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Abstract

The two major systems of formal verifications are model checking and model-based test-

ing. Model checking is based on some temporal logic such as Linear Temporal Logic (LTL)

or Computation Tree Logic (CTL, the focus of this thesis) for specification and on Kripke

structures as models for the systems under test. Model-based testing is an algebraic tech-

nique which is based on some operational semantics of processes (such as traces and fail-

ures) and its associated pre-orders. One of the most fine-grained pre-order is based on

both failures and traces. A previous line of investigation [6, 24, 27] showed that CTL and

failure trace testing are equivalent. This equivalence was based in turn on a constructive

equivalence between LTS and Kripke Structure; in order for this equivalence to work sets

of states rather than individual states need to be considered in model checking. In this

paper we will consider another, equally constructive equivalence based on another line of

investigation of the matter [13]. We find that this equivalence does not require any mod-

ification to the model checking algorithms and CTL and failure trace testing continue to

be equivalent under it.

The original conversion algorithm of failure trace tests into CTL formulae [6] produces

infinite formulae in certain circumstances. Further work on this matter [24] produced

an improved algorithm that under certain circumstances produces finite formulae. We

further improve on this algorithm to make it more general.
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Chapter 1

Introduction

We depend on computing systems in every important aspect of our everyday life, to assist

us in transportation and communication, but also in more leisurely activities. Almost

everything is based on computing systems. Computers are not only not used in our daily

life. They also play an important role in mission-critical systems, whose malfunction can

lead to loss of property or life. Examples include chemical plants, nuclear power facilities,

military equipment, and rockets. Because of widespread using, such an error happened

in software or hardware will result in catastrophic consequences. Therefore, ensuring the

correct behaviour of computing system is challenging but also increasingly important.

Verification is the process that ensures that a system is correct and follows the desired

properties or specifications. Several verification methods exist with the olest being empir-

ical testing [18, 23]. Empirical testing is a non-formal method which consists of providing

input data, observing the output, and verifying whether the results conform to expecta-

tions. However, this method cannot cover all the possibilities, meaning that the method

cannot cover all the situations which might happen in the future that will result in a fault.

Thus empirical testing may discover defects but will never be able to guarantee correct-

ness.

Deductive verification [15, 21] is a formal method of verification which is also called
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CHAPTER 1. INTRODUCTION 2

program proving. The process is based on a mathematical system of axioms and inference

rules and offers a mathematical proof of correctness. Deductive verification can also be

used for reasoning about infinite state systems. Unfortunately this method can never

be fully automated. The manual process consumes substantial time and requires highly

qualified experts.

Formal methods attempt to develop verification techniques that are sound, complete,

and can be automated. We consider in this paper two such techniques: model-based

testing [3, 12, 26] and model checking [8, 9, 20, 1]. In model-based testing the specification

of a system is algebraic in nature, using formalisms such as labelled transition systems

(LTS) or finite automata. Such a specification is normally an abstract description of the

system’s desired behaviour. Test cases are algorithmically derived from the specification

and then run on the system under test. This way we theoretically ensure that the results

are sound and complete. Model checking expresses the specification using some form

of temporal logic and tries to determine algorithmically whether the respective temporal

logic formula holds for the system under test, modelled in turn by a Kripke structure.

Both these formal methods have advantages and disadvantages. Model-based testing

is compositional by definition and so scalable. Model checking is not compositional and

so it requires a complete model of the system under test. Another, related problem is that

the finite-state nature of Kripke structures can lead to an exponentially increase in the

number of distinct states as the complexity of the system increases. Model-based testing

on the other hand is not necessary complete, since some of the tests can take infinite time

to run. The logical nature of the specification in model checking allows us to only specify

the properties of interest. In model-based testing, the finite automata or labelled transition

systems representation requires the specification of more or less the whole system.

Various kinds of temporal logic are used to specify the system in model checking,

including CTL*, CTL and LTL. In this paper we will focus on CTL. Apart from this, we
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will also focus on probably the most powerful practically meaningful method of model-

based testing which is failure trace testing. An interesting characteristic of failure trace

testing is the existence of a simple testing scenario (consisting of so-called sequential tests)

that is enough to evaluate the failure trace relation.

The subject of this thesis is the equivalence between model-based testing and model

checking. The aim is to open the possibility of mixed, algebraic and logic specification,

but also to allow the convenience of using either model checking or model-based testing

irrespective of the form taken by the specification. The various advantages and disad-

vantages of these formal methods illustrate the utility of this effort. In addition, temporal

logic may be natural for some system properties, while others can be better specified us-

ing LTS or finite automata. Such a mixed specification could be given by somebody else,

or it could be simply the case that algebraic specifications are more convenient form some

aspects while logic specifications are more suitable for others. No matter the motivation,

it is still the case that there is no global algorithm for verifying the whole system, even

if some parts can be model checked and some other parts can be verified using model-

based testing. We do not even have a global specification for the system. A pursuit to-

ward finding such a global specification spans a number of papers [6, 24, 27] and provides

algorithmic conversions between the algebraic specification given by failure trace testing

(a flavor of model-based testing) and CTL formulae (used by model checking). This thesis

continues this investigation. The previous work just mentioned uses an algorithmic con-

version between LTS and Kripke structures that results in very compact Kripke structures

but introduces the need to modify the model checking algorithm (by requiring a modified

notion of satisfaction for CTL formulae). We now use a different (and still algorithmic)

such a conversion based on a different investigation [13] which results in considerably

larger Kripke structures but does not require any modification of the model checking al-

gorithm. We find that all the equivalence relations developed earlier [6, 24, 27] continue
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to hold for this conversion with minimal modifications to the original algorithms. Our

thesis is therefore that failure trace testing and CTL are equivalent under any reasonable

equivalence relation between LTS and Kripke structures.

In addition we note the algorithm for converting failure trace tests into compact CTL

formulae [24] and we improve on it by eliminating some (though not all) of its limitations.

We believe that our effort opens the domain of combined algebraic and logical formal

methods. The advantages of such a combined method stem not only from the possible

combined specification as mentioned above, but also from the lack of compositionality

of model checking (which can be avoided by switching to algebraic specification), from

the lack of completeness of model-based testing (that can be avoided by switching to

model checking), and from the potentially attractive feature of model-based testing of in-

cremental application of a test suite insuring correctness to a certain degree (which model

checking lacks, being an “all or nothing” formalism).

This thesis continues as follows: We introduce model checking, model-based testing,

temporal logic, and failure trace testing in Chapter 2. We then summarize in Chapter 3

the related previous work which includes two constructive equivalence relations between

label transition systems and Kripke structures, the conversion algorithm of CTL formu-

lae into failure trace tests, and also the algorithmic conversion from failure trace test to

(compact) CTL formulae. We then proceed with the presentation of our work namely,

a new constructive conversion from LTS to Kripke structure in Chapter 4 and the more

general algorithmic conversion from failure trace tests to compact CTL formulae in Chap-

ter 5. Our conclusions are provided in Chapter 6. For the remainder of this thesis results

proved elsewhere are introduced as propositions, while original results are stated as the-

orems and lemma.



Chapter 2

Preliminaries

This section covers temporal logic, model checking, labelled transition systems, stable

failures, and failure trace testing. In several previous papers the process algebra TLOTOS

is used to specify the system under test as well as failure trace tests. Thus, we will present

this language as well.

Given the nature of our work, the preliminaries described in this thesis will be largely

the same as the preliminaries used for the earlier work [6, 24, 27]. The content of this

section is therefore necessarily similar to the corresponding sections from the previous

work.

In what follows we use A∗ to denote the set of exactly all the sequences of symbols

from A. A binary relation that is reflexive and transitive is called as usual pre-order.

2.1 Temporal Logic and Model Checking

Temporal logic formulae describe a specification suitable for verification using model

checking. The system under test is modelled as a Kripke structure. The main goal of

model checking is to find the set of all states in a Kripke structure that satisfy the given

logic formula. If the states labelled as initial states are in this set then the system is deemed

to have satisfied the specification.
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CHAPTER 2. PRELIMINARIES 6

A Kripke structure K over a set of elementary propositions AP is a tuple (S, S0,→, L),

where S is the set of states, S0 is the set of initial states,→⊆ S× S is the transition relation,

and L : S→ 2AP is a function that labels each state with a set of atomic propositions which

are true in that state [9]. Generally we write s → t instead of (s, t) ∈→. The relation→
is total, which means that for all s ∈ S there exists t ∈ S such that s → t; ”sink” states

that have no outgoing transitions must thus feature a ”self-loop” transition. A path π in a

Kripke structure is a non-empty (finite or infinite) sequence of states s0 → s1 → s2 → · · ·
such that si → si+1 for all i ≥ 0. State s0 is often called the root or the start state of the

part. For all the paths starting from the root s0 we can build a computation tree with

nodes labelled with states and the root labelled as s0, such that (s, t) is an edge in the tree

iff s→ t where s, t ∈ S.

Many variants of temporal logic have been proposed and are widely used. One such

a family consists of CTL* [14, 9], CTL [9, 7] (computation tree logic) and LTL [19] (linear-

time temporal logic). CTL and LTL are defined as restricted subsets of CTL*. CTL is

interpreted over computation trees and LTL is interpreted over individual paths (or runs).

CTL* contains path quantifiers and temporal operators. The path quantifier A refers to

all computation paths, and E refers to some of the computation paths. These two quanti-

fiers are used to represent the branching structure of computation trees, given that states

in a computation tree have several other successive states which lead to multiple paths

starting from the same state. There are five temporal operators which are used to repre-

sent individual path properties: X (requires that a property will hold in the next state of

the path), F (requires that a property will hold at some state in future along the path), G

(requires that a property will hold in every state along the path), U (requires that the first

property will hold at every preceding state along the path until the second property be-

comes true and remains true afterward), and R (requires that the second property has to

be true along a path up to the point where the first property becomes true, and so release
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the second property from its obligation; if the first property never becomes true then the

second property must remain true forever). These path properties can be preceded by the

quantifiers A or E to become state properties.

There are two types of formulae in CTL* which are state formulae (that can be true

or false in a specific state and use temporal operators preceded by quantifiers) and path

formulae (that can be true or false along a specific path and so do not use path quantifiers).

CTL is a restricted subset of CTL* where each of the temporal operators X, F, G, U, and R

must be immediately preceded by a path quantifier (Aor E). Thus, we have the following

syntax for CTL formulae, noting that all the CTL formulae are state formulae:

f = > | ⊥ | a | ¬ f | f1 ∧ f2 | f1 ∨ f2 |

AX f | AF f | AG f | A f1 U f2 | A f1 R f2 |

EX f | EF f | EG f | E f1 U f2 | E f1 R f2

where a is an atomic proposition ranging over AP and f , f1, f2 are state formulae. In what

follows we let F denote the set of all CTL formulae.

The CTL semantics is defined with respect to Kripke structures. We use the usual

notation to specify that a state formula f is true in a state s of Kripke structure K: K, s |= f

means that in Kripke structure K, formula f is true in state s. Path formulae are also

used in the definition of the CTL semantics below. We thus extend this notation to path

formulae as follows: If f is a path formula then K, π |= f means that in Kripke structure

K, formula f is true along the path π . We define the validation relation |= inductively as

follows (where f and g are state formulae):

1. K, s |= > is true and K, s |= ⊥ is false for any state s in Kripke structure K

2. K, s |= a, a ∈ AP iff a ∈ L(s).

3. K, s |= ¬ f iff ¬(K, s |= f ).
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4. K, s |= f ∧ g iff K, s |= f and K, s |= g.

5. K, s |= f ∨ g iff K, s |= f or K, s |= g.

6. K, s |= E f for some path formula f iff there exists a path π starting at s such that

K, π |= f .

7. K, s |= A f for some path formula f iff K, π |= f for all paths π starting at s.

We use π i to denote the i-th state of a path π , with π0 being the starting state. The

meaning of the relation |= for path formula is the following:

1. K, π |= X f iff K, π1 |= f for any state formula f .

2. K, π |= f U g for state formulae f and g iff there exists j ≥ 0 such that K, π j |= g and

K, π i |= f for all 0 ≤ i < j. In other words, g must become true in some state s j, and

f must hold in all the previous states (from s0 to s j−1).

3. K, π |= f R g for any state formula f and g iff for all j ≥ 0 if K, π i 6|= f for all

0 ≤ i < j then K, π i |= g for all 0 ≤ i < j. In other words, g must remain true until

f becomes true and releases g from its obligations.

2.2 Labelled Transition Systems and Stable Failures

The semantics of CTL is defined over Kripke structures, where each state is labelled with

atomic propositions. In model-based testing the common models are the labelled transi-

tion systems (LTS) and the finite automata, where labels are associated with transitions

instead of states.

An LTS [16] is a tuple M = (S, A,→, s0) where S is a countable, non empty set of

states, s0 ∈ S is the initial state, and A is a countable set of labels which denotes all the
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observable actions of a system. The internal action (which is not observable by the exter-

nal environment) is denoted by τ such that τ 6∈ A. The relation→⊆ S× (A ∪ {τ})× S is

the transition relation. The fact that (p, a, q) ∈→ is written as p a−→ q and is interpreted

as follows: there is a transition from state p to state q with label a, where the label rep-

resents a visible or internal action. The set of states and its transitions can be considered

global and if so then an LTS is completely defined by its initial state. We therefore blur

whenever convenient the distinction between an LTS and an LTS state, calling them both

“processes”. For the reminder of the thesis we use P to denote the set of all processes.

Generally, we consider a set T of relevant tests and set P of processes. In model-based

testing [12, 3, 26] tests run parallel with the process (or system under test) and synchronize

with it over observable actions. A run of a test t and a process p represents a possible

sequence of states and actions of t and p running synchronously. Now we consider the

set of exactly all the possible runs of p and t, where p ∈ P and t ∈ T. The outcome of a

run r may be true (>) whenever a success state is encountered during that run, or false

(⊥) whenever r does not contain a success state or r contains a state s such that s diverges

(meaning that s engages in an infinite computation that does not produce any observable

event) and it is not preceded by successful state.

Given the non-deterministic nature of some tests and processes, we can have multiple

runs for the given test t and process p, and thus a set of outcomes is needed to provide

the results of all the possible runs. Let Obs(p, t) be the set of all the outcomes of the syn-

chronized execution of process p and test t. We will have may and must testing depending

on the degree of assurance that a process passes a test: A process p may pass the test t

whenever there exists a successful run (that is, p may t iff > ∈ Obs(p, t)), while p must

pass the test t whenever all the runs are successful (that is, p must t iff {>} = Obs(p, t)).

To analyse the behaviour of the processes, we need to consider those sequences of

events that can be observed at the interface of the process. There are a number of ways
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through which this behaviour can be analysed. One aspect of process behaviour is the

occurrence of certain events in the right order. These observations are called traces. A

trace is simply a record of events in the order they occur. Formally, traces are sequences

of events over A and are defined as follows:

A path (or run) π in an LTS is a sequence p0
a1−→ p1

a2−→ · · · pk−1
ak−→ pk with k ∈

N ∪ {∞} such that k = 0, or pi−1
ai−→ pi for all 0 < i ≤ k. We use |π | to refer to k, which

indicates the length of π . If |π | ∈ N then π is finite. The visible trace of π is defined

as sequence trace(π) = (ai)0<i≤|π |,ai 6=τ ∈ A∗. Internal actions are not recorded in traces,

so we only consider the observable actions and transitions. The visible transitions are

denoted by a specific notation p w
=⇒ p′ which says that there is a sequence of transitions

whose initial state is p, final state is p′ and whose visible transitions form the sequence

w. The notation p w
=⇒ is shorthand for ∃p′ : p w

=⇒ p′. We then define the traces of

process p as traces(p) = {w : p w
=⇒}. The set of finite traces of process p is defined as

Fin(p) = {tr ∈ traces(p) : |tr| ∈ N} where |tr| refers to the length of trace tr.

A process is said to be stable [22] when it does not make any internal progress (meaning

that it has no internal outgoing actions) and it is defined as p ↓= ¬(∃p′ 6= p : p ε
=⇒ p′). A

stable process p always responds in an expected way to the offer of a set of actions X ⊆ A.

Whenever p cannot perform any event from X then p will refuse the set X. We use the

following notation for this purpose: p ref X iff ∀a ∈ X : ¬(∃p′ : p ε
=⇒ p′ ∧ p′ ↓ ∧p′ a−→).

To describe some possible behaviour of a process in terms of refusals we will record all

the refusals together with the finite sequence of events (or trace) that causes that refusal.

The observation (w, X) that contains a refusal set X and the trace w that causes it is called

a stable failure of p [22] whenever ∃pw : p w
=⇒ pw ∧ pw ↓ ∧pw ref X}, meaning that p

performs the events in w and then reaches a stable state from where it refuses all the

events in the set X. The stable failures of p are then described as SF(p) = {(w, X) : ∃pw :

p w
=⇒ pw ∧ pw ↓ ∧pw ref X}.
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Depending on the level of interaction with processes, many pre-order relations can

be defined (like traces, stable failure, refusal etc.). In general, pre-orders are more con-

venient and more meaningful than equivalences in comparing specifications and their

implementation: if two systems are in a pre-order relation with each other, then one is the

implementation of other. Thus such pre-orders can be interpreted as implementation re-

lations in practice. The stable failure pre-order vSF is defined as p vSF q iff Fin(p) ⊆ Fin(q)

and SF(p) ⊆ SF(q) for any two processes p and q. That means that p implements q iff the

set of finite traces of p is included in the finite traces of q and the stable failure of p are

also included in the stable failure of q. Given the pre-order vSF one can define the stable

failure equivalence 'SF : p 'SF q iff p vSF q and q vSF p. The pre-order vSF is considered

one of the finest pre-orders [4].

2.3 Failure Trace Testing

In what follows we use the notation init(p) = {a ∈ A : p a
=⇒}. A failure trace [17] f is

a string of the form f = A0a1 A1a2 A2 . . . Anan, n ≥ 0, with ai ∈ A∗ (sequences of actions)

and Ai ⊆ A (sets of refusals). Suppose p be a process such that p ε
=⇒ p0

a1=⇒ p1
a2=⇒

· · · an=⇒ pn; f = A0a1 A1a2 A2 . . . Anan is a failure trace of p if the following two conditions

are observed:

• If pi
τ−→ then Ai = ∅; when pi is not stable then it will refuse an empty set of events

by definition.

• If ¬(pi
τ−→), then Ai ⊆ (A \ init(pi)); for a stable state the failure trace refuses any

set of events that cannot be performed in that state (which could also be the empty

set).

In other words, we produce a failure trace of a process p by taking a trace of p and then

place refusal sets in between its actions after the stable states.
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In this paper, we will use the testing language TLOTOS [17, 2] which describes systems

and tests succinctly. Let A be the countable set of visible actions, ranged over by a. The

set of processes or tests are ranged over by t, t1, and t2, while T ranges over sets of tests.

Then the syntax of TLOTOS is defined as follows:

t = stop | a; t1 | i; t1 | θ; t1 | pass | t1 � t2 | ΣT

The semantics of TLOTOS is then the following:

1. inaction (stop): no rules.

2. action prefix: a; t1
a−→ t1 and i; t1

τ−→ t1

3. deadlock detection: θ; t1
θ−→ t1.

4. successful termination: pass
γ−→ stop.

5. choice: with g ∈ A ∪ {γ,θ, τ},

t1
g−→ t′1

t1 � t2
g−→ t′1

t2 � t1
g−→ t′1

6. generalized choice: with g ∈ A ∪ {γ,θ, τ},

t1
g−→ t′1

Σ({t1} ∪ t)
g−→ t′1

TLOTOS has the ability of detecting deadlock using θ (the deadlock detection label).

The special action γ signals the successful termination of a test. Any process (or LTS) can

be defined as a TLOTOS process not containing γ and θ. On the other hand, failure trace

tests are full TLOTOS processes, and thus may contain γ and θ. According to the parallel
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composition operator ‖θ, a test runs in parallel with the system under test. This operator

also defines the semantics of θ as the lowest priority action:

p τ−→ p′

p‖θt τ−→ p′‖θt
t τ−→ t′

p‖θt τ−→ p‖θt′

t
γ−→ stop

p‖θt
γ−→ stop

p a−→ p′ t a−→ t′

p‖θt a−→ p′‖θt′
a ∈ A

t θ−→ t′ ¬∃x ∈ A ∪ {τ ,γ} : p‖θt x−→
p‖θt θ−→ p‖θt′

Given that both the processes and tests can be non-deterministic then we have a set

Π(p‖θt) of possible runs of a process and a test. The success and failure of a test t and

a process p under test depends on their outcome of a particular run π ∈ Π(p‖θt): when-

ever the last symbol in trace(π) is γ then the test t succeeds on process p (>), otherwise it

is not successful (⊥). All the possible outcomes of all the runs in Π(p‖θt) are denoted by

Obs(p, t). Then one can differentiate as usual the possibility and certainty of success for a

test: p may t iff > ∈ Obs(p, t), and p must t iff {>} = Obs(p, t).

In what follows T will denote the set of all failure trace tests. In addition, the set ST of

sequential tests is defined as follows: pass ∈ ST , if t ∈ ST then a; t ∈ ST for any a ∈ A,

and if t ∈ ST then Σ{a; stop : a ∈ A′} � θ; t ∈ ST for any A′ ⊆ A.

A bijection between failure traces and sequential tests exists [17]. For a sequential test t

the failure trace ftr(t) is defined inductively as follows: ftr(pass) = ∅, ftr(a; t′) = a ftr(t′),

and ftr(Σ{a; stop : a ∈ A′} � θ; t′) = A ftr(t′). Conversely, let f be a failure trace. Then

we inductively define the sequential test st( f ) as follows: st(∅) = pass, st(a f ) = a st( f ),

and st(A′ f ) = Σ{a; stop : a ∈ A′} � θ; st( f ) with A′ ⊆ A. For all failure traces f we have

that ftr(st( f )) = f , and for all tests t we have st(ftr(t)) = t.

By the given bijection we can convert the failure trace pre-order into a testing based

pre-order. Indeed there exists a successful run of p in parallel with the test t, iff f is a
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failure trace of both p and t. We then define failure trace pre-order vFT as follows: p vFT

q iff ftr(p) ⊆ ftr(q). This pre-order is equivalent to the stable failure pre-order.

Proposition 2.1 [17] Let p be a process, t be a sequential test, and f be a failure trace. Then

p may t iff ftr(t) ∈ ftr(p) (note that ftr(t) is always a single failure trace).

Let p1 and p2 be processes. Then p1 vSF p2 iff p1 vFT p2 iff p1 may t =⇒ p2 may t for all

failure trace tests t iff ∀t′ ∈ ST : p1 may t′ =⇒ p2 may t′.

We note that unlike other pre-orders, vSF can be characterized in terms of may testing

only; the must operator does not need to be considered any further.



Chapter 3

Previous Work

This chapter contains a summary of the previous work on combined, logical and algebraic

frameworks of formal specification and verification. With the exception of the research

continued by this thesis most of this effort was directed toward LTL and its relationship

with Büchi automata [25].

Büchi automata were used as a semantical basis for reasoning about combined logi-

cal and algebraic specification namely, LTL and the DeNicola and Hennessy testing pre-

orders [10]. A unified semantic theory for heterogeneous system specifications featuring

a mixture of LTS and LTL formulae was developed. First the Büchi must-pre-order is

described for a certain class of Büchi processes by means of trace inclusion. Then Büchi

processes were constructed using a conversion of LTL formulae, such that the languages

of the Büchi processes contain exactly all the traces that satisfy the respective formulae.

This effort was further extended to the real-time domain [5, 11].

We are aware of only two investigations relating CTL with algebraic specifications.

One is the work continued in this thesis. This work first introduces a constructive con-

version of LTS into equivalent Kripke structures [6], and then it constructs the conversion

15
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of failure trace tests into CTL formulae and the other way around [6, 24, 27]. The sec-

ond investigation starts from DeNicola’s research [13] which uses a “dummy” elemen-

tary proposition to obtain yet another algorithmic conversion between LTS and Kripke

structures. Both these investigations will be presented in the remainder of this chapter.

3.1 A Constructive Equivalence between LTS and Kripke Struc-
tures

The LTS satisfaction operator is defined with the same formalism and in the same spirit as

the CTL satisfaction operators over Kripke structures [6]. Basically, the actions available

in an LTS state are propositions that hold in that state.

Definition 3.1 SATISFACTION FOR PROCESS [6]: A process p satisfies a ∈ A, written p |= a,

iff p a−→. That p satisfies some (general) CTL state formula is defined inductively as follows. Let

f and g be state formulae unless stated otherwise; then:

1. p |= > is true and p |= ⊥ is false for any process p.

2. p |= ¬ f iff ¬(p |= f ).

3. p |= f ∧ g iff p |= f and p |= g.

4. p |= f ∨ g iff p |= f or p |= g.

5. p |= E f for some path formula f iff there exist a path π = p
a0−→ s1

a1−→ s2
a2−→ · · · such

that π |= f .

6. p |= A f for some path formula f iff p |= f for all paths π = p
a0−→ s1

a1−→ s2
a2−→ · · · .

As before, the notation π i denotes the i-th state of a path π (with the first state being π0). The

definition of |= for LTS paths is:
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1. π |= X f iff π1 |= f .

2. π |= f U g iff there exists j ≥ 0 such that π j |= g and πk |= g for all k ≥ j, and π i |= f

for all i < j.

3. π |= f R g iff for all j ≥ 0, if π i 6|= f for every i < j then π j |= g.

We also introduce a weaker satisfaction operator for CTL. This operator is like the

original, but it is defined over a set of states rather than a single state. By abuse of notation

we also use |= for this operator.

Definition 3.2 SATISFACTION OVER SETS OF STATES [6]: Suppose a Kripke structure K =

(S, S0, R, L) over AP. For some set Q ⊆ S and some CTL state formula f is defined as follows;

K, Q |= f with f and g state formulae unless stated otherwise:

1. K, Q |= > is true and K, Q |= ⊥ is false for any set Q in any Kripke structure K.

2. K, Q |= a iff a ∈ L(s) for some s ∈ Q, a ∈ AP.

3. K, Q |= ¬ f iff ¬(K, Q |= f ).

4. K, Q |= f ∧ g iff K, Q |= f and K, Q |= g.

5. K, Q |= f ∨ g iff K, Q |= f or K, Q |= g.

6. K, Q |= E f for some path formula f iff for some s ∈ Q there exists a path π = s → s1 →
s2 → · · · → si such that K, π |= f .

7. K, Q |= A f for some path formula f iff for some (any) s ∈ Q it holds that K, π |= f for all

path π = s→ s1 → s2 → · · · → si

Based on the above definitions the following equivalence relation between Kripke

structures and LTS is introduced:
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Definition 3.3 EQUIVALENCE BETWEEN KRIPKE STRUCTURES AND LTS [6]: Given a Kripke

structure K and a set of states Q of K, the pair K, Q is equivalent to a process p, written as

K, Q ' p (or p ' K, Q), iff for any CTL formula f K, Q |= f iff p |= f .

Proposition 3.1 [6] There exist an algorithmic functionKwhich converts an LTS p into a Kripke

structure K and a set of states Q such that p ' K, Q.

Specifically, for any LTS p = (S, A,→, s0), then we define its equivalent Kripke structure K

as K = (S′, Q, R′, L′) where:

1. S′ = {〈s, x〉 : s ∈ S, x ∈ init(s)}.

2. Q = {〈s0, x〉 ∈ S′}.

3. R′ contains exactly all the transitions (〈s, N〉, 〈t, O〉) such that 〈s, N〉, 〈t, O〉 ∈ S′, and

(a) for any n ∈ N, s n
=⇒ t,

(b) for some q ∈ S and for any o ∈ O, t o
=⇒ q, and

(c) if N = ∅ then O = ∅ and t = s (these loops ensure that the relation R′ is complete).

4. L′ : S′ → 2AP such that L′(s, x) = x, where AP = A.

A sample conversion according to K is shown graphically in Figure 3.1. A state of

the Kripke structure K(p) is defined based on an LTS state and one of its corresponding

outgoing actions. Note in particular the split of the LTS state p into two states in the

Kripke structure (corresponding to the two actions a and b enabled in p).

3.2 CTL Formulae Are Equivalent with Failure Trace Tests

Recall that P is the set of all processes, T is the set of all failure trace tests, and F is the

set of all CTL formulae. The equivalence between CTL formulae and failure trace tests is

established by Propositions 3.2 and 3.3 below.
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Figure 3.1: Illustration of the conversion from an LTS p (a) to its equivalent Kripke struc-
tureK(p) (b).

Proposition 3.2 [27] There exist a functionTK : F → T such thatK(p) |= f iff p mayTK( f )

for any p ∈ P .

Proof sketch: The proof is done by structural induction over CTL formulae and the

function TK is also defined inductively at the same time. The basis is as follows:

1. TK(>) = pass

2. TK(⊥) = stop

3. TK(a) = a; pass

The induction for non-temporal operators goes as follows:

1. TK(¬ f ) = TK( f ), where TK( f ) is the complement of TK( f )

2. TK( f1 ∨ f2) = TK( f1) ∨TK( f2)

3. TK( f1 ∧ f2) = TK( f1) ∧TK( f2)

The definition of complement, conjunction, and disjunction of tests is given elsewhere

[27].

The temporal operators are converted as follows:
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1. TK(EX f ) = Σ{a;TK( f ) : a ∈ A}

2. TK(EF f ) = t′ such that t′ = TK( f ) � (Σ(a; t′ : a ∈ A)).

3. TK(EG f ) = TK( f ) ∧ (TK(EX f ′) � θ; pass), with f ′ = f ∧ EX f ′.

4. TK(E f1 U f2) = (TK( f1) ∧ (TK(EX f ′) � θ; pass)) � i; (TK( f2) ∧ (TK(EX f ′′) �

θ; pass)), with f ′ = f1 ∧ EX f ′ and f ′′ = f2 ∧ EX f ′′.

For the more detailed information and for the full proof of the conversion of CTL formulae

to failure trace tests, the reader is invited to follow the original proof [27]. �

Proposition 3.3 [24] There exists a function FK : T → F such that p may t if and only if

K(p) |= FK(t) for any p ∈ P .

Proof sketch: The proof is done yet again by structural induction over failure trace for-

mulae and the function FK is also defined at the same time (inductively).

The basis is as follows: FK(pass) = > and FK(stop) = ⊥. Clearly any process

passes pass and any Kripke structure satisfies >, so it is immediate that p may pass iff

K(p) |= FK(pass). Similarly, no Kripke structure satisfies ⊥ and no process passes stop.

We then have FK(i; t) = FK(t): by definition, an internal action is not seen by the

external environment of the system under test. We also have FK(a; t) = a ∧ EX FK(t).

We note that � is just a syntactic sugar, for indeed t1 � t2 is completely equivalent with

Σ{t1, t2}. We putFK(ΣT) =
∨
FK(t) : t ∈ T. p may ΣT iff p may t for at least one t ∈ T iff

K(p) |= FK(t) for at least one t ∈ T( by induction hypothesis) iffK(p) |= ∨
FK(t) : t ∈ T.

Whenever θ does not participate in a choice then it behaves exactly like an internal

action i, so we can assume without loss of generality that θ appears only in choice con-

structs. We also consider that every choice contains at most one top-level θ, for indeed

θ; t1 � θ; t2 is equivalent with θ; (t1 � t2). We then have FK(t1 � θ; t) = ((
∨

init(t1)) ∧
FK(t1)) ∨ (¬(

∨
init(t1)) ∧FK(t)). �
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3.3 Converting Failure Trace Tests into Compact CTL Formulae

The function FK developed in Proposition 3.3 will produce under certain circumstances

(namely, when the test features cycles) infinite formulae. This has been remedied to some

extent as follows:

Proposition 3.4 [24] There exists an algorithmic function, denoted by abuse of notation FK :

T → F such that p may t if and only if K(p) |= FK(t) for any p ∈ P and FK(t) is finite for

any test t provided that no loop in t features duplicate actions; in other words, for any loop state t0

from t such that t0
a1=⇒ t1

a2=⇒ t2
a3=⇒ · · · an=⇒ tn = t0 we have a1 6= a2 6= · · · 6= an.

Proof sketch: Consider a loop test of the following form:

t = a0; (t0 � a1; (t1 � · · · an−1; (tn−1 � t) · · · ))

Then the test can be converted into an equivalent formula using the following transfor-

mation:

FK(t) = E

(
n−1∨
i=0

Ci

)
U

(
n−1∨
i=0

Ei

)
where Ci represents the cycle in its various stages such that

Ci = EG(FK(ai) ∧ EX(FK(a(i+1) mod n) ∧ EX · · · ∧ EX(FK(a(i+n−1) mod n)) · · · ))

and each Ei represents one possible exit from the cycle and so

Ei = FK(ai) ∧ EX FK(ti)

The formula above assumes that neither the actions in the cycle ai, 0 ≤ i < n nor the

top-level actions of the exit tests init(ti), 0 ≤ i < n are θ. The deadlock detection action

is then introduced along the following cases, with k an arbitrary value, 0 ≤ k < n: θ may

appear in the loop as ak but not on top level of the alternate exit test tk−1 mod n (Case 1), on
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the top level of the test tk−1 mod n but not as alternate ak (Case 2), or both as ak and on the

top level of the alternate tk−1 mod n (Case 3). Given that θ only affects the top level of the

choice in which it participates, these cases are exhaustive.

Case 1: if any ak = θ and θ 6∈ init(tk−1 mod n) then all the occurrences of FK(ak) in FK(t)

are replaced with ¬(∨b∈init(tk−1 mod n)
FK(b)) in conjunction with

∨
b∈init(tk)\{θ}FK(b) for

the “exit” formulae and with FK(ak+1 mod n) for the “cycle” formulae. Therefore Ci =

EG(FK(ai) ∧ EX(· · · ∧ EX(¬(∨b∈init(tk−1 mod n)
FK(b)) ∧FK(ak+1 mod n) ∧ EX · · · ∧

EX(FK(a(i+n−1) mod n)) · · · ))) and Ek = ¬(
∨

b∈init(tk−1 mod n)
FK(b))∧

∨
b∈init(tk)\{θ}FK(b)∧

EX(FK(tk)).

Case 2: Wheneverθ ∈ init(tk−1 mod n) and ak 6= θ the exit formula Ek−1 mod n is changed to

contain two components. If any action in init(tk−1 mod n) is available then such an action

can be taken, so a first component is FK(ak−1 mod n) ∧ EX (
∨

b∈init(tk−1 mod n)\{θ}FK(b)) ∧
FK(tk−1 mod n). Note that anyθ top-level branch in tk−1 mod n is invalidated (since some ac-

tion b ∈ init(tk−1 mod n) is available). The top-levelθ branch of tk−1 mod n can be taken only

if no action from init(tk−1 mod n)∪{ak} is available, so the second variant isFK(ak−1 mod n)

∧ EX ¬FK(a(k)) ∧ ¬(
∨

b∈init(tk−1 mod n)\{θ}FK(b)) ∧ FK(tk−1 mod n(θ)), where tk−1 mod n =

t′ � θ; tk−1 mod n(θ) for some test t′.

By taking the disjunction of the above variants we have Ek−1 mod n = FK(ak−1 mod n)∧
EX(

∨
b∈init(tk−1 mod n)\{θ}FK(b))∧FK(tk−1 mod n)∨¬FK(a(k))∧¬(

∨
b∈init(tk−1 mod n)\{θ}FK(b))

∧FK(tk−1 mod n(θ)).

Case 3: If ak = θ andθ ∈ init(tk−1 mod n), then both the cycle and the exit test are modified.

Let B = init(tk−1 mod n) \ {θ}.
If an action from B is available the cycle cannot continue, so all the occurrences of ak

in all the formulae Ci are replaced with ¬(∨b∈BFK(b)) ∧
∨

b∈{ak+1 mod n}∪init(tk)∪\{θ}FK(b)

so that Ci = EG(FK(ai) ∧ EX(· · · ∧ EX(FK(¬(
∨

b∈init(tk−1 mod n)\{θ}FK(b))) ∧
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∨
b∈{ak+1 mod n}∪init(tk)\{θ}FK(b) ∧ EX · · · ∧ EX(FK(a(i+n−1) mod n)) · · · ))).

Similarly, when actions from B are available the non-θ component of the exit test is ap-

plicable, while theθ branch can only be taken when no action from B is offered. Therefore

we have Ek−1 mod n = FK(ak−1 mod n) ∧ EX
∨

b∈init(tk−1 mod n)\{θ}FK(b) ∧ FK(tk−1 mod n) ∨
¬(∨b∈init(tk−1 mod n)\{θ}FK(b)) ∧FK(tk−1 mod n(θ)). As before, tk−1 mod n(θ) is the θ-branch

of tk−1 mod n that is, tk−1 mod n = t′ � θ; tk−1 mod n(θ) for some test t′.

Finally, recall that originally Ek = FK(ak) ∧ EX FK(tk). Now however ak = θ and so

the same process that was repeatedly performed earlier is applied to Ek . That is, FK(ak)

is replaced with ¬(∨b∈init(tk−1 mod n)\{θ}FK(b)). In addition, θ does not consume any input

by definition, so the EX construction disappear. In all Ek = ¬(
∨

b∈init(tk−1 mod n)\{θ}FK(b))∧
FK(tk). �



Chapter 4

Yet Another Constructive
Equivalence between LTS and Kripke
Structures

The functionK developed earlier [6] produces a very compact Kripke structure. However,

a state in the original LTS can result in multiple equivalent state in the resulting Kripke

structure, which in turn requires a modified notion of satisfaction (over sets of states, see

Definition 3.2). This in turn implies a non-standard model checking algorithm. A different

such a conversion algorithm [13] avoids this issue, at the expense of a considerably larger

Kripke structure. We now explore a similar equivalence, and then (in Chapter 5) we will

study the equivalence between failure trace testing and CTL under it.

The just mentioned conversion algorithm [13] is based on introducing intermediate

states in the resulting Kripke structure. These states are labelled with the special proposi-

tion ∆ which is understood to mark a state that is ignored in the process of determining

the truth value of a CTL formula; if ∆ labels a state then it is the only label for that state.

We therefore base our construction on the following definition of equivalence between

processes and Kripke structures:

Definition 4.1 Given a Kripke structure K and a state s of K, the pair K, s is equivalent to a

24
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process p, written as K, s ' p (or p ' K, s) iff for any CTL* formula f K, s |= f iff p |= f . The

operator |= is defined for processes in Definition 3.1 and for Kripke structures as follows:

1. p |= > iff K, s |= >

2. p |= a iff K, s |= ∆ U a

3. p |= ¬ f iff K, s |= ¬ f

4. p |= f ∧ g iff K, s |= f ∧ g

5. p |= f ∨ g iff K, s |= f ∨ g

6. p |= E f iff K, s |= E f

7. p |= f U g iff K, s |= (∆ ∨ f ) U g

8. p |= X f iff K, s |= X (∆ U f )

9. p |= F f iff K, s |= F f

10. p |= G f iff K, s |= G (∆ ∨ f )

11. p |= f R g iff K, s |= f R (∆ ∨ g)

Note that the definition above is stated in terms of CTL* rather than CTL; however,

CTL* is stronger and so equivalence under CTL* implies equivalence under CTL.

Most of the equivalence is immediate. However, some cases need to make sure that

the states labelled ∆ are ignored. This happens first in K, s |= ∆ U a, which is equivalent

to p |= a. Indeed, a needs to hold immediately, except that any preceding states labelled

∆ must be ignored, hence a must be eventually true and when it becomes so it releases

the chain of ∆ labels. The formula for X is constructed using the same idea (except that

the formula f releasing the possible chain of ∆ happens starting from the next state).
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Then expression (∆ ∨ f ) U g means that f must remain true with possible interleaves

of ∆ until g becomes true. Similarly f R (∆ ∨ g) requires that g is true (with the usual

interleaved ∆) until it is released by f becoming true.

Based on this equivalence we can define a new conversion of LTS into equivalent

Kripke structures. This conversion is again based on a similar conversion [13] developed

in a different context.

Theorem 4.1 There exist at least two algorithmic functions for converting LTS into equivalent

Kripke structures. The first is the functionK described in Proposition 3.1.

The new function X is defined as follows: with ∆ a fresh symbol not in A, given an LTS

p = (S, A,→, s0), the Kripke structureX(p) = (S′, Q, R′, L) is given by:

1. AP = A ] ∆;

2. S′ = S ∪ {(r, a, s) : a ∈ A and r a−→ s};

3. Q = {s0};

4. R′ = {(r, s) : r τ−→ s} ∪ {(r, (r, a, s)) : r a−→ s} ∪ {((r, a, s), s) : r a−→ s};

5. For r, s ∈ S and a ∈ A : L(s) = {∆} and L((r, a, s)) = {a}.

Then p ' X(p).

Proof. We prove the stronger equivalence over CTL* rather than CTL by structural

induction. Since ∆ is effectively handled by the satisfaction operator introduced in Defi-

nition 4.1 it will turn out that there is no need to mention it at all.

For the basis of the induction, we note that > is true for any process and for any state

in any Kripke structure. p |= > iff X(p) |= > is therefore immediate. The same goes for

⊥ (no process and no state in any Kripke structure satisfy ⊥). p |= a iffX(p) |= a; Indeed,

a ∈ A(so that p |= a) iff a ∈ L((r, a, s)).
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That p |= ¬ f iff X(p) |= ¬ f is immediately given by the induction hypothesis that

p |= f iffX(p) |= f .

Suppose that p |= f and [or] p |= g (so that p |= f ∧ g [p |= f ∨ g]). This is equivalent

by induction hypothesis to X(p) |= f and [or] X(p) |= g, that is, X(p) |= f ∧ g [X(p) |=
f ∨ g], as desired.

Let now π ′ be a path π ′ = p
a0−→ s1

a1−→ s2
a2−→ · · · an−→ sn starting from a process

p. According to the definition of X, all the equivalent paths in the Kripke structure X(p)

have the form π ′ = ∆ → A0 → ∆ → A1 → ∆ → A2 → · · ·∆ → An, such that ai ∈ Ai

for all 0 ≤ i < n. Clearly, such a path π ′ exists. According to the function X, we know

that ∆ is a symbol that stands for states in the LTS and has no meaning in the Kripke

structure. The satisfaction operator for Kripke structures (Definition 4.1) is specifically

designed to ignore the ∆ label and this insures that the part π ′ is equivalent to the path

π = A0 → A1 → A2 → · · · → An with ai ∈ Ai for all 0 ≤ i < n and so we will use this

form for the reminder of the proof.

Consider the formula X f such that some path π satisfies it. Whenever π |= X f , π1 |= f

and therefore X(π)1 |= f (by inductive assumption, for indeed f is a state, not a path

formula) and thereforeX(π) |= X f , as desired. Conversely,X(π) |= X f , that is,X(π)1 |=
f means that π1 |= f by inductive assumption, and so π |= X f .

The proof for F, G, U, and R operators proceed similarly. Whenever π |= F f , there is a

state π i such that π i |= f . By induction hypothesis then X(π)i |= f and so X(π) |= F f .

The other way (fromX(π) to π) is similar. The G operator requires that all the states along

π satisfy f , which implies that all the states in any X(π) satisfy f , and thus X(π) |= G f

(and again things proceed similarly in the other direction). In all, the induction hypothesis

established a bijection between the states in π and the states in (any)X(π). This bijection

is used in the proof for U and R just as it was used in the above proof for F and G. Indeed,

the states along the path π will satisfy f or g as appropriate for the respective operator, but
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Figure 4.1: Illustration of the conversion from LTS (a) to its equivalent Kripke structure
(b).

this translates in the same set of states satisfying f and g in X(π), so the whole formula

(using U or R holds in π iff it holds inX(π)).

Finally, given a formula E f , p |= E f implies that there exists a path π starting from p

that satisfies f . By induction hypothesis there is then a pathX(π) starting fromX(p) that

satisfies f (there is at least one such a path) and thus X(p) |= E f . The other way around

is similar, and so is the proof for A f (all the paths π satisfy f so all the path X(π) satisfy

f as well; there are no supplementary paths, since all the paths in X(p) come from the

paths in p). �

The process of the new version described in Theorem 4.1 is most easily described

graphically; refer for this purpose to Figure 4.1. Specifically, the function X converts the

LTS given in Figure 4.1(a) into the equivalent Kripke structure shown in Figure 4.1(b).

In this new structure, instead of combining each state with its corresponding actions in

the LTS (and thus possibly splitting the LTS state into multiple Kripke structure states),

we use the new symbol ∆ to stand for the original LTS states. Every ∆ state of the Kripke

structure is the LTS state, and all the other states in the Kripke structure are the actions in
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the LTS. This ensures that all states in the Kripke structure corresponding to actions that

are outgoing from a single LTS state have all the same parent. This in turn eliminates the

need for the weaker satisfaction operator over sets of states (Definition 3.2).



Chapter 5

CTL Is Equivalent to Failure Trace
Testing

We now find that the equivalence between CTL and failure trace testing as described in

Section 3.2 also holds under the new equivalence between LTS and Kripke structures.

Recall that F stands for the set of CTL formulae and T for the set of failure trace tests. We

then have:

Theorem 5.1 There exist a function TX : F → T such that X(p) |= f iff p may TX( f ) for

any p ∈ P . There exists a functionFX : T → F such that p may t if and only ifX(p) |= FX(t)
for any p ∈ P .

Proof. The proof established earlier for TK [27] (see Proposition 3.2) will also work for

TX. Indeed, the way the operator |= is defined (Definition 4.1) ensures that all occurrences

of ∆ are “skipped over” as if they were not there in the first place. However, the paths

without the ∆ labels are identical to the paths examined in Proposition 3.2.

The proof forFK [24] also holds in almost all the cases for the same reason (see Propo-

sition 3.3). However the way LTS states are split by K facilitates the proof or Proposi-

tion 3.3, yet such a split no longer happens in X. The original proof had FK(a; t) =

a ∧ EX FK(t) but under X this construction will fail to work correctly on LTS such as

30
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p = a � b; p′ such that p′ may t. Indeed, X(p) features a node labeled ∆ with two chil-

dren; the first child is labeled a while the second child is not but hasX(p′) as an eventual

descendant (through a possible chain of nodes labeled ∆). Clearly it is not the case that

p may a; t, yet X(p) |= a ∧ EX FX(t), which shows that such a simple construction is not

sufficient forX.

To remedy this we set FX(a; t) = E (a ∧ AX ¬a) U FX(t) ∧ EX FX(t). The second

term in the conjunction ensures that FX(t) will hold in some next state, while the first

term specifies that a run of a will be followed by FX(t) (the a U FX(t) component) and

also that the run of a is exactly one state long (the AX ¬a part). Note in passing that the

U operator is necessary in order to make sure that a and FX(t) are on the same path, for

otherwise the example used above to show that the originalK(p) does not work here will

continue to be in effect.

The rest of the proof remains unchanged from the proof of Proposition 3.3. �

To illustrate the new equivalence relation we will re-use the exampled provided ear-

lier [6, 24, 27]. The first is relatively uninteresting because the conversion algorithms is

unchanged.

Example 1 COFFEE MACHINES AND THEIR TESTS [27]:

We consider the following coffee machines:

b1 = coin; (tea � bang; coffee) � coin; (coffee � bang; tea)

b2 = coin; (tea � bang; tea) � coin; (coffee � bang; coffee)

The first machine accepts a coin and then dispenses either tea or coffee, at its discretion.

Still, if one wants the other beverage, one just hits the machine. The second machine

is rather stubborn, giving either tea or coffee at its discretion. By contrast with the first

machines, the beverage offered will not be changed by hits.
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The following CTL formula was found to differentiate between the two machines:

φ = coin∧ EX (coffee∨ ¬coffee∧ bang∧ EX coffee)

Following the same conversion process as used earlier [27] we obtain the following

equivalent test:

TX(φ) = coin; (coffee; pass � bang; coffee; pass)

Note however that the test that was originally proposed to differentiate between the

two machines [17] was slightly different, namely:

t = coin; (coffee; pass � θ; bang; coffee; pass)

We argue however that these two tests are in this case equivalent. Indeed, both tests

succeed whenever coin is followed by coffee. Suppose now that coin does happen but

the next action is not coffee. Then t will follow on the deadlock detection branch, which

will only succeed if the next action is bang. On the other hand TX(φ) does not have a

deadlock detection branch in the choice following coin; however, the only alternative to

coffee inTX(φ) is bang, which is precisely the same alternative as for t (as shown above).

We thus conclude that t and TX(φ) are equivalent. �

The conversion the other way around is a bit more complex and illustrated the modi-

fied X construct, as follows:

Example 2 COFFEE MACHINES AND THEIR LOGICAL PROPERTIES [6]:

Once more we have the same coffee machines:

b1 = coin; (tea � bang; coffee) � coin; (coffee � bang; tea)

b2 = coin; (tea � bang; tea) � coin; (coffee � bang; coffee)
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As discussed earlier, one failure trace test that differentiate these machines is

t = coin; (coffee; pass � θ; bang; coffee; pass)

The conversion of the failure trace test t in to a CTL formula (after elimination) will

be:
FX(t) = E(coin∧ AX¬coin U coffee) ∧ EX(coffee)∨

E(coin∧ AX¬coin U bang)∧
EX((bang∧ AX¬bang U coffee) ∧ EX(coffee))

This formula specifies that after a coin we can get a coffee immediately or after a bang we

get a coffee immediately, The meaning of this formula is clearly equivalent to the meaning

of t. As expected the formula FX(t) holds for b1 but not for b2. �

5.1 Converting Failure Trace Tests into Compact CTL Formulae,
Revisited

Whenever all the runs of a test are finite then the conversion shown in Proposition 3.3 will

produce a reasonable CTL formula. That formula is however not in its simplest form. In

particular, the conversion algorithm follows the run of the test step by step, so whenever

the test has one or more cycles (and thus features potentially infinite runs) the resulting

formula has an infinite length. An algorithmic method of obtaining more compact (and

more importantly, finite) formulae from tests with cycles was developed earlier [24] under

the assumption that all the actions in a cycle are different from each other. We are able

to improve this result by largely eliminating the restriction of distinct cycle actions as

follows: Like before [24], we extend the function F to produce finite formulae out of tests

with cycles, but this time we only require that a “first” action is marked in each cycle. The

extension will work for both FK and FX.

Theorem 5.2 Let F ∈ {FK,FX}. Then there exists an extension of F (denoted by abuse of

notation F as well) such that F : T → F , p may t if and only if K(p) |= F(t) for any p ∈ P ,
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and F(t) is finite for any test t provided that we are allowed to mark some entry action a so that

we can refer to it as either a or start(a) in each loop of t. An entry action for a loop is defined as an

action labeling an outgoing edge from a state that has an incoming edge from outside the loop.

Proof. It is enough to show how to produce a finite formula starting from a general

“loop” test. Such a conversion can be then applied to all the loops one by one, relying

on the original conversion function from Proposition 3.3 or Theorem 5.1 (depending on

whether F extends FK or FX, respectively) for the rest of the test. Given the reliance on

Proposition 3.3 or Theorem 5.1 we obtain overall an inductive construction. Nested loops

in particular will be converted inductively (that is, from the innermost to the outermost

loop).

Thus to complete the proof it is enough to show how to obtain an equivalent, finite

CTL formula for the following, general form of a loop test:

t = a0; (t0 � a1; (t1 � · · · an−1; (tn−1 � t) · · · ))

The loop itself consists of the actions ai, 0 ≤ i < n, with the action a0 marked as start(a0).

Each such an action ai has the “exit” test ti as an alternative. We make no assumption

about the particular form of ti, 0 ≤ i < n.

Given the intended use of our function, this proof will be done within the inductive

assumptions of the proof of Proposition 3.3 or Theorem 5.1. We will therefore consider

that the formulae F(ai) and F(ti) exist and are finite, 0 ≤ i < n.

We have:

F(t) =

(
E

(
n−1∨
i=0

Ci

)
U

(
n−1∨
i=0

Ei

))
∨F(t0)

where Ci represents the cycle in its various stages and so

Ci = EG(F(ai) ∧ EX(F(a(i+1) mod n) ∧ EX · · · ∧ EX(F(a(i+n−1) mod n)) · · · ))



CHAPTER 5. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 35

For convenience we also refer in what follows to
∨n−1

i=0 Ci as C. Each Ei represents one

possible exit from the cycle and so

Ei = count(ai) ∧ EX F(ti)

with

count(ai) = EG start(a j0) ∧ EX (a j1 ∧ · · ·EX a ji−1)

where the sequence ( j0, j1, . . . , ji−1) is the subsequence of (0, 1, . . . , i − 1) that contains

exactly all the indices p such that ap 6= τ . Note in passing that the formula above is

applicable only for tests for which ai 6= θ for all 0 ≤ i < n; however, θ in the cycle will be

introduced below and so this general definition for count will prove useful later.

It is worth noting that the second term in the disjunction (F(t0)) accounts for the pos-

sibility that while running t we exit immediately upon entering the cycle through the exit

test t0, in effect without traversing any portion of the loop. Such a scenario is also perti-

nent to the proof for FK (Proposition 5.2), but was erroneously absent from the original

proof [24] and so from the sketch proof of Proposition 5.2 shown erlier in this paper.

Like the name implies, the function of count(ai) is like a counter for how many actions

separate the test ti from the marked action a0. By counting actions we know what test is

available to exit from the loop (depending on how many actions away we are from the

start of the loop).

Intuitively, C specify the sequence of all the actions following each other in the loop,

and always in the loop. It remains true for as long as the test goes around the loop, no

matter where in the loop the test is. Next, Ei combines two parts. The first part counts

how many actions we are away from the start of the loop. The second part EX F(ti) is

the exit condition. The first part enables the right exit test ti. Thus Ei will become true

whenever the test ti succeeds after i actions have been performed starting from start(a0).
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Such an event releases the loop formula from its obligations (following the semantics of

the U operator), so such a path can be taken by the test and will be successful.

The formula above assumes that neither the actions in the cycle nor the top-level ac-

tions of the exit tests areθ. We introduce the deadlock detection action along the following

cases, with k an arbitrary value, 0 ≤ k < n: θ may appear in the loop as ak but not on top

level of the alternate exit test tk−1 mod n (Item 1 below), on the top level of the test tk−1 mod n

but not as alternate ak (Item 2), or both as ak and on the top level of the alternate tk−1 mod n

(Item 3). Given that θ only affects the top level of the choice in which it participates, these

cases are exhaustive. Just like in the previous proof [24], we have:

1. If any ak = θ and θ 6∈ init(tk−1 mod n) then we replace all occurrences of F(ak)

in F(t) with ¬(∨b∈init(tk−1 mod n)
F(b)) in conjunction with

∨
b∈init(tk)\{θ}F(b) for the

“exit” formulae and with F(ak+1 mod n) for the “cycle” formulae). Therefore Ci =

EG (F(ai) ∧ EX (· · · ∧ EX (¬(∨b∈init(tk−1 mod n)
F(b)) ∧F(ak+1 mod n) ∧ EX · · · ∧ EX

(F(a(i+n−1) mod n)) · · · ))) and Ek = count(ak−1 mod n) ∧ ¬(
∨

b∈init(tk−1 mod n)
F(b)) ∧∨

b∈init(tk)\{θ}F(b) ∧ EX(F(tk)).

2. If θ ∈ init(tk−1 mod n) and ak 6= θ then we change the exit formula Ek−1 mod n so that

it contains two components. If any action in init(tk−1 mod n) is available then such an

action can be taken, so a first component is count(ak−1 mod n)∧EX (
∨

b∈init(tk−1 mod n)\{θ}

F(b)) ∧ F(tk−1 mod n). Note that any θ top-level branch in tk−1 mod n is invalidated

(since some action b ∈ init(tk−1 mod n) is available). The top-levelθ branch of tk−1 mod n

can be taken only if no action from init(tk−1 mod n) ∪ {ak} is available, so the second

variant isF(ak−1 mod n)∧EX¬F(a(k))∧¬(
∨

b∈init(tk−1 mod n)\{θ}F(b))∧F(tk−1 mod n(θ)),

where tk−1 mod n = t′ � θ; tk−1 mod n(θ) for some test t′ (recall that we can assume

without loss of generality that there exists a single top-level θ branch in tk−1 mod n).

We take the disjunction of the above variants and so Ek−1 mod n = count(ak−1 mod n)∧
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EX(
∨

b∈init(tk−1 mod n)\{θ}F(b))∧F(tk−1 mod n)∨¬F(a(k))∧¬(
∨

b∈init(tk−1 mod n)\{θ}F(b))

∧F(tk−1 mod n(θ)).

3. If ak = θ and θ ∈ init(tk−1 mod n), then we must modify the cycle as well as the exit

test. Let B = init(tk−1 mod n) \ {θ}.

If an action from B is available the loop cannot continue, so we replace in C all

occurrences of ak with ¬(∨b∈BF(b) so that Ci = EG(F(ai) ∧ EX(· · ·
∧ EX(F(¬(∨b∈init(tk−1 mod n)\{θ}F(b))) ∧ EX · · · ∧ EX(F(a(i+n−1) mod n)) · · · ))).

Similarly, when actions from B are available the non-θ component of the exit test is

applicable, while the θ branch can only be taken when no action from B is offered.

Therefore we have Ek−1 mod n = count(ak−1 mod n) ∧ EX
∨

b∈init(tk−1 mod n)\{θ}F(b) ∧
F(tk−1 mod n)∨¬(

∨
b∈init(tk−1 mod n)\{θ}F(b))∧F(tk−1 mod n(θ)). As before, tk−1 mod n(θ)

is the θ-branch of tk−1 mod n that is, tk−1 mod n = t′ � θ; tk−1 mod n(θ) for some test t′.

Finally, recall that originally Ek = count(ak)∧EXF(tk). Now however ak = θ and so

we must apply to Ek the same process that we repeatedly performed earlier namely,

adding ¬(∨b∈init(tk−1 mod n)\{θ}F(b)). In addition, θ does not consume any input by

definition, so the EX construction disappears. In all we have Ek = count(ak−1) ∧
¬(∨b∈init(tk−1 mod n)\{θ}F(b)) ∧F(tk) (when ak = θ, we do not need to count ak).

We now prove that the construction described above is correct. We focus first on the

initial, θ-less formula.

If the common actions are available for both p and t then p
ai=⇒ p1 ∧ p1

ai+1
=⇒ ∧ · · · ∧

pn−1
ai+n−1
=⇒ p, which shows that process p performs some actions in the cycle. We further

notice that these are equivalent toK(p) |= ai andK(p1) |= ai+1 ∧ · · · ∧K(pn−1) |= ai+n−1,

respectively. Therefore p
ai=⇒ p1 ∧ p1

ai+1
=⇒ ∧ · · · ∧ pn−1

ai+n−1
=⇒ p iff K(p) |= EG(F(ai) ∧
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EX(F(a(i+1) mod n) ∧ EX · · · ∧ EX(F(a(i+n−1) mod n)) · · · )). That is,

p
ai=⇒ p1 ∧ p1

ai+1
=⇒ ∧ · · · ∧ pn−1

ai+n−1
=⇒ p iffK(p) |= Ci (5.1)

We exit from the cycle as follows: When p
ai=⇒ p′ 6 ai+1

=⇒ then the process p must take the

test ti after performing ai and pass it. If however the action ai+1 is available in the cycle

as well as in the test ti, then it depends on the process p whether it will continue in the

cycle or will take the test ti. That means p may take ti and pass the test or it may decide

to continue in the cycle. Eventually however the process must take one of the exit tests.

Given the nature of may-testing one successful path is enough for p to pass t.

We now note that p
ai=⇒ p′ ∧ p′may ti is equivalent to K(p) |= count(ai) ∧ EX(F(ti)).

Indeed, when p and t perform ai the test t is i actions away from start(a0) and so count(ai)

is true. Therefore given the inductive hypothesis (that p′ may ti iffK(p′) |= F(ti) for any

process p′) we concluded that:

(p
ai=⇒ p′ ∧ p′ may ti) iffK(p) |= (count(ai) ∧ EX(F(ti))) = Ei (5.2)

Taking the disjunction of Relations (5.2) over all 0 ≤ i < n we have

(p
ai=⇒ p′ ∧ p′ may Σn−1

i=0 ti) iffK(p) |=
n−1∨
i=0

Ei (5.3)

The correctness of F(t) is then the direct consequences of Relations (5.1) and (5.3): We can

stay in the cycle as long as one Ci remains true (Relation (5.1)), and we can exit at any time

using the appropriate exit test (Relation (5.3)).

Now, we consider the possible deadlock detection action as introduced in the three

cases above. We have:

1. Let ak = θ, θ 6∈ init(tk−1 mod n) and suppose that p‖θt runs along such that they

reach the point p′‖θt′
ak−1 mod n−→ p′′‖θt′′. Let b ∈ init(tk−1 mod n). If p′′‖θt′′ b−→ then
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the run must exit the cycle according to the definition of ‖θ. At the same time Ck is

false because the disjunction
∨

b∈init(tk−1 mod n)
F(b) is true and no other Ci is true, so

C is false and therefore the only way for F(t) to be true is for Ek to be true. The two,

testing and logic scenarios are clearly equivalent. On the other hand, if p′′‖θt′′ 6 b−→
for any b ∈ init(tk−1 mod n), then the test must take the θ branch. At the same time

Ck is true and so is C, whereas Ek is false (so the formula must “stay in the cycle”),

again equivalent to the test scenario.

2. Now θ ∈ init(tk−1 mod n) and ak 6= θ. The way the process and the test perform ak

and remain in the cycle is handled by the general case so we are only considering

the exit test tk−1 mod n. The only supplementary consequence of ak being available is

that any θ branch in tk−1 mod n is disallowed, which is still about the exit test rather

than the cycle.

There are two possible successful runs that involve the exit test tk−1 mod n. First,

p
ak−1 mod n
=⇒ p′ ∧ ∃b ∈ init(tk−1 mod n) \ {θ} : p′ b

=⇒ ∧ p′ may tk−1 mod n. Second,

p
ak−1 mod n
=⇒ p′ ∧¬(∃b ∈ init(tk−1 mod n) \ {θ} : p′ b

=⇒)∧ p′ 6 ak=⇒ ∧ p′ may tk−1 mod n(θ).

The first case corresponds to a common action b being available to both the process

and the test (case in which the θ branch of tk−1 mod n is forbidden by the semantics

of p′ may tk−1 mod n). The second case requires that the θ branch of the test is taken

whenever no other action is available.

Given the inductive hypothesis (that p′ may ti iff K(p′) |= F(ti) for any process p′)

we have

p
ak−1 mod n
=⇒ p′ ∧ ∃b ∈ init(tk−1 mod n) \ {θ} : p′ b

=⇒ ∧p′ may tk−1 mod n iff

K(p) |= count(ak−1 mod n) ∧ EX
∨

b∈init(tk−1 mod n)\{θ}F(b) ∧F(tk−1 mod n)
(5.4)
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p
ak−1 mod n
=⇒ p′ ∧ ¬(∃b ∈ init(tk−1 mod n) \ {θ} : p′ b

=⇒) ∧ p′ 6 ak=⇒ ∧

p′ may tk−1 mod n(θ) iffK(p) |= count(ak−1 mod n) ∧ EX ¬F(a(k))∧

¬(∨b∈init(tk−1 mod n)\{θ}F(b)) ∧F(tk−1 mod n(θ))

(5.5)

The conjunction of Relations (5.4) and (5.5) establish this case. Indeed, the left hand

sides of the two relations are the only two ways to have a successful run involving

tk−1 mod n (as argued above).

3. Let now ak = θ andθ ∈ init(tk−1 mod n). Suppose that the process under test is inside

the cycle and has reached a state p such that p
ak−1 mod n
=⇒ p′, meaning that p′ is ready

to either continue within the cycle or pass tk−1 mod n.

Suppose first that p′ b
=⇒ for some b ∈ init(tk−1 mod n) \ {θ}. Then (a) p′ cannot

continue in the cycle, which is equivalent to Ck being false (since no Ci, i 6= k

can be true), and so (b) p′ must pass tk−1 mod n, which is equivalent to K(p′) |=∨
b∈init(tk−1 mod n)\{θ}F(b) ∧F(tk−1 mod n). That Ck is false happens because

¬(∨b∈init(tk−1 mod n)\{θ}F(b)) is false. Note incidentally that the θ branch of tk−1 mod n

is forbidden, but this is guaranteed by the semantics of p′ passing tk−1 mod n (and

therefore by the semantics ofK(p′) |= F(tk−1 mod n) by inductive hypothesis).

Suppose now that p′ 6 b
=⇒ for any b ∈ init(tk−1 mod n) \ {θ}. Then the only pos-

sible continuations are (a) p′ remaining in the cycle which is equivalent to Ck be-

ing true (ensured by
∨

b∈init(tk−1 mod n)\{θ}F(b) being false), or (b) p′ taking the θ

branch of tk−1 mod n, which is equivalent to ¬(∨b∈init(tk−1 mod n)\{θ}F(b)) ∧ F(tk(θ))

by the fact that
∨

b∈init(tk−1 mod n)\{θ}F(b) is false and the inductive hypothesis, or

(c) p′ taking the test tk (which falls just after ak = θ and so it is an alternative in

the deadlock detection branch), which is equivalent to Ek being true, ensured by



CHAPTER 5. CTL IS EQUIVALENT TO FAILURE TRACE TESTING 41

∨
b∈init(tk−1 mod n)\{θ}F(b) being false and F(tk) being true iff p′ passes tk by inductive

hypothesis.

Again taking the disjunction of the two alternatives above establishes this case. �

5.2 Example Generation of Compact CTL Formulae

In this section we illustrate the conversion of failure trace test into CTL formulae. For

this purpose consider the following simple vending machines, also shown graphically in

Figure 5.1(a, b):

P1 = coin; (coffee � coin; (tea � bang; (tea � P1)))

P2 = coin; (coffee � coin; (coffee � bang; (tea � P2)))

These two machines dispense a coffee after accepting a coin; the first machine dispenses a

tea after second coin, whereas the second still dispenses coffee. After two coins and a hit

by customer, the two machines will dispense tea.

The Kripke structures equivalent to the two machines and constructed according to

Theorem 4.1 are shown in Figure 5.1(c, d), respectively.

Consider now the following test:

t = coin; (coffee; pass � coin; (tea; pass � bang; (tea; pass � t)))

Using Theorem 5.2 (and thus implicitly Theorem 5.1) we can convert this test into the

following CTL formula (after eliminating all the obviously true sub-formulae):

FX(t) = (EG (coin) ∧ EX(coin∧ EX((bang) ∧ EX(coin)))∨
EG (coin) ∧ EX(bang∧ EX((coin) ∧ EX(coin)))∨
EG (bang) ∧ EX(coin∧ EX((coin) ∧ EX(bang)))
U EG(init coin) ∧ EX (coffee) ∨ EG(init coin)
∧ EX(coin∧ EX(tea)) ∨ EG(init coin) ∧ EX(coin∧ EX(bang∧ EX(tea))))
∨ EG(tea)
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P1 =

coin

coin

bang

tea

coffeetea

△

coin

△

coin △ bang

△

tea △

coffee△

tea △

tea △

(a) (c)

P2 =

coin

coin

bang

tea

coffeecoffee

△

coin

△

coin △ bang

△

tea △

coffee△

coffee △

tea △

(b) (d)

Figure 5.1: Two vending machines P1 and P2 (a, b) and their equivalent Kripke structures
X(P1) andX(P2) (c, d).

It is not difficult to see that the meaning of this formula is equivalent to the meaning

of t. Indeed, the following is true for both the test t as well as the formula FX(t): tea is

offered in the first step without any coin, or after a coin coffee is offered, or after two coins

tea is offered, or after two coins and customer hits tea is offered; On the other hand after

two coins and a bang, and if no coin is available next, then tea will be offered. Finally,

after two coins and a bang if both coin and tea are available, then two options comes out:

we can either keep in the cycle, or offer a tea. In all the process can remain in the cycle
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indefinitely or can exit from the cycle and pass the test. We can get coffee or tea at the first

cycle or after few repetitions of the cycle.

The formula FX(t) holds forX(P1) , but it does not hold forX(P2).



Chapter 6

Conclusions

The contribution of this thesis can be summarized as follows: First we offered a new algo-

rithmic functionX that converts an LTS into its equivalent Kripke structure (Theorem 4.1)

and then we showed that CTL and failure trace tests continue to be equivalent under this

new conversion (Theorem 5.1).

A previous paper [24] also noted that the function for converting failure trace tests

into CTL formulae produces infinite formulae whenever the test being converted features

potentially infinite runs (or loops). In that paper, the loops have been converted into finite

CTL formulae under the assumption that all the actions in the loop are different from

each other. We now eliminate the need for this assumption and we show that compact

formulae can be obtained from loops under the weaker assumption that we can mark

one action in the loop but otherwise not imposing any restrictions on the loop actions

(Theorem 5.2). This conversion works under both the old conversion function from LTS

to Kripke structures (Section 3.1 [6]) and out new conversion (Chapter 4). Between other

things, we thus solve one of the open problem noted in the previous paper [24].

Another open problem mentioned earlier [6] is that K(p) is a Kripke structure that

may have multiple initial states, which in turn requires the use of a weaker satisfaction

operator (Definition 3.2). In order to solve this problem we adapted a construction used

44
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earlier in a different context [13] to the task of converting LTS into equivalent Kripke

structures and so develop a new conversion function X which avoids the issue of mul-

tiple initial states. The drawback of this conversion however is that the resulting Kripke

structure is considerably larger.

As we mentioned above, the generation of compact CTL formulae out of loop tests

relies on marking an initial action in each loop. Whether it is possible to effect such a

conversion without supplementary markers at all remains an open problem.

In all, this thesis contributes to framework for combined, algebraic and logic formal

specifications, which allows the development of mixed specifications for reasons of con-

venience or even personal taste. Most importantly, no matter which form the specification

takes (logic, algebraic, or mixed), it can now be used in both model checking and model-

based testing (or even both!).
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