocatiom} [ujl.] contains the index of the lowest [highest] ranked proceds modified
the memory location:; (indeed, we operate on a Priority CRCW model, so only the sbwem-
bered processor succeeds in writing into a given memonytitogawe then chose the processors
numbers in appropriate manner for this to happen). Thennaxrmru} =+ ujl more than one pro-
cessor wrote into the given memory location, so a collisiccuored. Step 2 places collision markers

accordingly. The simulation is complete. [ |

Lemma 4.1.3 Common CRCW PRANpoly(n), O(t(n))) < Priority CRCW PRAMpoly(n),

O(t(n)))-

Proof. We simulate now a computational step of a Common CRCW PRAM witrocessors and
m memory locations in constant time using a Priority CRCW PRAMe simulation will use the
same numbek of processors (we denote them py 1 < i < k) and the same memory space

(denoted byi;, < j < m). The simulation proceeds as follows:

1. Allthe processorg; carry on the computational step prescribed by the CommonWR&AM
algorithm, including the operation of writing into the sedrmemory (recall, however, that

we are now using the Priority conflict resolution rule).
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2. Each processgy; that wrote a value; into memory location; in Step 1 also remembers

by storing it into an otherwise unused internal regigter

3. Everyp; that wrote a value into location; in Step 1 compares the contentof with the

content its registep.

(a) If the contents ofi; andp are the same then eithét) p; is the sole processor which
wrote intou;, (b) p; is the highest priority processor which wrote intg or (c) p; and
the highest priority processor agree on the value writtém 4). None of these cases

violate the Common resolution rule, spdoes not do anything.

(b) If on the other hand,; andp contain different values, then the value written intdoy p;
disagrees with the value written in the same location by sotiher processor, which in

turn violates the Common resolution rule. @borts the algorithm and reports failure.

Note that in effect we choseneof the processors writing concurrently into a memory laraths
representative for all the others (given that we have a Briorachine at our disposal, that rep-
resentative turned out to be the processor with the highesitg—however the way we chose a
representative is immaterial). Every processor which siamtwrite a value in some memory lo-
cation compares now its value with the value already writigrits representative; if the value is
different, then the Common conflict resolution rule is vield otherwise all is good and the overall
algorithm continues with the next step.

The above proof uses the usual definition of Common, as pegs@nSection 2.3. Still, we note
that sometimes this definition is termed “Fail Common,” case/hich the “Error-safe Common”

variant is also defined. In such a variant, any computatistesl that violates the Common resolution
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rule is discarded completely (that is, for all the processorthe system) and the algorithm contin-
ues with the next step (instead of aborting the computati@rproof for this modified variant of
Common is readily possible. Indeed, all we need is “backupies of the memory locations used
by the algorithm, plus one memory location used to signahaokation to everybody. The proces-
sors now use the backup memory to perform all the simulatistiibed above, except that they set
the violation flag instead of aborting the algorithm whemevgiolation of the Common resolution
rule occurs (since is is just a flag, using Priority as confiéstolution rule will do just as well as
almost any other rule). In the end, all the processors ingpedlag and write again the values they
wanted to write in the first place (this time in the main memagt the backup) iff the flag is not

set. |

Lemma 4.1.4 Priority CRCW PRAMpoly(n), O(t(n))) € Combining CRCW PRAMpoly(n),

O(t(n)))-

Proof. A Priority CRCW PRAM withk processorg;, 1 < i < k andm memory locations;,
1 < j < misreadily simulated by a Combining CRCW PRAM with the sammhar of processors

(denoted by’) and2m memory locations (denoted hy andw}):

1. Each processar, performs the same read and compute operations.dsstead of writing
(to memory location:;), p; however performs a “dry run” by writing its number into mermor

Iocationu;- using a Combining CRCW write witlmin as combining operation.

2. Each processay, performs now the real operation: It writes into the memomwat®nu; in

which it wanted to write to begin with, but only iff its numberatches the value storedzinj.



CHAPTER 4. RELATIONSHIPS BETWEEN PARALLEL MODELS 46

Themin as combining operation performed over the Iocat'rdpm the previous step ensures

that a matching occurs only for the lowest numbered proceasalesired.

That Combining CRCW PRANboly(n), O(t(n))) € Priority CRCW PRAMpoly(n), O(t(n)))
is an immediate extension of Proposition 2.3.1. Indeed, IPXR is trivially solvable in constant
time by a Combining CRCW PRAM. Such a machine performs a Com@iICRCW using® as

combining operation, followed by a modulo operation on oremary location. |

Lemma 4.1.5 Combining CRCW PRANIpoly(n),t(n)) = BSR(poly(n), O(t(n))).

Proof. That Combining CRCW PRANpoly(n),t(n)) € BSR(poly(n),O(t(n))) is immediate
from the definition of BSR. Surprisingly enough, the revénstusion is also true. We show this re-
verse inclusion by showing how one BSR computational steprisilated by a Combining CRCW
PRAM in constant time.

Consider a BSR witlk processors anth memory locations. Every BSR procesgglis simu-
lated by a set ofn PRAM processors;;, 1 < j < m. The PRAM memory is doubled, every BSR
memory location.; will be simulated by two PRAM memory Iocatiomg’ andué., 1<j<m.Fi-
nally, the PRAM uses extra processpts 1 < j < m. The PRAM simulation of a BSR Broadcast

step (read, compute, Broadcast) proceeds as follows:

e Read and Computell the processors;;, 1 < j < m perform the reading and the compu-
tation prescribed fop;. Every time some processor wants to read the value; d@fwill read
the value ofu? instead. Processors; will then all hold the values of the datud) and the

tagg; computed by;.
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e Selection limitsEvery processop; computes the limit; associated with; in the selection

phase of the BSR step, and stores it in the memory Iocadgon

e Broadcast instructionr;; will be responsible for the data written by the BSR procegsor
into memory location; (note that all the processorg;, 1 < j < m contain identical data,

sop;'s replacement covers all the memory locations, thus rieglithe desired broadcast):

1. r;; reads/; from memory Iocatiorug. so that it holdsl;, g;, andl;;
2. r;; then computes the selection criterigiv [; as prescribed by the BSR algorithm;

3. rj; writesd; into memory Iocatiomf iff g; o l; = True, using a Combining CRCW write

with the combining operator prescribed by the BSR algorithm

In effect, we use one PRAM processor for every pair processemory location in the BSR algo-
rithm. This allows for an easy simulation of the broadcastgghof a Broadcast instruction: Instead
of broadcasting, every PRAM processor is responsible faingrto one memory location; since
we have as many processors as memory locations, we norsstheite to all the memory locations
at once, as desired. The rest of the simulation is immediatés the overall constant running time.

Lemma 4.1.6 BSR(poly(n),t(n)) € DRMBM (poly(n), poly(n), O(t(n))).

Proof. We are given a BSR with processors angh memory locations. Without loss of generality
we provide a Combining DRMBM that simulates the given BSR;ifideed, once such a construc-
tion is established a Collision DRMBM with polynomially beded resources arfd(¢(n)) running

time exists by Theorem 3.3.1.
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Figure 4.1: A DRMBM simulation of the BSR

The DRMBM that simulates the BSR is partially depicted in@4.1. It hagk + 1) x

48

m

processors, which we denote py;, 1 < i < k+1,1 < j < m. The “real” processorg; 1,

1 <4 < k perform identically to the processors of the original BSkeépt for the bus manipulation

routines). The “memory” processops j, 1 < j < m will simulate the locations of the shared

memory. They designate one regisiethat will hold the data stored in the respective memory

location.

As shown in the figure, the DRMBM featurés+ m buses denoted bi;, 1 < i < k andL;,

1 < j < m. In addition, every “memory” processey,; ; has a dedicated bu/;, 1 < j < m

(not shown in the figure). The DRMBM simulates one step of tB&REB.omputation (meaning one

read-compute-broadcast-select-reduce cycle of the BSB)nstant time as follows (the steps of

the simulation—less the read and compute phases—are egigtcircled numbers in the figure):

1. At the beginning of every BSR step every “memory” procegsq ; ; puts the datum held

in its designated register on busi/;. Every “real” processop; ; that is interested in some
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memory data reads the bus of interest.

2. All the “real” processors perform the computation prdsmt by the BSR for the current

computational step.

3. Every “real” processop; ; broadcasts the computed péif;, g;) by putting it on busD;. At
the same time, every “memory” processqr, | ; broadcasts its limit; by placing it on bus

Lj.

4. The processorg; j, 1 < i < k, 1 < j < m implement the selection phase as follows;
reads the paifd;, g;) and the limit; from the buse$; andL;, respectively. It then computes

t; o l; and placesl; on busL; as appropriate (i.e., iff; o [; = True).

5. The reduction is accomplished by the buggs1 < j < m which perform the combining

(reduction) operation prescribed by the BSR algorithm.

]

. Finally, every “memory” processor,; ; reads bug.; and stores the datum thus obtained

into its designated register.

It is immediate that the above steps complete in constamt d&inad accomplish the desired computa-
tion. This sequence of steps is applied repeatedly for estegyperformed by the BSR. The running
time of the whole simulation is thefi(¢(n), as desired. We hav& + 1) x m = poly(n) processors
and2m + k = poly(n) buses, so the DRMBM uses polynomial resources.

We have shown that one computational step of the BSR is cabjeuin constant time by a

DRMBM. The inclusion follows immediately, and the proof isis complete. [ |

Lemma 4.1.7 DRMBM (poly(n), poly(n),t(n)) € BSR(poly(n), O(t(n))).
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Proof. The result is an almost immediate consequence of Propogdt®?2. Indeed, the capability
of the BSR to compute GAP in constant time allows this modsinulate bus fusing, which is the
only essential supplementary capability of the RMBM over BER.

As usual by now, we prove the inclusion by showing how one agatpnal step of a DRMBM
can be simulated in constant time by a BSR. According to Fitipa 3.1.1, it is enough to offer a
proof with respect to the Collision F-DRMBM.

Consider a Collision F-DRMBM witlt: processors angh buses. The BSR that simulates it uses
k processorg;, 1 < i < k to simulate the DRMBM processors ant{m?) processors (referred
to collectively asP and individually agp;;, 1 < 4,7 < m) dedicated to the computation of the
reflexive and transitive closure of an x m graph. In terms of memory space, the notable areas
includem memory locationg; and anotherm memory locations:;, 1 < j < m to simulate the
buses;n x m memory locationgx;;, 1 < ¢,7 < m to hold the connectivity graph for the buses,
and another x m memory locatiornC; ;, 1 < 4, j < m to hold the reflexive and transitive closure
of the aforementioned graph. We assume that there existsi@ treat is never placed on a bus by
any DRMBM processor; we call this vale the collision mark&m{lar to the notion used in the
Collision CRCW PRAM).

A computational step of a DRMBM processor consists in thimfdhg phases: read data from
the buses, perform the prescribed computation (thus detgrwhat buses to fuse and what values
to write to buses), fuse buses, and write data to buses. TResBBulation of one DRMBM step

proceeds then as follows:

1. TheP* processors initialize in parall€};; to False an@; t0 0,1 <i,j <m
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2. Everyp; reads the memory locatioms as prescribed by the DRMBM algorithm (we replace

reading buses with reading memory locations).
3. Everyp; performs the operations prescribed by the DRMBM algorithm.

4. Everyp; that wants to fuse buses in the DRMBM algorithm broadcasie 1o all the memory
locationG,,,, corresponding to busesandv being fused by;. The writing is a

Combining CRCW write with\/ as combining operator.

5. The memory locationé&r,,,,, 1 < u,v < m now hold the adjacency matrix of the graph of
connected buses. The processBfsnow compute the reflexive and transitive closurezof

putting the result irC; ;, 1 <4, < m.

6. Every processay; that wants to write some value to bjisrites the corresponding value into
b; using a Combining CRCW write with any combining operatod amites 1 into memory

locationc; using a Combining CRCW write withi as combining operator.

7. The processorg“ now alter the content of; as follows: IfCj; = False, therp; does not
perform anything. Otherwisesji reads the value from; and writes it into the memory
locationd; using a Combining CRCW write with any combining operafgy.also reads the
value frome; and writes it into the memory locatian using a Combining CRCW write with

> as combining operator.

8. Every processopj;, 1 < j < m readsc; and places the collision marker into memory

locationb; iff ¢; > 1.
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Reading data from the buses and performing the prescribegpuation are simulated by Steps 2
and 3 of the above simulation, respectively. Fusing thedissprepared in Step 1 and carried on in
Steps 4 (+;; contains True iff buses and; are fused together directly by a processor) and'’5 (
contains True iff buses and j are fused together either directly by a processor of via @nobfa
fused buses). Writing on the buses is performed in Step & (pas receives the values written to
it directly by the DRMBM processors) and 7 (the bus conteqiregpagated according to the fused
buses). At the end of this step, the valuecptontains the number of processors that have written
on bus; (either directly or via intermediate, fused buses);;lis one or zero, then the bus should
be left alone; otherwise, a collision has happened, so theenbof the bus should be replaced by
the collision marker. This replacement is accomplished tep 8.

We argue that Step 4 is achievable in constant time, as felltvere is no specification of how
many buses can be fused and in what combination by a DRMBM.aderva DRMBM processor
should be capable of computing the configuration of fuse@$urs constant time. It follows that
the BSR processor simulating the DRMBM processor is capafdietermining the corresponding
broadcast parameters in constant time, since it is the sesoegsor in terms of computational capa-
bilities. All the other steps are immediately achievablednstant time, so the proof is established.

4.2 GAP, the Universality of Collision, and Real Time Consiérations

As far as constant time computations are concerned, we reotamhtrast between the power of

conflict resolution rules for models with directed reconfajle buses (DRMBM and DRN) on
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one hand, and for shared memory models (PRAM) on the othat. lsetording to our results,
Collision is the most powerful rule on DRMBM and DRN. By cadt, we showed in Theorem 4.1.1
that the Combining CRCW PRAM is strictly more powerful thae Collision CRCW PRAM.

We also note that the ability of DRMBM (and DRN) to compute GiARonstant time is central
to the constant time universality of the Collision rule, atsb determines that exactly all DRMBM
and DRN computations are iNL; we also note that GAP iblL-complete [20]. In light of this,
we consider the class@d qap, M=gap, andM- g4 p Of parallel models of computations using

polynomially bounded resources (processors and, if aqpkc buses), such that:

M.gap contains exactly all the models that cannot compute GAP irstamt time, and cannot

compute in constant time any problem not\h.

M=gap contains exactly all the models that can compute GAP in eomsime, but cannot com-

pute in constant time any problem nothi..

M-sgap contains exactly all the models that can compute GAP in eméime and can compute
in constant time at least one problem nohib. To our knowledge, no model has been proved

to pertain to such a class.

As a direct consequence of Theorem 4.1.1, we can then peghlkate three classes (or at least

the first two) in a meaningful manner:

Corollary 4.2.1 1. Combining CRCW PRANpoly(n),O(1)) = BSR(poly(n),O(1))

= DRMBM ((poly(n), poly(n),O(1)) = DRN(poly(n),O(1)) = NL.

2. X CRCW PRAMpoly(n),t(n)) € Mcgap for any X € {Collision, Priority, Commor}.
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3. Combining CRCW PRANpoly(n), O(1)), BSR(poly(n), O(1)),

DRMBM (poly(n), poly(n), O(1)), DRN(poly(n),0(1)) € M=gap-

Proof. Immediate from definitions, Theorem 4.1.1, and ProposiBidnl. [ |
Compare now the previous discussion on GAP with the follpwimmediate generalization of

Claim 1;

Theorem 4.2.2 For any models of computatialf;, M, and M3 such thatdy € Mogap, My €

M=gap, andM;3 € Mcogap, it holds that

nt-PROC (poly(n)) < NL/rt (4.1)
n-PROC"2 (poly(n)) = NL/rt (4.2)
nt-PROC" (poly(n)) > NL/rt (4.3)

Proof. Minor variations of the arguments used previously [9] shbat those computations which
can be performed in constant time #f, 1 < i < 3, can be performed in the presence of however
tight time constraints (and thus in real time in generale,Relations (4.1) and (4.3) follow imme-
diately from Claim 1. By the same argument, rt-PR®Cpoly(n)) 2 rt-PROCRCW F-DRMBM(;,1,,
(n)) holds as well. The equality (and thus Relation (4.2)) isgidizectly by the arguments that sup-
port Claim 1 [9]. [ |
Thus, the characterization of real-time computationshéisteed by Claim 1 does hold in fact
for any machines that are able to compute GAP in constant filme characterization presented in
Theorem 4.2.2 emphasizes in fact the strength of Claim kdddas noted above (Theorem 4.1.1),

no model more powerful than the DRMBM is known to exist. Tisaticcording to the current body
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of knowledge M-c4p = 0. Unless this relation is found to be false, Claim 1 statesrésly that
no problem outsid@lL can be solved in real time no matter the model of parallel agatfwn being

used (that is, Claim 1 holds for all the parallel models, nst the DRMBM).



Chapter 5

EW On Reconfigurable Buses And The

Power of the MESH

The universality of Collision on models with directed refigarable buses was established earlier
(as presented in Chapter 3). Similar arguments turn outtadksh the same result for undirected
reconfigurable buses. As it turns out, the universality dfi€ion can even be strengthened, though
this depends on the definition of conflict on reconfigurableelsu

Indeed, a collision happens whenever two signals arrivellsameously at the same bus, but
it can also be defined as happening whether two siginate two different processorarrive at
the same bus. Under the latter definition it turns out the EWhigersal and the Collision conflict
resolution rule is not necessary. Such a result has practingequences, most notably in the design
of VLSI circuits.

Still on the same practical level (design of VLSI circuitale also note that MESH simulations

56
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exist for all the heavyweight models. This is practicallgrsficant given the ease of implementation

of MESH over other models with reconfigurable buses.

5.1 The Universality of EW or Collision on Reconfigurable Bugs
One can conceivably identify two variants of CW, as follows:

Definition 5.1.1 Strong CW: Any two signals arriving simultaneously at the same bus ansid-
ered concurrent-write.

Weak CW: Two signals from two different processors arriving simoéausly at the same bus
are considered concurrent-write. However, a signal thgplisand arrives two times at some bus is

not considered concurrent-write.

Strong CW is implied earlier in this thesis. Weak CW also appeealistic, for indeed a bunch
of fused buses form an electrical, longer bus; then it makesense to consider a signal that travels
on two different paths; the signal is simply placed on the &g propagates along it according to
the physical laws.

As it turns out, the definition of CW makes a significant diflece in terms of universality of
Collision: under weak CW, Collision is unnecessary on réigoinable buses; instead, EW becomes

universal. This is all put together as follows:

Theorem 5.1.1 1. Under strong CW, Collision is universal on reconfigurableses (directed or

undirected).

2. Under weak CW, EW is universal on reconfigurable busesctid or undirected).
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Proof. The strong CW case has been established for the directedadiss, as presented in Section
3.3. The undirected case is easily derived from the progfpating the directed case; one only need
to replace GAP with undirected GAP ahd with L as done (in different contexts) earlier [5, 6].

The weak CW case has been established for undirected bgsegele [6]. A simple extension
of this proof establishes it for directed buses as well. vialigively, the proofs of the results presented
in Section 3.3 establish the directed buses variant imnedgjas we note that no collision (in the
strong sense) happens in the constructions presented there [ |

In all, all of the heavyweight models of computation can ict fae simulated by EW DRMBMs

(or EW DRNSs).

5.2 MESH Simulations

We found out that exclusive-write is universal on reconfidie buses. Another practically useful
property of these models is their simulation as MESH. Indee@configurable bus machine (be it

RMBM or RN) can be always laid out as a MESH.

Proposition 5.2.1 [17]A d-dimensiorR-MESH(r1, 9, ..., rg) can be simulated by a 2D R-MESH

with poly(r1 X 72 X ... X rgq) X poly(ry X ro X ... X 14) resources in constant time.

Proposition 5.2.2 [17]For X,Y € {C, E}, each step of &/(p) x \/(p) XRYWR-MESHcan be

simulated on anX RY'W F-RMBM(4p, 5p) in O(1) time.

Proposition 5.2.3 [17]For X, Y € {C, E}, a step of anXRYW F-RMBM(p, b) can be simulated

ona(b+1) x 3p XRYWR-MESHin O(1) time.
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The proof of Proposition 5.2.2 is sketched informally in g 5.2 and proceeds as follows:
let p; denote a processor of the simulated R-MESH, oK ¢ < p. Divide the processors of
the simulating RMBM intop teamsT;, each with four processors; v, 7; s, 7 g, andm; y, for
0 <i < p. The processors df; simulate the ports of R-MESH processggr

The first2p buses of the RMBM simulate external processor-to-progessonections in the
R-MESH. The nex2p buses provide fusing locations to form internal connedtidrhe lasp buses
provide channels for connection among processors on the tam.

The simulation stated in Proposition 5.2.3 is shown infdlynim Figure 5.2. Letp; and b;
denote the processors and buses, respectively of the F-RMBIgre0 < ¢ < p and0 < j < b.
Here the simulating R-MESH is of siZé + 1) x 3p. Denote the processors of the R-MESH by
pig g,where0 < k < b+ 1and0 < g < 3p. Rowsl, 2, ...,bof the R-MESH simulate the buses
of RMBM. For any0 < i < p,columns3i,3i + 1,and3: + 2 simulate the write port, read port, and
fuse line of processags; of the RMBM.

These simulations are trivially extensible to the direatade, so we have:

Corollary 5.2.4 For X,Y € {C, E}, each step of a/(p) x /(p) XRYW DR-MESH can be

simulated on anX RY'W F-DRMBM(4p, 5p) in O(1) time.

Corollary 5.2.5 For X,Y € {C, E}, a step of anXRYW F-DRMBM(p, b) can be simulated on a

(b+1) x 3p XRYWDR-MESHin O(1) time.
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Figure 5.1: The simulated RMBM
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Figure 5.2: A reconfigurable MESH simulates an RMBM



Chapter 6

Conclusions

This thesis focused on two points. The major point is thebdistament of a hierarchy for parallel
models with shared memory and with reconfigurable busescérglary point is the investigation

of the universality of EW on reconfigurable buses (along witier practical considerations).

6.1 The Relationships Between Several Parallel ComputatioModels

Our results are rather significant, as we essentially freattalysis of parallel algorithms and prob-
lems from a number of restrictions such as whether using thad®ast instruction of the BSR or
using the Combining resolution rule on distributed resesrike buses diminishes the practicality
of the analysis. At the same time, we also offer a strict dédition between the two classes of
heavyweight and lightweight models of parallel computatio

It was found earlier that there exists a very strong simifdnetween the two models with di-

rected reconfigurable buses, the DRN and the DRMBM: Not dmy tsolve the same problems
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(namely, exactly all the problems ML), but in both caseéa) the smallest possible bus width is
enough for all problems, an@) the Collision resolution rule is the most powerful (even as/er-
ful as the Combining rule). It was further shown that Cadliisis the most powerful on DRN and
DRMBM for any running time. Accordingly, the discussion aeding the practical feasibility of
rules like Priority or Combining on spatially distributeelsources such as buses is no longer of in-
terest. Indeed, such rules are not only of questionablébittys but also not necessary! This offers
a powerful tool in the analysis of models with directed rdmurable buses and in the design of
algorithms for these models: One can freely use Combiningr{®, etc.) rules on these models,
with the knowledge that they can be eliminated without pigrathe analysis or algorithm design
uses an “unfeasible” model yet is fully pertinent to the reafld. In fact we used such a technique
ourselves in the proof of Lemma 4.1.6.

By contrast with models with directed reconfigurable bugesas widely believed that the all-
powerful Combining conflict resolution rule does add comagiohal power to the PRAM model,
and that the BSR’s Broadcast instruction adds further poWerare to our knowledge the first to
establish formally a hierarchy of the PRAM variants thathbovnfirms and contradicts the men-
tioned belief. Indeed, we showed that Combining does adgatational power over “lesser” rules.
However, we also showed that surprisingly enough the Bragtdostruction does not add compu-
tational power over Combining . In fact we established arigning collapse of the hierarchy of
parallel models at the top of the food chain, where the Comgi@RCW PRAM, the BSR, and the
models with directed reconfigurable buses turn out to hasetichl computational power.

Once more, this result offers substantial support for thayais of shared memory models.
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Indeed, the power of BSR’s Broadcast instruction has d@#daattention in various areas of paral-
lel algorithms. Algorithms with running time as fast as dam¢ have been developed for various
problems, most notably in the areas of geometric and graptpatations [12, 13]. Of course, con-
stant time algorithms for such practically meaningful penfis are very attractive. Nevertheless, the
model tends to be frowned upon given its apparent implertientaomplexity, even after efficient
implementations have been proposed [2]. We now showed thether the BSR is feasible or not is
irrelevant, as a Combining PRAM with the same performanckveith all the attractive properties
of the BSR is automatically available. Same goes for, sa\BBR versus the DRMBM: one can
freely use the BSR model to design DRMBM algorithms (whiclikis using an abstract, powerful
model to design VLSI circuits) and the other way around—iseese, one can freely choose be-
tween a number of models, depending on no matter what issagiig from practical feasibility
to convenience to mere taste) with the formally supportemhtedge that the results are portable to
all the other models.

We also note that most of our proofs are constructive (angethzhich are not still offer con-
structive hints), so we also set the basis for automatic @@in back and forth between models.
True, we did not have efficiency in mind, so our constructiareslikely to be inefficient; however,
traditionally inefficient algorithms have been optimizadtg easily, so we believe that our however
inefficient algorithms are nonetheless a significant cbation.

We also noted the central role of the graph accessibilityplera (GAP) for the DRN and
DRMBM results obtained here and also previously [9]. WeHertstrengthened our previous re-
sults on real-time computations, eliminating to some degineir weak point (model dependence).

Having found that Collision is universal on all the modelghmeconfigurable buses from
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M=gap and given that GAP is not computable in constant time on nsofiein M_s4p, We
believe that the Collision resolution rulenstuniversal on models idI_ 4 p (0n which the notion
of conflict resolution rule makes sense), such as modelsumidirected reconfigurable buses or the
lightweight PRAM models. For instance, note that Prioris lalready been established by Lem-
mata 4.1.2 and 4.1.3 as being the most powerful rule on theskels) but this does not yet exclude
the possibility that Collision has equal power and is this® alniversal; we believe however that
Priority is strictly more powerful than Collision on the PRI Showing (or disproving) all of this

is an intriguing open problem.

6.2 EW is Universal on Reconfigurable Buses

This thesis, as well as preceding work on the matter havblesiad the universality of Collision
on reconfigurable buses assuming implicitly a strong CW. tuteder weak CW however an almost
identical proof establishes the universality of EW. We d&adithat weak CW is a realistic definition,
given the physical (electrical) realization of reconfigueabuses.

VLSI design uses reconfigurable buses extensively. Theetsality of Collision or EW (de-
pending on whether we choose the strong or weak CW rule) iéfisignt for VLSI design, as both
Collision and EW are easily implemented in silicon. Equalignificant (but this time from a lay-
out point of view) is that all the reconfigurable bus models ba all laid out as two-dimensional
meshes. More work is necessary for the refinement of thesegses (of converting a general ma-
chine into a Collision-only machine, or to lay out a generakthine as a mesh) before they become

useful in practice, but the most important step (or showirag they are possible) is done here.



Bibliography

[1] S. G. AKL, Parallel Computation: Models and Methqdgrentice-Hall, Upper Saddle River,

NJ, 1997.

[2] S. G. AKL AND L. FAVA LINDON, An optimal implementation of broadcasting with selective

reduction IEEE Transactions on Parallel and Distributed System#993), pp. 256—269.

[3] S. G. AKL AND G. R. GUENTHER, Broadcasting with selective reductiom Proceedings
of the IFIP 11th World Congress, G. X. Ritter, ed., San Frsawi CA, 1989, North-Holland,

Amsterdam, pp. 515-520.

[4] E. ALLENDER, M. C. Loul AND K. W. REGAN, Complexity ClasseDIMACS Technical

Reports, 23 (1998).

[5] Y. BEN-ASHER, K.-J. LANGE, D. PELEG, AND A. SCHUSTER The complexity of reconfig-

uring network modeldnformation and Computation, 121 (1995), pp. 41-58.

[6] Y. BEN-ASHER, D. PELEG, R. RAMASWAMI, AND A. SCHUSTER The power of recon-
figuration, Proceedings of the 18th International Colloquium on Audtam Languages and
Programming, Madrid, Spain, Springer 1991, pp. 139-150.

65



BIBLIOGRAPHY 66

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. D. BRUDA, The graph accessibility problem and the universality of ¢b#tision CRCW

conflict resolution ruleWSEAS Transactions on Computers, 10 (2006), pp. 2380-2387

S. D. BRUDA AND S. G. AKL, Pursuit and evasion on a ring: An infinite hierarchy for pdedl

real-time systemsrheory of Computing Systems, 34 (2001), pp. 565-576.

—, Size matters: Logarithmic space is real tinteternational Journal of Computers and

Applications, 29:4 (2007).

M. FURsT, J. B. S\XE, AND M. SIPSER Parity, circuits, and the polynomial-time hierarchy

Mathematical Systems Theory, 17 (1984), pp. 13-27.

R. GREENLAwW, H. J. HOOVER, AND W. L. Ruzo, Limits to Parallel Computation: P-

Completeness Theqr@xford University Press, New York, NY, 1995.

J.-F. Myoupo AND D. SEME, Work-efficient BSR-based parallel algorithms for some dund

mental problems in graph thegryhe Journal of Supercomputing, 38 (2006), pp. 83—-107.

J.-F. Myoupo, D. SEME, AND |. STOJMENOVIC, Optimal BSR solutions to several convex

polygon problemsThe Journal of Supercomputing, 21 (2002), pp. 77-90.

|. PARBERRY, Parallel Complexity TheoryJohn Wiley & Sons, New York, NY, 1987.

D. PELEG, Y. BEN-ASHER AND A. SCHUSTER The complexity of reconfiguring network

models Theory of Computing and Systems, Springer Berlin / Heideh1992, pp. 79-90.

P. RAGDE, F. E. FCH AND A. WIGDERSON Simulations among concurrent-write PRAMs

Algorithmica, 3:1 (1988) pp. 43-51.



BIBLIOGRAPHY 67

[17] R. VAIDYANATHAN AND J. L. TRAHAN , Dynamic Reconfiguration: Architectures and Algo-

rithms, Plenum Publishing Co, 1 (2004), pp. 500-507.

[18] S. SAXENA, Parallel integer sorting and simulation amongst CRCW mgdActta Informat-

ica, 33:7 (1996), pp. 607-619.

[19] L. SToCcKMEYER AND U. VISHKIN, Simulation of parallel access machines by circuits

SIAM Journal on Computing, 13 (1984), pp. 409-422.

[20] A. SzepieTOwsSK]|, Turing Machines with Sublogarithmic Spa&pringer Lecture Notes in

Computer Science 843, 1994.

[21] J. L. TRAHAN, R. VAIDYANATHAN , AND R. K. THIRUCHELVAN, On the power of segment-

ing and fusing busedournal of Parallel and Distributed Computing, 34 (199§),82-94.

[22] B.-F. WANG AND G.-H. CHEN, Constant time algorithms for the transitive closure and som
related graph problems on processor arrays with reconfiglesbus systemsEEE Transac-

tions on Parallel and Distributed Systems, 1 (1990), pp-500.

[23] ——, Two-dimensional processor array with a reconfigurable bystesm is at least as pow-

erful as CRCW modgelnformation Processing Letters, 36 (1990), pp. 31-36.

[24] ——, Efficient Simulations Between Concurrent-Read Concuivénte Pram Modelsinfor-

mation Processing Letters, 36 (1990), pp. 231-232.

[25] Wiki.com http://www.wiki.com

[26] The IBM Websitehttp://www.ibm.com



BIBLIOGRAPHY

[27] The Guide to Parallel Computindpttp://ctbp.ucsd.edu/pc/html/intro4.html

68



